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PREFACE

The following material is addressed to readers who are already familiar with applied mathematics
at the advanced undergraduate level or preferably higher; and with some �eld, such as physics,

chemistry, biology, geology, medicine, economics, sociology, engineering, operations research, etc.,

where inference is needed.y A previous acquaintance with probability and statistics is not necessary;
indeed, a certain amount of innocence in this area may be desirable, because there will be less to

unlearn.
We are concerned with probability theory and all of its conventional mathematics, but now

viewed in a wider context than that of the standard textbooks. Every Chapter after the �rst has
\new" (i.e., not previously published) results that we think will be found interesting and useful.

Many of our applications lie outside the scope of conventional probability theory as currently
taught. But we think that the results will speak for themselves, and that something like the theory

expounded here will become the conventional probability theory of the future.

History: The present form of this work is the result of an evolutionary growth over many years. My

interest in probability theory was stimulated �rst by reading the work of Harold Je�reys (1939) and
realizing that his viewpoint makes all the problems of theoretical physics appear in a very di�erent

light. But then in quick succession discovery of the work of R. T. Cox (1946), C. E. Shannon (1948)
and G. P�olya (1954) opened up new worlds of thought, whose exploration has occupied my mind

for some forty years. In this much larger and permanent world of rational thinking in general, the

current problems of theoretical physics appeared as only details of temporary interest.
The actual writing started as notes for a series of lectures given at Stanford University in 1956,

expounding the then new and exciting work of George P�olya on \Mathematics and Plausible Rea-
soning". He dissected our intuitive \common sense" into a set of elementary qualitative desiderata

and showed that mathematicians had been using them all along to guide the early stages of discov-
ery, which necessarily precede the �nding of a rigorous proof. The results were much like those of

James Bernoulli's \Art of Conjecture" (1713), developed analytically by Laplace in the late 18'th
Century; but P�olya thought the resemblance to be only qualitative.

However, P�olya demonstrated this qualitative agreement in such complete, exhaustive detail
as to suggest that there must be more to it. Fortunately, the consistency theorems of R. T. Cox

were enough to clinch matters; when one added P�olya's qualitative conditions to them the result

was a proof that, if degrees of plausibility are represented by real numbers, then there is a uniquely
determined set of quantitative rules for conducting inference. That is, any other rules whose results
conict with them will necessarily violate an elementary { and nearly inescapable { desideratum of
rationality or consistency.

But the �nal result was just the standard rules of probability theory, given already by Bernoulli
and Laplace; so why all the fuss? The important new feature was that these rules were now seen as

uniquely valid principles of logic in general, making no reference to \chance" or \random variables";
so their range of application is vastly greater than had been supposed in the conventional probability

theory that was developed in the early twentieth Century. As a result, the imaginary distinction
between \probability theory" and \statistical inference" disappears, and the �eld achieves not only
logical unity and simplicity, but far greater technical power and exibility in applications.

In the writer's lectures, the emphasis was therefore on the quantitative formulation of P�olya's
viewpoint, so it could be used for general problems of scienti�c inference, almost all of which

y By \inference" we mean simply: deductive reasoning whenever enough information is at hand to permit

it; inductive or plausible reasoning when { as is almost invariably the case in real problems { the necessary

information is not available. But if a problem can be solved by deductive reasoning, probability theory is

not needed for it; thus our topic is the optimal processing of incomplete information.
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arise out of incomplete information rather than \randomness". Some personal reminiscences about
George P�olya and this start of the work are in Chapter 5.

But once the development of applications started, the work of Harold Je�reys, who had seen
so much of it intuitively and seemed to anticipate every problem I would encounter, became again

the central focus of attention. My debt to him is only partially indicated by the dedication of this
book to his memory. Further comments about his work and its inuence on mine are scattered

about in several Chapters.

In the years 1957{1970 the lectures were repeated, with steadily increasing content, at many

other Universities and research laboratories.z In this growth it became clear gradually that the

outstanding di�culties of conventional \statistical inference" are easily understood and overcome.
But the rules which now took their place were quite subtle conceptually, and it required some

deep thinking to see how to apply them correctly. Past di�culties which had led to rejection of
Laplace's work, were seen �nally as only misapplications, arising usually from failure to de�ne the

problem unambiguously or to appreciate the cogency of seemingly trivial side information, and easy
to correct once this is recognized. The various relations between our \extended logic" approach

and the usual \random variable" one appear in almost every Chapter, in many di�erent forms.

Eventually, the material grew to far more than could be presented in a short series of lec-

tures, and the work evolved out of the pedagogical phase; with the clearing up of old di�culties

accomplished, we found ourselves in possession of a powerful tool for dealing with new problems.
Since about 1970 the accretion has continued at the same pace, but fed instead by the research

activity of the writer and his colleagues. We hope that the �nal result has retained enough of its
hybrid origins to be usable either as a textbook or as a reference work; indeed, several generations

of students have carried away earlier versions of our notes, and in turn taught it to their students.

In view of the above, we repeat the sentence that Charles Darwin wrote in the Introduction to

his Origin of Species : \I hope that I may be excused for entering on these personal details, as I give
them to show that I have not been hasty in coming to a decision." But it might be thought that

work done thirty years ago would be obsolete today. Fortunately, the work of Je�reys, P�olya and

Cox was of a fundamental, timeless character whose truth does not change and whose importance
grows with time. Their perception about the nature of inference, which was merely curious thirty

years ago, is very important in a half{dozen di�erent areas of science today; and it will be crucially
important in all areas 100 years hence.

Foundations: From thirty years of experience with its applications in hundreds of real problems,

our views on the foundations of probability theory have evolved into something quite complex,
which cannot be described in any such simplistic terms as \pro{this" or \anti{that". For example
our system of probability could hardly, in style, philosophy, and purpose, be more di�erent from

that of Kolmogorov. What we consider to be fully half of probability theory as it is needed in
current applications { the principles for assigning probabilities by logical analysis of incomplete

information { is not present at all in the Kolmogorov system.

Yet when all is said and done we �nd ourselves, to our own surprise, in agreement with Kol-

mogorov and in disagreement with his critics, on nearly all technical issues. As noted in Appendix A,
each of his axioms turns out to be, for all practical purposes, derivable from the P�olya{Cox desider-

ata of rationality and consistency. In short, we regard our system of probability as not contradicting
Kolmogorov's; but rather seeking a deeper logical foundation that permits its extension in the di-
rections that are needed for modern applications. In this endeavor, many problems have been

solved, and those still unsolved appear where we should naturally expect them: in breaking into
new ground.

z Some of the material in the early Chapters was issued in 1958 by the Socony{Mobil Oil Company as

Number 4 in their series \Colloquium Lectures in Pure and Applied Science".
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As another example, it appears at �rst glance to everyone that we are in very close agreement
with the de Finetti system of probability. Indeed, the writer believed this for some time. Yet

when all is said and done we �nd, to our own surprise, that little more than a loose philosophical
agreement remains; on many technical issues we disagree strongly with de Finetti. It appears to

us that his way of treating in�nite sets has opened up a Pandora's box of useless and unnecessary
paradoxes; nonconglomerability and �nite additivity are examples discussed in Chapter 15.

In�nite set paradoxing has become a morbid infection that is today spreading in a way that
threatens the very life of probability theory, and requires immediate surgical removal. In our

system, after this surgery, such paradoxes are avoided automatically; they cannot arise from correct
application of our basic rules, because those rules admit only �nite sets and in�nite sets that arise

as well{de�ned and well{behaved limits of �nite sets. The paradoxing was caused by (1) jumping

directly into an in�nite set without specifying any limiting process to de�ne its properties; and
then (2) asking questions whose answers depend on how the limit was approached.

For example, the question: \What is the probability that an integer is even?" can have any
answer we please in (0, 1), depending on what limiting process is to de�ne the \set of all inte-

gers" (just as a conditionally convergent series can be made to converge to any number we please,
depending on the order in which we arrange the terms).

In our view, an in�nite set cannot be said to possess any \existence" and mathematical prop-
erties at all { at least, in probability theory { until we have speci�ed the limiting process that is

to generate it from a �nite set. In other words, we sail under the banner of Gauss, Kronecker, and

Poincar�e rather than Cantor, Hilbert, and Bourbaki. We hope that readers who are shocked by
this will study the indictment of Bourbakism by the mathematician Morris Kline (1980), and then

bear with us long enough to see the advantages of our approach. Examples appear in almost every
Chapter.

Comparisons: For many years there has been controversy over \frequentist" versus \Bayesian"
methods of inference, in which the writer has been an outspoken partisan on the Bayesian side.

The record of this up to 1981 is given in an earlier book (Jaynes, 1983). In these old works there

was a strong tendency, on both sides, to argue on the level of philosophy or ideology. We can
now hold ourselves somewhat aloof from this because, thanks to recent work, there is no longer

any need to appeal to such arguments. We are now in possession of proven theorems and masses
of worked{out numerical examples. As a result, the superiority of Bayesian methods is now a

thoroughly demonstrated fact in a hundred di�erent areas. One can argue with a philosophy; it
is not so easy to argue with a computer printout, which says to us: \Independently of all your

philosophy, here are the facts of actual performance." We point this out in some detail whenever
there is a substantial di�erence in the �nal results. Thus we continue to argue vigorously for the
Bayesian methods; but we ask the reader to note that our arguments now proceed by citing facts
rather than proclaiming a philosophical or ideological position.

However, neither the Bayesian nor the frequentist approach is universally applicable, so in

the present more general work we take a broader view of things. Our theme is simply: Probability
Theory as Extended Logic. The \new" perception amounts to the recognition that the mathematical
rules of probability theory are not merely rules for calculating frequencies of \random variables";
they are also the unique consistent rules for conducting inference (i.e. plausible reasoning) of any

kind, and we shall apply them in full generality to that end.

It is true that all \Bayesian" calculations are included automatically as particular cases of our

rules; but so are all \frequentist" calculations. Nevertheless, our basic rules are broader than either
of these, and in many applications our calculations do not �t into either category.

To explain the situation as we see it presently: The traditional \frequentist" methods which use

only sampling distributions are usable and useful in many particularly simple, idealized problems;
but they represent the most proscribed special cases of probability theory, because they presuppose
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conditions (independent repetitions of a \random experiment" but no relevant prior information)
that are hardly ever met in real problems. This approach is quite inadequate for the current needs

of science.

In addition, frequentist methods provide no technical means to eliminate nuisance parameters

or to take prior information into account, no way even to use all the information in the data when
su�cient or ancillary statistics do not exist. Lacking the necessary theoretical principles, they force

one to \choose a statistic" from intuition rather than from probability theory, and then to invent
ad hoc devices (such as unbiased estimators, con�dence intervals, tail{area signi�cance tests) not

contained in the rules of probability theory. Each of these is usable within a small domain for
which it was invented but, as Cox's theorems guarantee, such arbitrary devices always generate

inconsistencies or absurd results when applied to extreme cases; we shall see dozens of examples.

All of these defects are corrected by use of Bayesian methods, which are adequate for what

we might call \well{developed" problems of inference. As Harold Je�reys demonstrated, they
have a superb analytical apparatus, able to deal e�ortlessly with the technical problems on which

frequentist methods fail. They determine the optimal estimators and algorithms automatically
while taking into account prior information and making proper allowance for nuisance parameters;

and they do not break down { but continue to yield reasonable results { in extreme cases. Therefore
they enable us to solve problems of far greater complexity than can be discussed at all in frequentist

terms. One of our main purposes is to show how all this capability was contained already in the

simple product and sum rules of probability theory interpreted as extended logic, with no need
for { indeed, no room for { any ad hoc devices.

But before Bayesian methods can be used, a problem must be developed beyond the \ex-

ploratory phase" to the point where it has enough structure to determine all the needed apparatus

(a model, sample space, hypothesis space, prior probabilities, sampling distribution). Almost all
scienti�c problems pass through an initial exploratory phase in which we have need for inference,

but the frequentist assumptions are invalid and the Bayesian apparatus is not yet available. In-
deed, some of them never evolve out of the exploratory phase. Problems at this level call for more

primitive means of assigning probabilities directly out of our incomplete information.

For this purpose, the Principle of Maximum Entropy has at present the clearest theoretical

justi�cation and is the most highly developed computationally, with an analytical apparatus as
powerful and versatile as the Bayesian one. To apply it we must de�ne a sample space, but do not

need any model or sampling distribution. In e�ect, entropy maximization creates a model for us
out of our data, which proves to be optimal by so many di�erent criteria? that it is hard to imagine

circumstances where one would not want to use it in a problem where we have a sample space but
no model.

Bayesian and maximum entropy methods di�er in another respect. Both procedures yield
the optimal inferences from the information that went into them, but we may choose a model for
Bayesian analysis; this amounts to expressing some prior knowledge { or some working hypothesis {
about the phenomenon being observed. Usually such hypotheses extend beyond what is directly

observable in the data, and in that sense we might say that Bayesian methods are { or at least may

? These concern e�cient information handling; for example, (1) The model created is the simplest one

that captures all the information in the constraints (Chapter 11); (2) It is the unique model for which

the constraints would have been su�cient statistics (Chapter 8); (3) If viewed as constructing a sampling

distribution for subsequent Bayesian inference from new data D, the only property of the measurement

errors in D that are used in that subsequent inference are the ones about which that sampling distribution

contained some de�nite prior information (Chapter 7). Thus the formalismautomatically takes into account

all the information we have, but avoids assuming information that we do not have. This contrasts sharply

with orthodox methods, where one does not think in terms of information at all, and in general violates

both of these desiderata.
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be { speculative. If the extra hypotheses are true, then we expect that the Bayesian results will
improve on maximum entropy; if they are false, the Bayesian inferences will likely be worse.

On the other hand, maximum entropy is a nonspeculative procedure, in the sense that it
invokes no hypotheses beyond the sample space and the evidence that is in the available data.

Thus it predicts only observable facts (functions of future or past observations) rather than values
of parameters which may exist only in our imagination. It is just for that reason that maximum

entropy is the appropriate (safest) tool when we have very little knowledge beyond the raw data;
it protects us against drawing conclusions not warranted by the data. But when the information is

extremely vague it may be di�cult to de�ne any appropriate sample space, and one may wonder
whether still more primitive principles than Maximum Entropy can be found. There is room for

much new creative thought here.

For the present, there are many important and highly nontrivial applications where Maximum

Entropy is the only tool we need. The planned second volume of this work is to consider them

in detail; usually, they require more technical knowledge of the subject{matter area than do the
more general applications studied in this volume. All of presently known statistical mechanics, for

example, is included in this, as are the highly successful maximum entropy spectrum analysis and
image reconstruction algorithms in current use. However, we think that in the future the latter two

applications will evolve on into the Bayesian phase, as we become more aware of the appropriate
models and hypothesis spaces, which enable us to incorporate more prior information.

Mental Activity: As one would expect already from P�olya's examples, probability theory as

extended logic reproduces many aspects of human mental activity, sometimes in surprising and
even disturbing detail. In Chapter 5 we �nd our equations exhibiting the phenomenon of a person

who tells the truth and is not believed, even though the disbelievers are reasoning consistently. The

theory explains why and under what circumstances this will happen.

The equations also reproduce a more complicated phenomenon, divergence of opinions. One

might expect that open discussion of public issues would tend to bring about a general concensus.
On the contrary, we observe repeatedly that when some controversial issue has been discussed

vigorously for a few years, society becomes polarized into two opposite extreme camps; it is almost
impossible to �nd anyone who retains a moderate view. Probability theory as logic shows how two

persons, given the same information, may have their opinions driven in opposite directions by it,
and what must be done to avoid this.

In such respects, it is clear that probability theory is telling us something about the way our
own minds operate when we form intuitive judgments, of which we may not have been consciously

aware. Some may feel uncomfortable at these revelations; others may see in them useful tools for
psychological, sociological, or legal research.

What is `safe'? We are not concerned here only with abstract issues of mathematics and logic.
One of the main practical messages of this work is the great e�ect of prior information on the

conclusions that one should draw from a given data set. Currently much discussed issues such
as environmental hazards or the toxicity of a food additive, cannot be judged rationally if one

looks only at the current data and ignores the prior information that scientists have about the
phenomenon. As we demonstrate, this can lead us to greatly overestimate or underestimate the
danger.

A common error, when judging the e�ects of radioactivity or the toxicity of some substance,

is to assume a linear response model without threshold (that is, a dose rate below which there is
no ill e�ect). Presumably there is no threshold e�ect for cumulative poisons like heavy metal ions
(mercury, lead), which are eliminated only very slowly if at all. But for virtually every organic

substance (such as saccharin or cyclamates), the existence of a �nite metabolic rate means that
there must exist a �nite threshold dose rate, below which the substance is decomposed, eliminated,
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or chemically altered so rapidly that it has no ill e�ects. If this were not true, the human race
could never have survived to the present time, in view of all the things we have been eating.

Indeed, every mouthful of food you and I have ever taken contained many billions of kinds of
complex molecules whose structure and physiological e�ects have never been determined { and many

millions of which would be toxic or fatal in large doses. We cannot doubt that we are daily ingesting
thousands of substances that are far more dangerous than saccharin { but in amounts that are safe,

because they are far below the various thresholds of toxicity. There is an obvious resemblance to
the process of vaccination, in which an extremely small \microdose" of some potentially dangerous

substance causes the body to build up defenses against it, making it harmless. But at present there

is hardly any substance except some common drugs, for which we actually know the threshold.

Therefore, the goal of inference in this �eld should be to estimate not only the slope of the

response curve, but far more importantly , to decide whether there is evidence for a threshold;
and if so, to estimate its magnitude (the \maximum safe dose"). For example, to tell us that a

sugar substitute is dangerous in doses a thousand times greater than would ever be encountered in
practice, is hardly an argument against using the substitute; indeed, the fact that it is necessary

to go to kilodoses in order to detect any ill e�ects at all, is rather conclusive evidence, not of
the danger, but of the safety , of a tested substance. A similar overdose of sugar would be far

more dangerous, leading not to barely detectable harmful e�ects, but to sure, immediate death by
diabetic coma; yet nobody has proposed to ban the use of sugar in food.

Kilodose e�ects are irrelevant because we do not take kilodoses; in the case of a sugar substitute

the important question is: What are the threshold doses for toxicity of a sugar substitute and for

sugar, compared to the normal doses? If that of a sugar substitute is higher, then the rational

conclusion would be that the substitute is actually safer than sugar, as a food ingredient. To
analyze one's data in terms of a model which does not allow even the possibility of a threshold

e�ect, is to prejudge the issue in a way that can lead to false conclusions however good the data. If
we hope to detect any phenomenon, we must use a model that at least allows the possibility that

it may exist.

We emphasize this in the Preface because false conclusions of just this kind are now not only
causing major economic waste, but also creating unnecessary dangers to public health and safety.

Society has only �nite resources to deal with such problems, so any e�ort expended on imaginary
dangers means that real dangers are going unattended. Even worse, the error is incorrectible by

current data analysis procedures; a false premise built into a model which is never questioned,
cannot be removed by any amount of new data. Use of models which correctly represent the prior
information that scientists have about the mechanism at work can prevent such folly in the future.

But such considerations are not the only reasons why prior information is essential in inference;
the progress of science itself is at stake. To see this, note a corollary to the last paragraph; that
new data that we insist on analyzing in terms of old ideas (that is, old models which are not

questioned) cannot lead us out of the old ideas. However many data we record and analyze, we

may just keep repeating the same old errors, and missing the same crucially important things that
the experiment was competent to �nd. That is what ignoring prior information can do to us; no
amount of analyzing coin tossing data by a stochastic model could have led us to discovery of
Newtonian mechanics, which alone determines those data.

But old data, when seen in the light of new ideas, can give us an entirely new insight into
a phenomenon; we have an impressive recent example of this in the Bayesian spectrum analysis

of nuclear magnetic resonance data, which enables us to make accurate quantitative determina-
tions of phenomena which were not accessible to observation at all with the previously used data

analysis by fourier transforms. When a data set is mutilated (or, to use the common euphemism,
`�ltered') by processing according to false assumptions, important information in it may be de-
stroyed irreversibly. As some have recognized, this is happening constantly from orthodox methods
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of detrending or seasonal adjustment in Econometrics. But old data sets, if preserved unmutilated
by old assumptions, may have a new lease on life when our prior information advances.

Style of Presentation: In part A, expounding principles and elementary applications, most

Chapters start with several pages of verbal discussion of the nature of the problem. Here we
try to explain the constructive ways of looking at it, and the logical pitfalls responsible for past

errors. Only then do we turn to the mathematics, solving a few of the problems of the genre to the
point where the reader may carry it on by straightforward mathematical generalization. In part B,

expounding more advanced applications, we can concentrate from the start on the mathematics.

The writer has learned from much experience that this primary emphasis on the logic of the

problem, rather than the mathematics, is necessary in the early stages. For modern students, the
mathematics is the easy part; once a problem has been reduced to a de�nite mathematical exercise,

most students can solve it e�ortlessly and extend it endlessly, without further help from any book or
teacher. It is in the conceptual matters (how to make the initial connection between the real{world

problem and the abstract mathematics) that they are perplexed and unsure how to proceed.

Recent history demonstrates that anyone foolhardy enough to describe his own work as \rig-

orous" is headed for a fall. Therefore, we shall claim only that we do not knowingly give erroneous
arguments. We are conscious also of writing for a large and varied audience, for most of whom

clarity of meaning is more important than \rigor" in the narrow mathematical sense.

There are two more, even stronger reasons for placing our primary emphasis on logic and

clarity. Firstly, no argument is stronger than the premises that go into it, and as Harold Je�reys
noted, those who lay the greatest stress on mathematical rigor are just the ones who, lacking a sure

sense of the real world, tie their arguments to unrealistic premises and thus destroy their relevance.
Je�reys likened this to trying to strengthen a building by anchoring steel beams into plaster. An

argument which makes it clear intuitively why a result is correct, is actually more trustworthy
and more likely of a permanent place in science, than is one that makes a great overt show of

mathematical rigor unaccompanied by understanding.

Secondly, we have to recognize that there are no really trustworthy standards of rigor in a

mathematics that has embraced the theory of in�nite sets. Morris Kline (1980, p. 351) came close
to the Je�reys simile: \Should one design a bridge using theory involving in�nite sets or the axiom

of choice? Might not the bridge collapse?" The only real rigor we have today is in the operations
of elementary arithmetic on �nite sets of �nite integers, and our own bridge will be safest from

collapse if we keep this in mind.

Of course, it is essential that we follow this \�nite sets" policy whenever it matters for our

results; but we do not propose to become fanatical about it. In particular, the arts of computation
and approximation are on a di�erent level than that of basic principle; and so once a result is

derived from strict application of the rules, we allow ourselves to use any convenient analytical
methods for evaluation or approximation (such as replacing a sum by an integral) without feeling

obliged to show how to generate an uncountable set as the limit of a �nite one.

But we impose on ourselves a far stricter adherence to the mathematical rules of probability
theory than was ever exhibited in the \orthodox" statistical literature, in which authors repeatedly
invoke the aforementioned intuitive ad hoc devices to do, arbitrarily and imperfectly, what the

rules of probability theory as logic would have done for them uniquely and optimally. It is just this
strict adherence that enables us to avoid the arti�cial paradoxes and contradictions of orthodox
statistics, as described in Chapters 15 and 17.

Equally important, this policy often simpli�es the computations in two ways: (A) The problem
of determining the sampling distribution of a \statistic" is eliminated; the evidence of the data is

displayed fully in the likelihood function, which can be written down immediately. (B) One can

eliminate nuisance parameters at the beginning of a calculation, thus reducing the dimensionality
of a search algorithm. This can mean orders of magnitude reduction in computation over what
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would be needed with a least squares or maximum likelihood algorithm. The Bayesian computer
programs of Bretthorst (1988) demonstrate these advantages impressively, leading in some cases to

major improvements in the ability to extract information from data, over previously used methods.
But this has barely scratched the surface of what can be done with sophisticated Bayesian models.

We expect a great proliferation of this �eld in the near future.
A scientist who has learned how to use probability theory directly as extended logic, has a great

advantage in power and versatility over one who has learned only a collection of unrelated ad{hoc

devices. As the complexity of our problems increases, so does this relative advantage. Therefore

we think that in the future, workers in all the quantitative sciences will be obliged, as a matter of
practical necessity, to use probability theory in the manner expounded here. This trend is already

well under way in several �elds, ranging from econometrics to astronomy to magnetic resonance

spectroscopy; but to make progress in a new area it is necessary to develop a healthy disrespect for
tradition and authority, which have retarded progress throughout the 20'th Century.

Finally, some readers should be warned not to look for hidden subtleties of meaning which are
not present. We shall, of course, explain and use all the standard technical jargon of probability

and statistics { because that is our topic. But although our concern with the nature of logical
inference leads us to discuss many of the same issues, our language di�ers greatly from the stilted

jargon of logicians and philosophers. There are no linguistic tricks and there is no \meta{language"
gobbledygook; only plain English. We think that this will convey our message clearly enough to

anyone who seriously wants to understand it. In any event, we feel sure that no further clarity
would be achieved by taking the �rst few steps down that in�nite regress that starts with: \What

do you mean by `exists'?"
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CHAPTER 1

PLAUSIBLE REASONING

\The actual science of logic is conversant at present only with things either certain,

impossible, or entirely doubtful, none of which (fortunately) we have to reason on.
Therefore the true logic for this world is the calculus of Probabilities, which takes

account of the magnitude of the probability which is, or ought to be, in a reasonable
man's mind." | James Clerk Maxwell (1850)

Suppose some dark night a policeman walks down a street, apparently deserted; but suddenly he

hears a burglar alarm, looks across the street, and sees a jewelry store with a broken window. Then

a gentleman wearing a mask comes crawling out through the broken window, carrying a bag which

turns out to be full of expensive jewelry. The policeman doesn't hesitate at all in deciding that this

gentleman is dishonest. But by what reasoning process does he arrive at this conclusion? Let us

�rst take a leisurely look at the general nature of such problems.

Deductive and Plausible Reasoning

A moment's thought makes it clear that our policeman's conclusion was not a logical deduction

from the evidence; for there may have been a perfectly innocent explanation for everything. It

might be, for example, that this gentleman was the owner of the jewelry store and he was coming

home from a masquerade party, and didn't have the key with him. But just as he walked by

his store a passing truck threw a stone through the window; and he was only protecting his own

property.

Now while the policeman's reasoning process was not logical deduction, we will grant that it

had a certain degree of validity. The evidence did not make the gentleman's dishonesty certain,

but it did make it extremely plausible. This is an example of a kind of reasoning in which we have

all become more or less pro�cient, necessarily, long before studying mathematical theories. We are

hardly able to get through one waking hour without facing some situation (i.e., will it rain or won't

it?) where we do not have enough information to permit deductive reasoning; but still we must

decide immediately what to do.

But in spite of its familiarity, the formation of plausible conclusions is a very subtle process.

Although history records discussions of it extending over 24 Centuries, probably nobody has ever

produced an analysis of the process which anyone else �nds completely satisfactory. But in this work

we will be able to report some useful and encouraging new progress on them, in which conicting

intuitive judgments are replaced by de�nite theorems, and ad hoc procedures are replaced by

rules that are determined uniquely by some very elementary { and nearly inescapable { criteria of

rationality.

All discussions of these questions start by giving examples of the contrast between deduc-

tive reasoning and plausible reasoning. As was recognized already in the Organon of Aristotle

(4'th Century B.C.), deductive reasoning (apodeixis) can be analyzed ultimately into the repeated

application of two strong syllogisms:

If A is true, then B is true

A is true (1{1)

Therefore, B is true

and its inverse:



102 1: Deductive and Plausible Reasoning 102

If A is true, then B is true

B is false (1{2)

Therefore, A is false

This is the kind of reasoning we would like to use all the time; but as noted, in almost all the

situations confronting us we do not have the right kind of information to allow this kind of reasoning.

We fall back on weaker syllogisms (epagoge):

If A is true, then B is true

B is true (1{3)

Therefore, A becomes more plausible

The evidence does not prove that A is true, but veri�cation of one of its consequences does give us

more con�dence in A. For example, let

A � \It will start to rain by 10 AM at the latest."

B � \The sky will become cloudy before 10 AM."

Observing clouds at 9:45 AM does not give us a logical certainty that the rain will follow; nev-

ertheless our common sense, obeying the weak syllogism, may induce us to change our plans and

behave as if we believed that it will, if those clouds are su�ciently dark.

This example shows also that the major premise, \If A then B" expresses B only as a logical

consequence of A; and not necessarily a causal physical consequence, which could be e�ective only

at a later time. The rain at 10 AM is not the physical cause of the clouds at 9:45 AM. Nevertheless,

the proper logical connection is not in the uncertain causal direction (clouds) =) (rain), but rather

(rain) =) (clouds) which is certain, although noncausal.

We emphasize at the outset that we are concerned here with logical connections, because some

discussions and applications of inference have fallen into serious error through failure to see the

distinction between logical implication and physical causation. The distinction is analyzed in some

depth by H. A. Simon and N. Rescher (1966), who note that all attempts to interpret implication

as expressing physical causation founder on the lack of contraposition expressed by the second

syllogism (1{2). That is, if we tried to interpret the major premise as \A is the physical cause

of B", then we would hardly be able to accept that \not{B is the physical cause of not{A". In

Chapter 3 we shall see that attempts to interpret plausible inferences in terms of physical causation

fare no better.

Another weak syllogism, still using the same major premise, is

If A is true, then B is true

A is false (1{4)

Therefore, B becomes less plausible

In this case, the evidence does not prove that B is false; but one of the possible reasons for its

being true has been eliminated, and so we feel less con�dent about B. The reasoning of a scientist,

by which he accepts or rejects his theories, consists almost entirely of syllogisms of the second and

third kind.

Now the reasoning of our policeman was not even of the above types. It is best described by

a still weaker syllogism:
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If A is true, then B becomes more plausible

B is true (1{5)

Therefore, A becomes more plausible

But in spite of the apparent weakness of this argument, when stated abstractly in terms of A and

B, we recognize that the policeman's conclusion has a very strong convincing power. There is

something which makes us believe that in this particular case, his argument had almost the power

of deductive reasoning.

These examples show that the brain, in doing plausible reasoning, not only decides whether

something becomes more plausible or less plausible, but it evaluates the degree of plausibility in

some way. The plausibility of rain by 10 depends very much on the darkness of those clouds.

And the brain also makes use of old information as well as the speci�c new data of the problem;

in deciding what to do we try to recall our past experience with clouds and rain, and what the

weather{man predicted last night.

To illustrate that the policeman was also making use of the past experience of policemen in

general, we have only to change that experience. Suppose that events like these happened several

times every night to every policeman|and in every case the gentleman turned out to be completely

innocent. Very soon, policemen would learn to ignore such trivial things.

Thus, in our reasoning we depend very much on prior information to help us in evaluating

the degree of plausibility in a new problem. This reasoning process goes on unconsciously, almost

instantaneously, and we conceal how complicated it really is by calling it common sense.

The mathematician George P�olya (1945, 1954) wrote three books about plausible reasoning,

pointing out a wealth of interesting examples and showing that there are de�nite rules by which

we do plausible reasoning (although in his work they remain in qualitative form). The above weak

syllogisms appear in his third volume. The reader is strongly urged to consult P�olya's exposition,

which was the original source of many of the ideas underlying the present work. We show below

how P�olya's principles may be made quantitative, with resulting useful applications.

Evidently, the deductive reasoning described above has the property that we can go through

long chains of reasoning of the type (1{1) and (1{2) and the conclusions have just as much certainty

as the premises. With the other kinds of reasoning, (1{3) { (1{5), the reliability of the conclusion

attenuates if we go through several stages. But in their quantitative form we shall �nd that in many

cases our conclusions can still approach the certainty of deductive reasoning (as the example of the

policeman leads us to expect). P�olya showed that even a pure mathematician actually uses these

weaker forms of reasoning most of the time. Of course, when he publishes a new theorem, he will

try very hard to invent an argument which uses only the �rst kind; but the reasoning process which

led him to the theorem in the �rst place almost always involves one of the weaker forms (based,

for example, on following up conjectures suggested by analogies). The same idea is expressed in

a remark of S. Banach (quoted by S. Ulam, 1957): \Good mathematicians see analogies between

theorems; great mathematicians see analogies between analogies."

As a �rst orientation, then, let us note some very suggestive analogies to another �eld{which

is itself based, in the last analysis, on plausible reasoning.

Analogies with Physical Theories

In physics, we learn quickly that the world is too complicated for us to analyze it all at once. We

can make progress only if we dissect it into little pieces and study them separately. Sometimes,

we can invent a mathematical model which reproduces several features of one of these pieces, and

whenever this happens we feel that progress has been made. These models are called physical

theories. As knowledge advances, we are able to invent better and better models, which reproduce
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more and more features of the real world, more and more accurately. Nobody knows whether there

is some natural end to this process, or whether it will go on inde�nitely.

In trying to understand common sense, we shall take a similar course. We won't try to

understand it all at once, but we shall feel that progress has been made if we are able to construct

idealized mathematical models which reproduce a few of its features. We expect that any model

we are now able to construct will be replaced by more complete ones in the future, and we do not

know whether there is any natural end to this process.

The analogy with physical theories is deeper than a mere analogy of method. Often, the things

which are most familiar to us turn out to be the hardest to understand. Phenomena whose very

existence is unknown to the vast majority of the human race (such as the di�erence in ultraviolet

spectra of Iron and Nickel) can be explained in exhaustive mathematical detail|but all of modern

science is practically helpless when faced with the complications of such a commonplace fact as

growth of a blade of grass. Accordingly, we must not expect too much of our models; we must be

prepared to �nd that some of the most familiar features of mental activity may be ones for which

we have the greatest di�culty in constructing any adequate model.

There are many more analogies. In physics we are accustomed to �nd that any advance in

knowledge leads to consequences of great practical value, but of an unpredictable nature. Roent-

gen's discovery of x{rays led to important new possibilities of medical diagnosis; Maxwell's discovery

of one more term in the equation for curl H led to practically instantaneous communication all over

the earth.

Our mathematical models for common sense also exhibit this feature of practical usefulness.

Any successful model, even though it may reproduce only a few features of common sense, will

prove to be a powerful extension of common sense in some �eld of application. Within this �eld, it

enables us to solve problems of inference which are so involved in complicated detail that we would

never attempt to solve them without its help.

The Thinking Computer

Models have practical uses of a quite di�erent type. Many people are fond of saying, \They will

never make a machine to replace the human mind|it does many things which no machine could

ever do." A beautiful answer to this was given by J. von Neumann in a talk on computers given

in Princeton in 1948, which the writer was privileged to attend. In reply to the canonical question

from the audience [\But of course, a mere machine can't really think, can it?"], he said: \You insist

that there is something a machine cannot do. If you will tell me precisely what it is that a machine

cannot do, then I can always make a machine which will do just that !"

In principle, the only operations which a machine cannot perform for us are those which we

cannot describe in detail, or which could not be completed in a �nite number of steps. Of course,

some will conjure up images of G�odel incompleteness, undecidability, Turing machines which never

stop, etc. But to answer all such doubts we need only point to the existence of the human brain,

which does it. Just as von Neumann indicated, the only real limitations on making \machines

which think" are our own limitations in not knowing exactly what \thinking" consists of.

But in our study of common sense we shall be led to some very explicit ideas about the

mechanism of thinking. Every time we can construct a mathematical model which reproduces a

part of common sense by prescribing a de�nite set of operations, this shows us how to \build a

machine" (i.e., write a computer program) which operates on incomplete data and, by applying

quantitative versions of the above weak syllogisms, does plausible reasoning instead of deductive

reasoning.

Indeed, the development of such computer software for certain specialized problems of inference

is one of the most active and useful current trends in this �eld. One kind of problem thus dealt with
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might be: given a mass of data, comprising 10,000 separate observations, determine in the light

of these data and whatever prior information is at hand, the relative plausibilities of 100 di�erent

possible hypotheses about the causes at work.

Our unaided common sense might be adequate for deciding between two hypotheses whose

consequences are very di�erent; but for dealing with 100 hypotheses which are not very di�erent,

we would be helpless without a computer and a well{developed mathematical theory that shows

us how to program it. That is, what determines, in the policeman's syllogism (1{5), whether the

plausibility of A increases by a large amount, raising it almost to certainty; or only a negligibly

small amount, making the data B almost irrelevant? The object of the present work is to develop

the mathematical theory which answers such questions, in the greatest depth and generality now

possible.

While we expect a mathematical theory to be useful in programming computers, the idea of a

thinking computer is also helpful psychologically in developing the mathematical theory. The ques-

tion of the reasoning process used by actual human brains is charged with emotion and grotesque

misunderstandings. It is hardly possible to say anything about this without becoming involved

in debates over issues that are not only undecidable in our present state of knowledge, but are

irrelevant to our purpose here.

Obviously, the operation of real human brains is so complicated that we can make no pretense

of explaining its mysteries; and in any event we are not trying to explain, much less reproduce, all

the abberations and inconsistencies of human brains. That is an interesting and important subject;

but it is not the subject we are studying here. Our topic is the normative principles of logic; and

not the principles of psychology or neurophysiology.

To emphasize this, instead of asking, \How can we build a mathematical model of human

common sense?" let us ask, \How could we build a machine which would carry out useful plausible

reasoning, following clearly de�ned principles expressing an idealized common sense?"

Introducing the Robot

In order to direct attention to constructive things and away from controversial irrelevancies, we

shall invent an imaginary being. Its brain is to be designed by us, so that it reasons according to

certain de�nite rules. These rules will be deduced from simple desiderata which, it appears to us,

would be desirable in human brains; i.e., we think that a rational person, should he discover that

he was violating one of these desiderata, would wish to revise his thinking.

In principle, we are free to adopt any rules we please; that is our way of de�ning which robot

we shall study. Comparing its reasoning with yours, if you �nd no resemblance you are in turn free

to reject our robot and design a di�erent one more to your liking. But if you �nd a very strong

resemblance, and decide that you want and trust this robot to help you in your own problems of

inference, then that will be an accomplishment of the theory, not a premise.

Our robot is going to reason about propositions. As already indicated above, we shall denote

various propositions by italicized capital letters, fA, B, C, etc.g, and for the time being we must

require that any proposition used must have, to the robot, an unambiguous meaning and must be

of the simple, de�nite logical type that must be either true or false. That is, until otherwise stated

we shall be concerned only with two{valued logic, or Aristotelian logic. We do not require that the

truth or falsity of such an \Aristotelian proposition" be ascertainable by any feasible investigation;

indeed, our inability to do this is usually just the reason why we need the robot's help.

For example, the writer personally considers both of the following propositions to be true:

A � \Beethoven and Berlioz never met."

B � \Beethoven's music has a better sustained quality than that of
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Berlioz, although Berlioz at his best is the equal of anybody."

But proposition B is not a permissible one for our robot to think about at present, while proposition

A is, although it is unlikely that its truth or falsity could be de�nitely established today (their

meeting is a chronological possibility, since their lives overlapped by 24 years; my reason for doubting

it is the failure of Berlioz to mention any such meeting in his memoirs{on the other hand, neither

does he come out and say de�nitely that they did not meet). After our theory is developed, it will

be of interest to see whether the present restriction to Aristotelian propositions such as A can be

relaxed, so that the robot might help us also with more vague propositions like B (see Chapter 18

on the Ap{distribution).
y

Boolean Algebra

To state these ideas more formally, we introduce some notation of the usual symbolic logic, or

Boolean algebra, so called because George Boole (1854) introduced a notation similar to the fol-

lowing. Of course, the principles of deductive logic itself were well understood centuries before

Boole, and as we shall see presently, all the results that follow from Boolean algebra were contained

already as special cases in the rules of plausible inference given by Laplace (1812). The symbol

A B

called the logical product or the conjunction, denotes the proposition \both A and B are true."

Obviously, the order in which we state them does not matter; A B and B A say the same thing.

The expression

A+B

called the logical sum or disjunction, stands for \at least one of the propositions A, B is true" and

has the same meaning as B +A. These symbols are only a shorthand way of writing propositions;

and do not stand for numerical values.

Given two propositions A, B, it may happen that one is true if and only if the other is true;

we then say that they have the same truth value. This may be only a simple tautology (i.e., A

and B are verbal statements which obviously say the same thing), or it may be that only after

immense mathematical labors is it �nally proved that A is the necessary and su�cient condition

for B. From the standpoint of logic it does not matter; once it is established, by any means, that

A and B have the same truth value, then they are logically equivalent propositions, in the sense

that any evidence concerning the truth of one pertains equally well to the truth of the other, and

they have the same implications for any further reasoning.

Evidently, then, it must be the most primitive axiom of plausible reasoning that two propo-

sitions with the same truth{value are equally plausible. This might appear almost too trivial to

mention, were it not for the fact that Boole himself (loc. cit. p. 286) fell into error on this point,

by mistakenly identifying two propositions which were in fact di�erent{and then failing to see any

contradiction in their di�erent plausibilities. Three years later (Boole, 1857) he gave a revised the-

ory which supersedes that in his book; for further comments on this incident, see Keynes (1921),

pp. 167{168; Jaynes (1976), pp. 240{242.

In Boolean algebra, the equals sign is used to denote, not equal numerical value, but equal

truth{value: A = B, and the \equations" of Boolean algebra thus consist of assertions that the

y The question how one is to make a machine in some sense `cognizant' of the conceptual meaning that a

proposition like A has to humans, might seem very di�cult, and much of Arti�cial Intelligence is devoted

to inventing ad hoc devices to deal with this problem. However, we shall �nd in Chapter 4 that for us the

problem is almost nonexistent; our rules for plausible reasoning automatically provide the means to do the

mathematical equivalent of this.
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proposition on the left{hand side has the same truth{value as the one on the right{hand side. The

symbol \�" means, as usual, \equals by de�nition."

In denoting complicated propositions we use parentheses in the same way as in ordinary algebra,

to indicate the order in which propositions are to be combined (at times we shall use them also

merely for clarity of expression although they are not strictly necessary). In their absence we

observe the rules of algebraic hierarchy, familiar to those who use hand calculators: thus A B + C

denotes (A B) + C; and not A(B + C).

The denial of a proposition is indicated by a bar:

A � \A is false:" (1{6)

The relation between A; A is a reciprocal one:

A = \A is false:"

and it does not matter which proposition we denote by the barred, which by the unbarred, letter.

Note that some care is needed in the unambiguous use of the bar. For example, according to the

above conventions,

AB = \AB is false:"

A B = \Both A and B are false:"

These are quite di�erent propositions; in fact, AB is not the logical product A B, but the logical

sum: AB = A +B.

With these understandings, Boolean algebra is characterized by some rather trivial and obvious

basic identities, which express the properties of:

Idempotence :

Commutativity :

Associativity :

Distributivity :

Duality :

AA = A

A+A = A

AB = BA

A+ B = B +A

A(BC) = (AB)C = ABC

A+ (B + C) = (A+B) + C = A+B + C

A(B + C) = AB +AC

A+ (BC) = (A+B)(A + C)

If C = AB ; then C = A+ B

If D = A+ B ; then D = A B

(1{7)

but by their application one can prove any number of further relations, some highly nontrivial. For

example, we shall presently have use for the rather elementary \theorem:"

If B = AD then AB = B and BA = A: (1{8)

Implication. The proposition
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A) B (1{9)

to be read: \A implies B", does not assert that either A or B is true; it means only that A B is

false, or what is the same thing, (A+ B) is true. This can be written also as the logical equation

A = AB. That is, given (1{9), if A is true then B must be true; or, if B is false then A must be

false. This is just what is stated in the strong syllogisms (1{1) and (1{2).

On the other hand, if A is false, (1{9) says nothing about B: and if B is true, (1{9) says

nothing about A. But these are just the cases in which our weak syllogisms (1{3), (1{4) do say

something. In one respect, then, the term \weak syllogism" is misleading. The theory of plausible

reasoning based on them is not a \weakened" form of logic; it is an extension of logic with new

content not present at all in conventional deductive logic. It will become clear in the next Chapter

[Eqs. (2{51), (2{52)] that our rules include deductive logic as a special case.

A Tricky Point: Note carefully that in ordinary language one would take \A implies B" to

mean that B is logically deducible from A. But in formal logic, \A implies B" means only that the

propositions A and AB have the same truth value. In general, whether B is logically deducible from

A does not depend only on the propositions A and B; it depends on the totality of propositions

(A;A0; A00; � � � ) that we accept as true and which are therefore available to use in the deduction.

Devinatz (1968, p. 3) and Hamilton (1988, p. 5) give the truth table for the implication as a binary

operation, illustrating that A) B is false only if A is true and B is false; in all other cases A) B

is true!

This may seem startling at �rst glance; but note that indeed, if A and B are both true, then

A = AB and so A ) B is true; in formal logic every true statement implies every other true

statement. On the other hand, if A is false, then A = AB and A = AB are both true, so A ) B

and A) B are both true; a false proposition implies all propositions. If we tried to interpret this

as logical deducibility (i.e., both B and B are deducible from A), it would follow that every false

proposition is logically contradictory. Yet the proposition: \Beethoven outlived Berlioz" is false

but hardly logically contradictory (for Beethoven did outlive many people who were the same age

as Berlioz).

Obviously, merely knowing that propositions A and B are both true does not provide enough

information to decide whether either is logically deducible from the other, plus some unspeci�ed

\toolbox" of other propositions. The question of logical deducibility of one proposition from a set

of others arises in a crucial way in the G�odel theorem discussed at the end of Chapter 2. This

great di�erence in the meaning of the word \implies" in ordinary language and in formal logic is

a tricky point that can lead to serious error if it is not properly understood; it appears to us that

\implication" is an unfortunate choice of word and this is not su�ciently emphasized in conventional

expositions of logic.

Adequate Sets of Operations

We note some features of deductive logic which will be needed in the design of our robot. We have

de�ned four operations, or \connectives," by which, starting from two propositions A; B, other

propositions may be de�ned: the logical product, or conjunction A B, the logical sum or disjunction

A+ B, the implication A) B, and the negation A. By combining these operations repeatedly in

every possible way, one can generate any number of new propositions, such as

C � (A+B)(A+ AB) + AB(A +B) : (1{10)

Many questions then occur to us: How large is the class of new propositions thus generated? Is it

in�nite, or is there a �nite set that is closed under these operations? Can every proposition de�ned
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from A; B, be thus represented, or does this require further connectives beyond the above four? Or

are these four already overcomplete so that some might be dispensed with? What is the smallest

set of operations that is adequate to generate all such \logic functions" of A and B? If instead of

two starting propositions A, B we have an arbitrary number fA1; : : : ; Ang, is this set of operations

still adequate to generate all possible logic functions of fA1; : : : ; Ang?

All these questions are answered easily, with results useful for logic, probability theory, and

computer design. Broadly speaking, we are asking whether, starting from our present vantage

point, we can (1) increase the number of functions, (2) decrease the number of operations. The

�rst query is simpli�ed by noting that two propositions, although they may appear entirely di�erent

when written out in the manner (1{10), are not di�erent propositions from the standpoint of logic

if they have the same truth value. For example, it is left for the reader to verify that C in (1{10)

is logically the same statement as the implication C = (B ) A).

Since we are, at this stage, restricting our attention to Aristotelian propositions, any logic

function C = f(A;B) such as (1{10) has only two possible \values," true and false; and likewise

the \independent variables" A and B can take on only those two values.

At this point a logician might object to our notation, saying that the symbol A has been

de�ned as standing for some �xed proposition, whose truth cannot change; so if we wish to consider

logic functions, then instead of writing C = f(A;B) we should introduce new symbols and write

z = f(x; y) where x; y; z are \statement variables" for which various speci�c statements A;B;C

may be substituted. But if A stands for some �xed but unspeci�ed proposition, then it can still

be either true or false. We achieve the same exibility merely by the understanding that equations

like (1{10) which de�ne logic functions are to be true for all ways of de�ning A;B ; i.e., instead of

a statement variable we use a variable statement.

In relations of the form C = f(A;B), we are concerned with logic functions de�ned on a discrete

\space" S consisting of only 22 = 4 points; namely those at which A and B take on the \values"

fTT;TF;FT;FFg respectively; and at each point the function f(A;B) can take on independently

either of two values fT;Fg. There are, therefore, exactly 24 = 16 di�erent logic functions f(A;B);

and no more. An expression B = f(A1; : : : ; An) involving n propositions is a logic function on a

space S of M = 2n points; and there are exactly 2M such functions.

In the case n = 1, there are four logic functions ff1(A); : : : ; f4(A)g, which we can de�ne by

enumeration: listing all their possible values in a \truth{table:"

A T F

f1(A) T T

f2(A) T F

f3(A) F T

f4(A) F F

But it is obvious by inspection that these are just:

f1(A) = A +A

f2(A) = A

f3(A) = A

f4(A) = A A

so we prove by enumeration that the three operations: conjunction, disjunction, and negation are

adequate to generate all logic functions of a single proposition.
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For the case of general n, consider �rst the special functions each of which is true at one and

only one point of S. For n = 2 there are 2n = 4 such functions:

A; B TT TF FT FF

f1(A;B) T F F F

f2(A;B) F T F F

f3(A;B) F F T F

f4(A;B) F F F T

It is clear by inspection that these are just the four basic conjunctions:

f1(A;B) = A B

f2(A;B) = A B

f3(A;B) = A B

f4(A;B) = A B

(1{11)

Consider now any logic function which is true on certain speci�ed points of S; for example, f5(A;B)

and f6(A;B) de�ned by

A; B TT TF FT FF

f5(A;B) F T F T

f6(A;B) T F T T

We assert that each of these functions is the logical sum of the conjunctions (1{11) that are true

on the same points (this is not trivial; the reader should verify it in detail); thus

f5(A;B) = f2(A;B) + f4(A;B)

= A B +A B

= (A+A) B

= B

and likewise,

f6(A;B) = f1(A;B) + f3(A;B) + f4(A;B)

= A B + A B + A B

= B +A B

= A+B

That is, f6(A;B) is the implication f6(A;B) = (A ) B), with the truth table discussed above.

Any logic function f(A;B) that is true on at least one point of S can be constructed in this way

as a logical sum of the basic conjunctions (1{11). There are 24 � 1 = 15 such functions. For the

remaining function, which is always false, it su�ces to take the contradiction, f16(A;B) � A A.

This method (called \reduction to disjunctive normal form" in logic textbooks) will work for

any n. For example, in the case n = 5 there are 25 = 32 basic conjunctions

fABCDE; ABCDE; ABCDE; : : :; AB C DEg
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and 232 = 4; 294; 967; 296 di�erent logic functions fi(A;B;C;D;E), 4; 294; 967; 295 of which can be

written as logical sums of the basic conjunctions, leaving only the contradiction

f4294967296(A;B;C;D;E) = A A :

Thus one can verify by \construction in thought" that the three operations

fconjunction; disjunction; negationg; i :e:; fAND; OR; NOTg

su�ce to generate all possible logic functions; or more concisely, they form an adequate set.

But the duality property (1{7) shows that a smaller set will su�ce; for disjunction of A; B is

the same as denying that they are both false:

A+ B = (A B) (1{12)

Therefore, the two operations (AND, NOT) already constitute an adequate set for deductive logic.y

This fact will be essential in determining when we have an adequate set of rules for plausible

reasoning, in the next Chapter.

It is clear that we cannot now strike out either of these operations, leaving only the other; i.e.,

the operation \AND" cannot be reduced to negations; and negation cannot be accomplished by

any number of \AND" operations. But this still leaves open the possibility that both conjunction

and negation might be reducible to some third operation, not yet introduced; so that a single logic

operation would constitute an adequate set.

It comes as a pleasant surprise to �nd that there is not only one, but two such operations. The

operation \NAND" is de�ned as the negation of \AND":

A " B � AB = A+ B (1{13)

which we can read as \A NAND B". But then we have once,

A = A " A

AB = (A " B) " (A " B)

A+B = (A " A) " (B " B)

(1{14)

Therefore, every logic function can be constructed with NAND alone. Likewise, the operation NOR

de�ned by

A # B � A+ B = A B (1{15)

is also powerful enough to generate all logic functions:

A = A # A

A+B = (A # B) # (A # B)

AB = (A # A) # (B # B)

: (1{16)

One can take advantage of this in designing computer and logic circuits. A \logic gate" is a circuit

having, besides a common ground, two input terminals and one output. The voltage relative to

y For you to ponder: does it follow that these two commands are the only ones needed to write any

computer program?
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ground at any of these terminals can take on only two values; say +3 volts, or \up" representing

\true"; and zero volts or \down," representing \false." A NAND gate is thus one whose output is

up if and only if at least one of the inputs is down; or what is the same thing, down if and only if

both inputs are up; while for a NOR gate the output is up if and only if both inputs are down.

One of the standard components of logic circuits is the \quad NAND gate," an integrated

circuit containing four independent NAND gates on one semiconductor chip. Given a su�cient

number of these and no other circuit components, it is possible to generate any required logic

function by interconnecting them in various ways.

This short excursion into deductive logic is as far as we need go for our purposes. Further

developments are given in many textbooks; for example, a modern treatment of Aristotelian logic

is given by I. M. Copi (1978). For non{Aristotelian forms with special emphasis on G�odel incom-

pleteness, computability, decidability, Turing machines, etc., see A. G. Hamilton (1988).

We turn now to our extension of logic, which is to follow from the conditions discussed next.

We call them \desiderata" rather than \axioms" because they do not assert that anything is

\true" but only state what appear to be desirable goals. Whether these goals are attainable

without contradictions and whether they determine any unique extension of logic, are matters of

mathematical analysis, given in Chapter 2.

The Basic Desiderata

To each proposition about which it reasons, our robot must assign some degree of plausibility,

based on the evidence we have given it; and whenever it receives new evidence it must revise these

assignments to take that new evidence into account. In order that these plausibility assignments

can be stored and modi�ed in the circuits of its brain, they must be associated with some de�nite

physical quantity, such as voltage or pulse duration or a binary coded number, etc. { however our

engineers want to design the details. For present purposes this means that there will have to be

some kind of association between degrees of plausibility and real numbers:

(I) Degrees of Plausibility are represented by real numbers: (1{17)

Desideratum (I) is practically forced on us by the requirement that the robot's brain must operate

by the carrying out of some de�nite physical process. However, it will appear (Appendix A) that

it is also required theoretically; we do not see the possibility of any consistent theory without a

property that is equivalent functionally to Desideratum (I).

We adopt a natural but nonessential convention; that a greater plausibility shall correspond

to a greater number. It will be convenient to assume also a continuity property, which is hard to

state precisely at this stage; but to say it intuitively: an in�nitesimally greater plausibility ought

to correspond only to an in�nitesimally greater number.

The plausibility that the robot assigns to some proposition A will, in general, depend on

whether we told it that some other proposition B is true. Following the notation of Keynes (1921)

and Cox (1961) we indicate this by the symbol

AjB (1{18)

which we may call \the conditional plausibility that A is true, given that B is true" or just, \A

given B." It stands for some real number. Thus, for example,

AjBC
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(which we may read: \A given B C") represents the plausibility that A is true, given that both B

and C are true. Or,

A+ BjCD

represents the plausibility that at least one of the propositions A and B is true, given that both

C and D are true; and so on. We have decided to represent a greater plausibility by a greater

number, so

(AjB) > (CjB) (1{19)

says that, given B, A is more plausible than C. In this notation, while the symbol for plausibility is

just of the form AjB without parentheses, we often add parentheses for clarity of expression. Thus

(1{19) says the same thing as

AjB > CjB ;

but its meaning is clearer to the eye.

In the interest of avoiding impossible problems, we are not going to ask our robot to undergo the

agony of reasoning from impossible or mutually contradictory premises; there could be no \correct"

answer. Thus, we make no attempt to de�ne AjBC when B and C are mutually contradictory.

Whenever such a symbol appears, it is understood that B and C are compatible propositions.

Also, we do not want this robot to think in a way that is directly opposed to the way you and

I think. So we shall design it to reason in a way that is at least qualitatively like the way humans

try to reason, as described by the above weak syllogisms and a number of other similar ones.

Thus, if it has old information C which gets updated to C0 in such a way that the plausibility

of A is increased:

(AjC0) > (AjC)

but the plausibility of B given A is not changed:

(BjAC0) = (BjAC)

this can, of course, produce only an increase, never a decrease, in the plausibility that both A and

B are true:

(ABjC0) � (ABjC) (1{20)

and it must produce a decrease in the plausibility that A is false:

(AjC0) < (AjC) : (1{21)

This qualitative requirement simply gives the \sense of direction: in which the robot's reasoning is to

go; it says nothing about how much the plausibilities change, except that our continuity assumption

(which is also a condition for qualitative correspondence with common sense) now requires that if

AjC changes only in�nitesimally, it can induce only an in�nitesimal change in ABjC and AjC. The

speci�c ways in which we use these qualitative requirements will be given in the next Chapter, at

the point where it is seen why we need them. For the present we summarize them simply as:

(II) Qualitative Correspondence with common sense: (1{22)
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Finally, we want to give our robot another desirable property for which honest people strive without

always attaining; that it always reasons consistently. By this we mean just the three common

colloquial meanings of the word \consistent":

(IIIa)

(
If a conclusion can be reasoned out in more than one way ; then

every possible way must lead to the same result:

)
(1{23a)

(IIIb)

8>>><
>>>:

The robot always takes into account all of the evidence it has

relevant to a question: It does not arbitrarily ignore some of

the information; basing its conclusions only on what remains:

In other words; the robot is completely non � ideological:

9>>>=
>>>;

(1{23b)

(IIIc)

8>>>>>><
>>>>>>:

The robot always represents equivalent states of knowledge by

equivalent plausibility assignments: That is; if in two problems

the robot0s state of knowledge is the same (except perhaps

for the labelling of the propositions); then it must assign the

same plausibilities in both:

9>>>>>>=
>>>>>>;

(1{23c )

Desiderata (I), (II), (IIIa) are the basic \structural" requirements on the inner workings of our

robot's brain, while (IIIb), (IIIc) are \interface" conditions which show how the robot's behavior

should relate to the outer world.

At this point, most students are surprised to learn that our search for desiderata is at an end.

The above conditions, it turns out, uniquely determine the rules by which our robot must reason;

i.e., there is only one set of mathematical operations for manipulating plausibilities which has all

these properties. These rules are deduced in the next Chapter.

[At the end of most Chapters, we insert a Section of informal Comments in which are collected

various side remarks, background material, etc. The reader may skip them without losing the main

thread of the argument.]

COMMENTS

As politicians, advertisers, salesmen, and propagandists for various political, economic, moral,

religious, psychic, environmental, dietary, and artistic doctrinaire positions know only too well,

fallible human minds are easily tricked, by clever verbiage, into committing violations of the above

desiderata. We shall try to ensure that they do not succeed with our robot.

We emphasize another contrast between the robot and a human brain. By Desideratum I,

the robot's mental state about any proposition is to be represented by a real number. Now it

is clear that our attitude toward any given proposition may have more than one \coordinate."

You and I form simultaneous judgments not only as to whether it is plausible, but also whether

it is desirable, whether it is important, whether it is useful, whether it is interesting, whether it

is amusing, whether it is morally right, etc. If we assume that each of these judgments might be

represented by a number, then a fully adequate description of a human state of mind would be

represented by a vector in a space of a rather large number of dimensions.

Not all propositions require this. For example, the proposition, \The refractive index of water

is less than 1.3" generates no emotions; consequently the state of mind which it produces has very

few coordinates. On the other hand, the proposition, \Your mother{in{law just wrecked your new
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car" generates a state of mind with many coordinates. A moment's introspection will show that,

quite generally, the situations of everyday life are those involving many coordinates. It is just for

this reason, we suggest, that the most familiar examples of mental activity are often the most

di�cult to reproduce by a model.

We might speculate further. Perhaps we have here the reason why science and mathematics are

the most successful of human activities; they deal with propositions which produce the simplest of

all mental states. Such states would be the ones least perturbed by a given amount of imperfection

in the human mind.

Of course, for many purposes we would not want our robot to adopt any of these more \human"

features arising from the other coordinates. It is just the fact that computers do not get confused by

emotional factors, do not get bored with a lengthy problem, do not pursue hidden motives opposed

to ours, that makes them safer agents than men for carrying out certain tasks.

These remarks are interjected to point out that there is a large unexplored area of possible

generalizations and extensions of the theory to be developed here; perhaps this may inspire others

to try their hand at developing \multi{dimensional theories" of mental activity, which would more

and more resemble the behavior of actual human brains { not all of which is undesirable. Such a

theory, if successful, might have an importance beyond our present ability to imagine.y

For the present, however, we shall have to be content with a much more modest undertaking.

Is it possible to develop a consistent \one{dimensional" model of plausible reasoning? Evidently,

our problem will be simplest if we can manage to represent a degree of plausibility uniquely by a

single real number, and ignore the other \coordinates" just mentioned.

We stress that we are in no way asserting that degrees of plausibility in actual human minds

have a unique numerical measure. Our job is not to postulate { or indeed to conjecture about { any

such thing; it is to investigate whether it is possible, in our robot, to set up such a correspondence

without contradictions.

But to some it may appear that we have already assumed more than is necessary, thereby

putting gratuitous restrictions on the generality of our theory. Why must we represent degrees of

plausibility by real numbers? Would not a \comparative" theory based on a system of qualitative

ordering relations like (AjC) > (BjC) su�ce? This point is discussed further in Appendix A, where

we describe other approaches to probability theory and note that some attempts have been made

to develop comparative theories which it was thought would be logically simpler, or more general.

But this turned out not to be the case; so although it is quite possible to develop the foundations

in other ways than ours, the �nal results will not be di�erent.

Common Language vs. Formal Logic

We should note the distinction between the statements of formal logic and those of ordinary lan-

guage. It might be thought that the latter is only a less precise form of expression; but on exami-

nation of details the relation appears di�erent. It appears to us that ordinary language, carefully

used, need not be less precise than formal logic; but ordinary language is more complicated in its

rules and has consequently richer possibilities of expression than we allow ourselves in formal logic.

In particular, common language, being in constant use for other purposes than logic, has

developed subtle nuances { means of implying something without actually stating it { that are lost

y Indeed, some psychologists think that as few as �ve dimensions might su�ce to characterize a human

personality; that is that we all di�er only in having di�erent mixes of �ve basic personality traits which may

be genetically determined. But it seems to us that this must be grossly oversimpli�ed; identi�able chemical

factors continuously varying in both space and time (such as the distribution of glucose metabolism in the

brain) a�ect mental activity but cannot be represented faithfully in a space of only �ve dimensions. Yet it

may be that such a representation can capture enough of the truth to be useful for many purposes.
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on formal logic. Mr. A, to a�rm his objectivity, says, \I believe what I see." Mr. B retorts: \He

doesn't see what he doesn't believe." From the standpoint of formal logic, it appears that they have

said the same thing; yet from the standpoint of common language, those statements had the intent

and e�ect of conveying opposite meanings.

Here is a less trivial example, taken from a mathematics textbook. Let L be a straight line

in a plane, and S an in�nite set of points in that plane, each of which is projected onto L. Now

consider the statements:

(I) The projection of the limit is the limit of the projections.

(II) The limit of the projections is the projection of the limit.

These have the grammatical structures: \A is B" and \B is A", and so they might appear logically

equivalent. Yet in that textbook, (I) was held to be true, and (II) not true in general, on the

grounds that the limit of the projections may exist when the limit of the set does not.

As we see from this, in common language { even in mathematics textbooks { we have learned

to read subtle nuances of meaning into the exact phrasing, probably without realizing it until an

example like this is pointed out. We interpret \A is B" as asserting �rst of all, as a kind of major

premise, that A \exists"; and the rest of the statement is understood to be conditional on that

premise. Put di�erently, in common grammar the verb \is" implies a distinction between subject

and object, which the symbol \=" does not have in formal logic or in conventional mathematics.

[But in computer languages we encounter such statements as \J = J + 1" which everybody seems

to understand, but in which the \=" sign has now acquired that implied distinction after all.]

Another amusing example is the old adage: \Knowledge is Power", which is a very cogent

truth, both in human relations and in thermodynamics. An ad writer for a chemical trade journaly

fouled this up into: \Power is Knowledge", an absurd { indeed, obscene { falsity.

These examples remind us that the verb \is" has, like any other verb, a subject and a predicate;

but it is seldom noted that this verb has two entirely di�erent meanings. A person whose native

language is English may require some e�ort to see the di�erent meanings in the statements: \The

room is noisy" and \There is noise in the room." But in Turkish these meanings are rendered by

di�erent words, which makes the distinction so clear that a visitor who uses the wrong word will not

be understood. The latter statement is ontological, asserting the physical existence of something,

while the former is epistemological, expressing only the speaker's personal perception.

Common language { or at least, the English language { has an almost universal tendency to

disguise epistemological statements by putting them into a grammatical form which suggests to the

unwary an ontological statement. A major source of error in current probability theory arises from

an unthinking failure to perceive this. To interpret the �rst kind of statement in the ontological

sense is to assert that one's own private thoughts and sensations are realities existing externally in

Nature. We call this the \Mind Projection Fallacy", and note the trouble it causes many times in

what follows. But this trouble is hardly con�ned to probability theory; as soon as it is pointed out,

it becomes evident that much of the discourse of philosophers and Gestalt psychologists, and the

attempts of physicists to explain quantum theory, are reduced to nonsense by the author falling

repeatedly into the Mind Projection Fallacy.

These examples illustrate the care that is needed when we try to translate the complex state-

ments of common language into the simpler statements of formal logic. Of course, common language

is often less precise than we should want in formal logic. But everybody expects this and is on the

lookout for it, so it is less dangerous.

y LC{CG magazine, March 1988, p. 211
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It is too much to expect that our robot will grasp all the subtle nuances of common language,

which a human spends perhaps twenty years acquiring. In this respect, our robot will remain like

a small child { it interprets all statements literally and blurts out the truth without thought of

whom this may o�end.

It is unclear to the writer how di�cult { and even less clear how desirable { it would be to

design a newer model robot with the ability to recognize these �ner shades of meaning. Of course,

the question of principle is disposed of at once by the existence of the human brain which does this.

But in practice von Neumann's principle applies; a robot designed by us cannot do it until someone

develops a theory of \nuance recognition" which reduces the process to a de�nitely prescribed set

of operations. This we gladly leave to others.

In any event, our present model robot is quite literally real, because today it is almost univer-

sally true that any nontrivial probability evaluation is performed by a computer. The person who

programmed that computer was necessarily, whether or not he thought of it that way, designing

part of the brain of a robot according to some preconceived notion of how the robot should behave.

But very few of the computer programs now in use satisfy all our desiderata; indeed, most are

intuitive ad hoc procedures that were not chosen with any well{de�ned desiderata at all in mind.

Any such adhockery is presumably useful within some special area of application { that was the

criterion for choosing it { but as the proofs of Chapter 2 will show, any adhockery which conicts

with the rules of probability theory, must generate demonstrable inconsistencies when we try to

apply it beyond some restricted area. Our aim is to avoid this by developing the general principles

of inference once and for all, directly from the requirement of consistency, and in a form applicable

to any problem of plausible inference that is formulated in a su�ciently unambiguous way.

Nitpicking

The set of rules and symbols that we have called \Boolean Algebra" is sometimes called \The

Propositional Calculus". The term seems to be used only for the purpose of adding that we need

also another set of rules and symbols called \The Predicate Calculus". However, these new symbols

prove to be only abbreviations for short and familiar phrases. The \Universal Quanti�er" is only

an abbreviation for \for all"; the \existential quanti�er" is an abbreviation for \there is a". If

we merely write our statements in plain English, we are using automatically all of the predicate

calculus that we need for our purposes, and doing it more intelligibly.

The validity of second strong syllogism (two{valued logic) is sometimes questioned. However,

it appears that in current mathematics it is still considered valid reasoning to say that a supposed

theorem is disproved by exhibiting a counter{example, that a set of statements is considered in-

consistent if we can derive a contradiction from them, and that a proposition can be established

by Reductio ad Absurdum; deriving a contradiction from its denial. This is enough for us; we are

quite content to follow this long tradition.

Our feeling of security in this stance comes from the conviction that, while logic may move

forward in the future, it can hardly move backward. A new logic might lead to new results about

which Aristotelian logic has nothing to say; indeed, that is just what we are trying to create here.

But surely, if a new logic was found to conict with Aristotelian logic in an area where Aristotelian

logic is applicable, we would consider that a fatal objection to the new logic.

Therefore, to those who feel con�ned by two{valued deductive logic we can say only: \By all

means, investigate other possibilities if you wish to; and please let us know about it as soon as

you have found a new result that was not contained in two{valued logic or our extension of it,

and is useful in scienti�c inference." Actually, there are many di�erent and mutually inconsistent

multiple{valued logics already in the literature. But in Appendix A we adduce arguments which

suggest that they can have no useful content that is not already in two{valued logic; that is, that an
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n{valued logic applied to one set of propositions is either equivalent to a two{valued logic applied

to an enlarged set, or else it contains internal inconsistencies.

Our experience is consistent with this conjecture; in practice, multiple{valued logics seem to

be used, not to �nd new useful results, but rather in attempts to remove supposed di�culties

with two{valued logic, particularly in quantum theory, fuzzy sets, and Arti�cial Intelligence. But

on closer study, all such di�culties known to us have proved to be only examples of the Mind

Projection Fallacy, calling for direct revision of the concepts rather than a new logic.
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CHAPTER 2

THE QUANTITATIVE RULES

\Probability theory is nothing but common sense reduced to calculation."

| Laplace, 1819

We have now formulated our problem, and it is a matter of straightforward mathematics to work

out the consequences of our desiderata: stated broadly,

I. Representation of degrees of plausibility by real numbers

II. Qualitative Correspondence with common sense

III. Consistency.

The present Chapter is devoted entirely to deduction of the quantitative rules for inference which

follow from these. The resulting rules have a long, complicated, and astonishing history, full of

lessons for scienti�c methodology in general (see Comments at the end of several Chapters).

The Product Rule

We �rst seek a consistent rule relating the plausibility of the logical product AB to the plausibilities

of A and B separately. In particular, let us �nd ABjC. Since the reasoning is somewhat subtle,

we examine this from di�erent viewpoints.

As a �rst orientation, note that the process of deciding that AB is true can be broken down

into elementary decisions about A and B separately. The robot can

(1) Decide that B is true. (BjC)

(2) Having accepted B as true, decide that A is true. (AjBC)

Or, equally well,

(1') Decide that A is true. (AjC)

(2') Having accepted A as true, decide that B is true. (BjAC)

In each case we indicate above the plausibility corresponding to that step.

Now let us describe the �rst procedure in words. In order for AB to be a true proposition, it

is necessary that B is true. Thus the plausibility BjC should be involved. In addition, if B is true,

it is further necessary that A should be true; so the plausibility AjBC is also needed. But if B is

false, then of course AB is false independently of whatever one knows about A, as expressed by

AjBC; if the robot reasons �rst about B, then the plausibility of A will be relevant only if B is

true. Thus, if the robot has BjC and AjBC it will not need AjC. That would tell it nothing about

AB that it did not have already.

Similarly, AjB and BjA are not needed; whatever plausibility A or B might have in the absence

of information C could not be relevant to judgments of a case in which the robot knows that C

is true. For example, if the robot learns that the earth is round, then in judging questions about

cosmology today, it does not need to take into account the opinions it might have (i.e., the extra

possibilities that it would need to take into account) if it did not know that the earth is round.

Of course, since the logical product is commutative, AB = BA, we could interchange A and B

in the above statements; i.e., knowledge of AjC and BjAC would serve equally well to determine

ABjC = BAjC. That the robot must obtain the same value for ABjC from either procedure, is

one of our conditions of consistency, Desideratum (IIIa).
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We can state this in a more de�nite form. (ABjC) will be some function of BjC and AjBC:

(ABjC) = F [(BjC); (AjBC)] (2{1)

Now if the reasoning we went through here is not completely obvious, let us examine some alter-

natives. We might suppose, for example, that

(ABjC) = F [(AjC); (BjC)]

might be a permissible form. But we can show easily that no relation of this form could satisfy

our qualitative conditions of Desideratum II. Proposition A might be very plausible given C, and

B might be very plausible given C; but AB could still be very plausible or very implausible.

For example, it is quite plausible that the next person you meet has blue eyes and also quite

plausible that this person's hair is black; and it is reasonably plausible that both are true. On the

other hand it is quite plausible that the left eye is blue, and quite plausible that the right eye is

brown; but extremely implausible that both of those are true. We would have no way of taking

such inuences into account if we tried to use a formula of this kind. Our robot could not reason

the way humans do, even qualitatively, with that kind of functional relation.

But other possibilities occur to us. The method of trying out all possibilities { a kind of \proof

by exhaustion" { can be organized as follows. Introduce the real numbers

u = (ABjC); v = (AjC); w = (BjAC); x = (BjC); y = (AjBC)

If u is to be expressed as a function of two or more of v; w; x; y, there are eleven possibilities. You

can write out each of them, and subject each one to various extreme conditions, as in the brown and

blue eyes (which was the abstract statement: A implies that B is false). Other extreme conditions

are A = B; A = C; C ) A, etc. Carrying out this somewhat tedious analysis, Tribus (1969) shows

that all but two of the possibilities can exhibit qualitative violations of common sense in some

extreme case. The two which survive are u = F (x; y) and u = F (w; v), just the two functional

forms already suggested by our previous reasoning.

We now apply the qualitative requirement discussed in Chapter 1; given any change in the

prior information C ! C0 such that B becomes more plausible but A does not change:

BjC0 > BjC ;

AjBC0 = AjBC ;

common sense demands that AB could only become more plausible, not less:

ABjC0
� ABjC

with equality if and only if AjBC corresponds to impossibility. Likewise, given prior information

C00 such that

BjC00 = BjC

AjBC00 > AjBC

we require that

ABjC00 � ABjC

in which the equality can hold only if B is impossible, given C (for then AB might still be impossible

given C00, although AjBC is not de�ned). Furthermore, the function F (x; y) must be continuous;
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for otherwise an arbitrarily small increase in one of the plausibilities on the right-hand side of (2{1)

could result in the same large increase in ABjC.

In summary, F (x; y) must be a continuous monotonic increasing function of both x and y. If

we assume it di�erentiable [this is not necessary; see the discussion following (2{4)], then we have

F1(x; y) �
@F

@x
� 0 (2{2a)

with equality if and only if y represents impossibility; and also

F2(x; y) �
@F

@y
� 0 (2{2b)

with equality permitted only if x represents impossibility. Note for later purposes that in this

notation, Fi denotes di�erentiation with respect to the i'th argument of F , whatever it may be.

Next we impose the Desideratum III(a) of \structural" consistency. Suppose we try to �nd

the plausibility (ABCjD) that three propositions would be true simultaneously. Because of the

fact that Boolean algebra is associative: ABC = (AB)C = A(BC), we can do this in two di�erent

ways. If the rule is to be consistent, we must get the same result for either order of carrying out

the operations. We can say �rst that BC will be considered a single proposition, and then apply

(2{1):

(ABCjD) = F [(BCjD); (AjBCD)]

and then in the plausibility (BCjD) we can again apply (2{1) to give

(ABCjD) = FfF [(CjD); (BjCD)]; (AjBCD)g (2{3a)

But we could equally well have said that AB shall be considered a single proposition at �rst. From

this we can reason out in the other order to obtain a di�erent expression:

(ABCjD) = F [(CjD); (ABjCD)] = Ff(CjD); F [(BjCD); (AjBCD)]g (2{3b)

If this rule is to represent a consistent way of reasoning, the two expressions (2{3a), (2{3b) must

always be the same. A necessary condition that our robot will reason consistently in this case

therefore takes the form of a functional equation,

F [F (x; y); z] = F [x; F (y; z)] : (2{4)

This equation has a long history in mathematics, starting from a work of N. H. Abel in 1826.

Acz�el (1966), in his monumental work on functional equations, calls it, very appropriately, \The

Associativity Equation," and lists a total of 98 references to works that discuss it or use it. Acz�el

derives the general solution [Eq. (2{17) below] without assuming di�erentiability; unfortunately,

the proof �lls eleven pages (256{267) of his book. We give here the shorter proof by R. T. Cox

(1961), which assumes di�erentiability.

It is evident that (2{4) has a trivial solution, F (x; y) =const. But that violates our monotonic-

ity requirement (2{2) and is in any event useless for our purposes. Unless (2{4) has a nontrivial

solution, this approach will fail; so we seek the most general nontrivial solution. Using the abbre-

viations
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u � F (x; y); v � F (y; z) ; (2{5)

but still considering (x; y; z) the independent variables, the functional equation to be solved is

F (x; v) = F (u; z) : (2{6)

Di�erentiating with respect to x and y we obtain, in the notation of (2{2),

F1(x; v) = F1(u; z) F1(x; y)

F2(x; v) F1(y; z) = F1(u; z) F2(x; y)
(2{7)

Elimination of F1(u; z) from these equations yields

G(x; v) F1(y; z) = G(x; y) (2{8)

where we use the notation G(x; y) � F2(x; y)=F1(x; y). Evidently, the left-hand side of (2{8) must

be independent of z. Now (2{8) can be written equally well as

G(x; v) F2(y; z) = G(x; y) G(y; z) (2{9)

and, denoting the left-hand sides of (2{8), (2{9) by U; V respectively we verify that @V=@y = @U=@z.

Thus, G(x; y)G(y; z) must be independent of y. The most general function G(x; y) with this

property is

G(x; y) = r
H(x)

H(y)
(2{10)

where r is a constant, and the function H(x) is arbitrary. In the present case, G > 0 by monotonicity

of F , and so we require that r > 0, and H(x) may not change sign in the region of interest.

Using (2{10), (2{8) and (2{9) become

F1(y; z) = H(v)=H(y) (2{11)

F2(y; z) = r H(v)=H(z) (2{12)

and the relation dv = dF (y; z) = F1dy + F2dz takes the form

dv

H(v)
=

dy

H(y)
+ r

dz

H(z)
(2{13)

or, on integration,

w[F (y; z)] = w(v) = w(y) wr(z) (2{14)

where

w(x) � exp

�Z x dx

H(x)

�
; (2{15)

the absence of a lower limit on the integral signifying an arbitrary multiplicative factor in w. But

taking the function w(�) of (2{6) and applying (2{14), we obtain w(x)wr(v) = w(u)wr(z); applying

(2{14) again, our functional equation now reduces to
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w(x)wr(y)[w(z)]r
2

= w(x)wr(y)wr(z)

Thus we obtain a nontrivial solution only if r = 1, and our �nal result can be expressed in either

of the two forms:

w[F (x; y)] = w(x) w(y) (2{16)

F (x; y) = w�1[w(x)w(y)] : (2{17)

Associativity and commutativity of the logical product thus require that the relation sought must

take the functional form

w(ABjC) = w(AjBC) w(BjC) = w(BjAC) w(AjC) (2{18)

which we shall call henceforth the product rule. By its construction (2{15), w(x) must be a positive

continuous monotonic function, increasing or decreasing according to the sign of H(x); at this stage

it is otherwise arbitrary.

The result (2{18) has been derived as a necessary condition for consistency in the sense of

Desideratum III(a). Conversely, it is evident that (2{18) is also su�cient to ensure this consistency

for any number of joint propositions. For example, there are an enormous number of di�erent ways

in which (ABCDEFGjH) could be expanded by successive partitions in the manner of (2{3); but

if (2{18) is satis�ed, they will all yield the same result.

The requirements of qualitative correspondence with common sense impose further conditions

on the function w(x). For example, in the �rst given form of (2{18) suppose that A is certain, given

C. Then in the \logical environment" produced by knowledge of C, the propositions AB and B are

the same, in the sense that one is true if and only if the other is true. By our most primitive axiom

of all, discussed in Chapter 1, propositions with the same truth value must have equal plausibility:

ABjC = BjC
and also we will have

AjBC = AjC

because if A is already certain given C (i.e., C implies A), then given any other information B

which does not contradict C, it is still certain. In this case, (2{18) reduces to

w(BjC) = w(AjC) w(BjC) (2{19)

and this must hold no matter how plausible or implausible B is to the robot. So our function w(x)

must have the property that

Certainty is represented by w(AjC) = 1 :

Now suppose that A is impossible, given C. Then the proposition AB is also impossible given C:

ABjC = AjC

and if A is already impossible given C (i.e., C implies A), then given any further information B

which does not contradict C, A would still be impossible:

AjBC = AjC :

In this case, equation (2{18) reduces to
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w(AjC) = w(AjC) w(BjC) (2{20)

and again this equation must hold no matter what plausibility B might have. There are only two

possible values of w(AjC) that could satisfy this condition; it could be 0 or +1 (the choice �1 is

ruled out because then by continuity w(BjC) would have to be capable of negative values; (2{20)

would then be a contradiction).

In summary, qualitative correspondence with common sense requires that w(x) be a positive

continuous monotonic function. It may be either increasing or decreasing. If it is increasing, it

must range from zero for impossibility up to one for certainty. If it is decreasing, it must range

from 1 for impossibility down to one for certainty. Thus far, our conditions say nothing at all

about how it varies between these limits.

However, these two possibilities of representation are not di�erent in content. Given any func-

tion w1(x) which is acceptable by the above criteria and represents impossibility by 1, we can

de�ne a new function w2(x) � 1=w1(x), which will be equally acceptable and represents impossibil-

ity by zero. Therefore, there will be no loss of generality if we now adopt the choice 0 � w(x) � 1

as a convention; that is, as far as content is concerned, all possibilities consistent with our desider-

ata are included in this form. [As the reader may check, we could just as well have chosen the

opposite convention; and the entire development of the theory from this point on, including all its

applications, would go through equally well, with equations of a less familiar form but exactly the

same content.]

The Sum Rule

Since the propositions now being considered are of the Aristotelian logical type which must be

either true or false, the logical product AA is always false, the logical sum A+A always true. The

plausibility that A is false must depend in some way on the plausibility that it is true. If we de�ne

u � w(AjB); v � w(AjB), there must exist some functional relation

v = S(u) : (2{21)

Evidently, qualitative correspondence with common sense requires that S(u) be a continuous mono-

tonic decreasing function in 0 � u � 1, with extreme values S(0) = 1; S(1) = 0. But it cannot

be just any function with these properties, for it must be consistent with the fact that the product

rule can be written for either AB or AB:

w(ABjC) = w(AjC) w(BjAC) (2{22)

w(ABjC) = w(AjC) w(BjAC): (2{23)

Thus, using (2{21) and (2{23), Eq. (2{22) becomes

w(ABjC) = w(AjC)S[w(BjAC)] = w(AjC)S

�
w(ABjC)

w(AjC)

�
: (2{24)

Again, we invoke commutativity: w(ABjC) is symmetric in A, B, and so consistency requires that

w(AjC) S

�
w(ABjC)

w(AjC)

�
= w(BjC) S

�
w(BAjC)

w(BjC)

�
: (2{25)

This must hold for all propositions A;B;C; in particular, (2{25) must hold when
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B = AD (2{26)

where D is any new proposition. But then we have the truth{values noted before in (1{8):

AB = B ; BA = A; (2{27)

and in (2{25) we may write

w(ABjC) = w(BjC) = S[w(BjC)]

w(BAjC) = w(AjC) = S[w(AjC)] :
(2{28)

Therefore, using now the abbreviations

x � w(AjC) ; y � w(BjC) (2{29)

Eq. (2-25) becomes a functional equation

x S

�
S(y)

x

�
= y S

�
S(x)

y

�
;

0 � S(y) � x;

0 � x � 1
(2{30)

which expresses a scaling property that S(x) must have in order to be consistent with the product

rule. In the special case y = 1, this reduces to

S[S(x)] = x (2{31)

which states that S(x) is a self-reciprocal function; S(x) = S�1(x). Thus, from (2{21) it follows

also that u = S(v). But this expresses only the evident fact that the relation between A; A is a

reciprocal one; it does not matter which proposition we denote by the simple letter, which by the

barred letter. We noted this before in (1{6); if it had not been obvious before, we should be obliged

to recognize it at this point.

The domain of validity given in (2{30) is found as follows. The proposition D is arbitrary, and

so by various choices of D we can achieve all values of w(DjAC) in

0 � w(DjAC) � 1 : (2{32)

But S(y) = w(ADjC) = w(AjC)w(DjAC), and so (2{32) is just (0 � S(y) � x), as stated in

(2{30). This domain is symmetric in x; y; it can be written equally well with them interchanged.

Geometrically, it consists of all points in the x� y plane lying in the unit square (0 � x; y � 1) and

on or above the curve y = S(x).

Indeed, the shape of that curve is determined already by what (2{30) says for points lying

in�nitesimally above it. For if we set y = S(x) + �, then as � ! 0+ two terms in (2{30) tend to

S(1) = 0, but at di�erent rates. Therefore everything depends on the exact way in which S(1� �)

tends to zero as � ! 0. To investigate this, we de�ne a new variable q(x; y) by

S(x)

y
= 1 � e�q (2{33)

Then we may choose � = e�q, de�ne the function J(q) by

S(1� �) = S(1 � e�q) = exp[�J(q)] ; (2{34)
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and �nd the asymptotic form of J(q) as q !1.

Considering now x, q as the independent variables, we have from (2{33)

S(y) = S[S(x)] + e�q S(x)S0[S(x)] + O(e�2q) :

Using (2{31) and its derivative S0[S(x)]S0(x) = 1, this reduces to

S(y)

x
= 1 � e�(�+q) +O(e�2q) (2{35)

where

�(x) � log

�
�x S0(x)

S(x)

�
> 0 : (2{36)

With these substitutions our functional equation (2{30) becomes

J(q + �) � J(q) = log

�
x

S(x)

�
+ log(1 � e�q) + O(e�2q) ;

0 <q <1

0 <x � 1
(2{37)

As q !1 the last two terms go to zero exponentially fast, so J(q) must be asymptotically linear

J(q) � a+ bq + O(e�q) ; (2{38)

with positive slope

b = ��1 log

�
x

S(x)

�
: (2{39)

In (2{38) there is no periodic term with period �, because (2{37) must hold for a continuum of

di�erent values of x, and therefore for a continuum of values of �(x).

But by de�nition, J is a function of q only, so the right{hand side of (2{39) must be independent

of x. This gives, using (2{36),

x

S(x)
=

�
�xS0(x)

S(x)

�b
; 0 < b <1 (2{40)

or rearranging, S(x) must satisfy the di�erential equation

Sm�1dS + xm�1dx = 0 : (2{41)

where m � 1=b is some positive constant. The only solution of this satisfying S(0) = 1 is

S(x) = (1� xm)1=m ;
0 � x � 1

0 <m <1
(2{42)

and conversely, we verify at once that (2{42) is a solution of (2{30).

The result (2{42) was �rst derived by R. T. Cox (1946) by a di�erent argument which assumed

S(x) twice di�erentiable. Again, Acz�el (1966) derives the same result without assuming di�erentia-

bility. [But to assume di�erentiability in the present application seems to us a very innocuous step,

for if the functional equations had led us to non{di�erentiable functions, we would have rejected

this whole theory as a qualitative violation of common sense]. In any event, (2{42) is the most

general function satisfying the functional equation (2{30) and the left boundary condition S(0) = 1;
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whereupon we are encouraged to �nd that it automatically satis�es the right boundary condition

S(1) = 0.

Since our derivation of the functional equation (2{30) used the special choice (2{26) for B,

we have shown thus far only that (2{42) is a necessary condition to satisfy the general consistency

requirement (2{25). To check its su�ciency, substitute (2{42) into (2{25). We obtain

wm(AjC)� wm(ABjC) = wm(BjC)� wm(BAjC) ;

a trivial identity by virtue of (2{18) and (2{23). Therefore, (2{42) is the necessary and su�cient

condition on S(x) for consistency in the sense (2{25).

Our results up to this point can be summarized as follows. Associativity of the logical product

requires that some monotonic function w(x) of the plausibility x = AjB must obey the product

rule (2{18). Our result (2{42) states that this same function must also obey a sum rule:

wm(AjB) + wm(AjB) = 1 (2{43)

for some positive m. Of course, the product rule itself can be written equally well as

wm(ABjC) = wm(AjC) wm(BjAC) = wm(BjC) wm(AjBC) (2{44)

but then we see that the value of m is actually irrelevant; for whatever value is chosen, we can

de�ne a new function

p(x) � wm(x) (2{45)

and our rules take the form

p(ABjC) = p(AjC) p(BjAC) = p(BjC) p(AjBC) (2{46)

p(AjB) + p(AjB) = 1 : (2{47)

In fact, this entails no loss of generality, for the only requirement we have imposed on the function

w(x) is that it is a continuous monotonic increasing function ranging from w = 0 for impossibility

to w = 1 for certainty. But if w(x) satis�es this, then so also does wm(x), 0 < m <1. Therefore,

to say that we could use di�erent values of m does not give us any freedom that we did not

have already in the arbitrariness of w(x). All possibilities allowed by our desiderata are contained

in (2{46), (2{47) in which p(x) is any continuous monotonic increasing function with the range

0 � p(x) � 1.

Are further relations needed to yield a complete set of rules for plausible inference, adequate

to determine the plausibility of any logic function f(A1; : : : ; An) from those of fA1; : : : ; Ang? We

have, in the product rule (2{46) and sum rule (2{47), formulas for the plausibility of the conjunction

AB and the negation A. But we noted, in the discussion following Eq. (1{12), that conjunction

and negation are an adequate set of operations, from which all logic functions can be constructed.

Therefore, one would conjecture that our search for basic rules should be �nished; it ought to

be possible, by repeated applications of the product rule and sum rule, to arrive at the plausibility

of any proposition in the Boolean algebra generated by fA1; : : : ; Ang.

To verify this, we seek �rst a formula for the logical sum A + B. Applying the product rule

and sum rule repeatedly, we have
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p(A+ BjC) = 1 � p(A BjC) = 1 � p(AjC) p(BjAC)

= 1 � p(AjC)[1� p(BjAC)] = p(AjC) + p(ABjC)

= p(AjC) + p(BjC) p(AjBC) = p(AjC) + p(BjC)[1� p(AjBC)]

and �nally,

p(A+ BjC) = p(AjC) + p(BjC) � p(ABjC) : (2{48)

This generalized sum rule is one of the most useful in applications. Evidently, the primitive sum

rule (2{47) is a special case of (2{48), with the choice B = A.

Exercise 2.1 Is it possible to �nd a general formula for p(CjA+B), analogous to (2{48), from

the product and sum rules? If so, derive it; if not, explain why this cannot be done.

Exercise 2.2 Now suppose we have a set of propositions fA1; � � � ; Ang which on information

X are mutually exclusive: p(AiAj jX) = p(AijX) �ij. Show that p(Cj(A1+ A2 + � � �+An)X) is

a weighted average of the separate plausibilities p(CjAiX):

p(Cj(A1 + � � �+An)X) = p(CjA1X + A2X + � � �+ AnX) =

P
i p(AijX) p(CjAiX)P

i p(AijX)
: (2{49)

To extend the result (2{48), we noted following (1{11) that any logic function other than the trivial

contradiction can be expressed in disjunctive normal form, as a logical sum of the basic conjunctions

such as (1{11). Now the plausibility of any one of the basic conjunctions fQi; 1 � i � 2ng is

determined by repeated applications of the product rule; and then repeated application of (2{48)

will yield the plausibility of any logical sum of the Qi. In fact, these conjunctions are mutually

exclusive, so we shall �nd [Eq. (2{64) below] that this reduces to a simple sum �ip(QijC) of at

most (2n � 1) terms.

So, just as conjunction and negation are an adequate set for deductive logic, the above product

and sum rules are an adequate set for plausible inference, in the following sense. Whenever the

background information is enough to determine the plausibilities of the basic conjunctions, our rules

are adequate to determine the plausibility of every proposition in the Boolean algebra generated

by fA1; � � � ; Ang. Thus, in the case n = 4 we need the plausibilities of 24 = 16 basic conjunctions,

whereupon our rules will determine the plausibility of each of the 216 = 65; 536 propositions in the

Boolean algebra.

But this is almost always more than we need in a real application; if the background information

is enough to determine the plausibility of a few of the basic conjunctions, this may be adequate for

the small part of the Boolean algebra that is of concern to us.

Qualitative Properties

Now let us check to see how the theory based on (2{46) and (2{47) is related to the theory of

deductive logic and the various qualitative syllogisms from which we started in Chapter 1. In the

�rst place it is obvious that in the limit as p(AjB) ! 0 or p(AjB) ! 1, the sum rule (2{47)

expresses the primitive postulate of Aristotelian logic: if A is true, then A must be false, etc.

Indeed, all of that logic consists of the two strong syllogisms (1{1), (1{2) and all that follows

from them; using now the implication sign (1{9) to state the major premise:
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A) B

A true

B true

A) B

B false

A false

(2{50)

and the endless stream of their consequences. If we let C stand for their major premise:

C � \A) B" (2{51)

then these syllogisms correspond to our product rule (2{46) in the forms

p(BjAC) =
p(ABjC)

p(AjC)
; p(AjBC) =

p(ABjC)

p(BjC)
(2{52)

respectively. But from (2{50) we have p(ABjC) = p(AjC) and p(ABjC) = 0, and so (2{52) reduces

to

p(BjAC) = 1 ; p(AjBC) = 0

as stated in the syllogisms (2{50). Thus the relation is simply: Aristotelian deductive logic is the

limiting form of our rules for plausible reasoning, as the robot becomes more and more certain of

its conclusions.

But our rules have also what is not contained in deductive logic: a quantitative form of the

weak syllogisms (1{3), (1{4). To show that those original qualitative statements always follow from

the present rules, note that the �rst weak syllogism

A) B

B is true (2{53)

Therefore, A becomes more plausible

corresponds to the product rule (2{46) in the form

p(AjBC) = p(AjC)
p(BjAC)

p(BjC)
: (2{54)

But from (2{50), p(BjAC) = 1, and since p(BjC) � 1, (2{54) gives

p(AjBC) � p(AjC) (2{55)

as stated in the syllogism. Likewise, the syllogism (1{4)

A) B

A is false (2{56)

Therefore, B becomes less plausible

corresponds to the product rule in the form

p(BjAC) = p(BjC)
p(AjBC)

p(AjC)
: (2{57)

But from (2{55) it follows that p(AjBC) � p(AjC); and so (2{57) gives

p(BjAC) � p(BjC) (2{58)

as stated in the syllogism.

Finally, the policeman's syllogism (1{5), which seemed very weak when stated abstractly, is

also contained in our product rule, stated in the form (2{54). Letting now C stand for background
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information [not noted explicitly in (1{5) because the need for it was not yet apparent], the major

premise, \If A is true, then B becomes more plausible," now takes the form

p(BjAC) > p(BjC) (2{59)

and (2{54) gives at once

p(AjBC) > p(AjC) (2{60)

as stated in the syllogism.

But now we have more than the mere qualitative statement (2{60). In Chapter 1 we wondered,

without answering: What determines whether the evidence B elevates A almost to certainty, or

has a negligible e�ect on its plausibility? The answer from (2{54) is that, since p(BjAC) cannot

be greater than unity, a large increase in the plausibility of A can occur only when p(BjC) is very

small. Observing the gentleman's behavior (B) makes his guilt (A) seem virtually certain, because

that behavior is otherwise so very unlikely on the background information; no policeman has ever

seen an innocent person behaving that way. On the other hand, if knowing that A is true can

make only a negligible increase in the plausibility of B, then observing B can in turn make only a

negligible increase in the plausibility of A.

We could give many more comparisons of this type; indeed, the complete qualitative corre-

spondence of these rules with common sense has been noted and demonstrated by many writers,

including Keynes (1921), Je�reys (1939), P�olya (1945, 1954), Cox (1961), Tribus (1969), de Finetti

(1974), and Rosenkrantz (1977). The treatment of P�olya was described briey in our Preface and

Chapter 1, and we have just recounted that of Cox more fully. However, our aim now is to push

ahead to quantitative applications; so we return to the basic development of the theory.

Numerical Values

We have found so far the most general consistent rules by which our robot can manipulate plau-

sibilities, granted that it must associate them with real numbers, so that its brain can operate by

the carrying out of some de�nite physical process. While we are encouraged by the familiar formal

appearance of these rules and their qualitative properties just noted, two evident circumstances

show that our job of designing the robot's brain is not yet �nished.

In the �rst place, while the rules (2{46), (2{47) place some limitations on how plausibilities of

di�erent propositions must be related to each other, it would appear that we have not yet found

any unique rules, but rather an in�nite number of possible rules by which our robot can do plausible

reasoning. Corresponding to every di�erent choice of a monotonic function p(x), there seems to be

a di�erent set of rules, with di�erent content.

Secondly, nothing given so far tells us what actual numerical values of plausibility should be

assigned at the beginning of a problem, so that the robot can get started on its calculations. How

is the robot to make its initial encoding of the background information, into de�nite numerical

values of plausibilities? For this we must invoke the \interface" desiderata IIIb, IIIc of (1{23), not

yet used.

The following analysis answers both of these questions, in a way both interesting and unex-

pected. Let us ask for the plausibility (A1 + A2 + A3jB) that at least one of three propositions

fA1; A2; A3g is true. We can �nd this by two applications of the extended sum rule (2{48), as

follows. The �rst application gives

p(A1 + A2 + A3jB) = p(A1 + A2jB) + p(A3jB) � p(A1A3 +A2A3jB)

where we �rst considered (A1 +A2) as a single proposition, and used the logical relation

(A1 +A2)A3 = A1A3 + A2A3 :
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Applying (2{48) again, we obtain seven terms which can be grouped as follows:

p(A1 +A2 +A3jB) = p(A1jB) + p(A2jB) + p(A3jB)

� p(A1A2jB)� p(A2A3jB)� p(A3A1jB)

+ p(A1A2A3jB)

(2{61)

Now suppose these propositions are mutually exclusive; i.e., the evidence B implies that no two of

them can be true simultaneously:

p(AiAj jB) = p(AijB)�ij : (2{62)

Then the last four terms of (2{61) vanish, and we have

p(A1 +A2 +A3jB) = p(A1jB) + P (A2jB) + P (A3jB) : (2{63)

Adding more propositions A4; A5, etc., it is easy to show by induction that if we have n mutually

exclusive propositions fA1 � � �Ang, (2{63) generalizes to

p(A1 + � � �+ AmjB) =

mX
i=1

p(AijB) ; 1 � m � n (2{64)

a rule which we will be using constantly from now on.

In conventional expositions, Eq. (2{64) is usually introduced �rst as the basic but, as far as

one can see, arbitrary axiom of the theory. The present approach shows that this rule is deducible

from simple qualitative conditions of consistency. The viewpoint which sees (2{64) as the primitive,

fundamental relation is one which we are particularly anxious to avoid (see Comments at the end

of this Chapter).

Now suppose that the propositions fA1 : : :Ang are not only mutually exclusive but also ex-

haustive; i.e., the background information B stipulates that one and only one of them must be

true. In that case the sum (2{64) for m = n must be unity:
nX
i=1

p(AijB) = 1 : (2{65)

This alone is not enough to determine the individual numerical values p(AijB). Depending on

further details of the information B, many di�erent choices might be appropriate, and in general

�nding the p(AijB) by logical analysis of B can be a di�cult problem. It is, in fact, an open{ended

problem, since there is no end to the variety of complicated information that might be contained in

B; and therefore no end to the complicated mathematical problems of translating that information

into numerical values of p(AijB). As we shall see, this is one of the most important current research

problems; every new principle we can discover for translating information B into numerical values

of p(AijB) will open up a new class of useful applications of this theory.

There is, however, one case in which the answer is particularly simple, requiring only direct

application of principles already given. But we are entering now into a very delicate area, a

cause of confusion and controversy for over a Century. In the early stages of this theory, as in

elementary geometry, our intuition runs so far ahead of logical analysis that the point of the logical

analysis is often missed. The trouble is that intuition leads us to the same �nal conclusions far

more quickly; but without any correct appreciation of their range of validity. The result has been

that the development of this theory has been retarded for some 150 years because various workers
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have insisted on debating these issues on the basis, not of demonstrative arguments, but of their

conicting intuitions.

At this point, therefore, we must ask the reader to suppress all intuitive feelings you may have,

and allow yourself to be guided solely by the following logical analysis. The point we are about to

make cannot be developed too carefully; and unless it is clearly understood, we will be faced with

tremendous conceptual di�culties from here on.

Consider two di�erent problems. Problem I is the one just formulated; we have a given set

of mutually exclusive and exhaustive propositions fA1 : : :Ang and we seek to evaluate p(AijB)I .

Problem II di�ers in that the labels A1; A2 of the �rst two propositions have been interchanged.

These labels are, of course, entirely arbitrary; it makes no di�erence which proposition we choose

to call A1 and which A2. In Problem II, therefore, we also have a set of mutually exclusive and

exhaustive propositions fA0
1 : : :A

0
ng, given by

A0
1 � A2

A0
2 � A1

A0
k � Ak ; 3 � k � n

(2{66)

and we seek to evaluate the quantities p(A0
ijB)II , i = 1; 2; : : : ; n.

In interchanging the labels we have generated a di�erent but closely related problem. It is clear

that, whatever state of knowledge the robot had about A1 in Problem I, it must have the same state

of knowledge about A0
2 in Problem II, for they are the same proposition, the given information B

is the same in both problems, and it is contemplating the same totality of propositions fA1 : : :Ang

in both problems. Therefore we must have

p(A1jB)I = p(A0
2jB)II (2{67)

and similarly

p(A2jB)I = p(A0
1jB)II : (2{68)

We will call these the transformation equations. They describe only how the two problems are

related to each other, and therefore they must hold whatever the information B might be; in

particular, however plausible or implausible the propositions A1; A2 might seem to the robot in

Problem I.

But now suppose that information B is indi�erent between propositions A1 and A2; i.e., if it

says something about one, it says the same thing about the other, and so it contains nothing that

would give the robot any reason to prefer either one over the other. In this case, Problems I and

II are not merely related, but entirely equivalent; i.e., the robot is in exactly the same state of

knowledge about the set of propositions fA0
1 : : :A

0
ng in Problem II, including their labeling, as it is

about the set fA1 : : :Ang in Problem I.

Now we invoke our Desideratum of Consistency in the sense IIIc in (1{23). This stated that

equivalent states of knowledge must be represented by equivalent plausibility assignments. In

equations, this statement is

p(AijB)I = p(A0
ijB)II ; i = 1; 2; : : : ; n (2{69)

which we shall call the symmetry equations. But now, combining equations (2{67), (2{68), (2{69)

we obtain

p(A1jB)I = p(A2jB)I : (2{70)

In other words, propositions A1 and A2 must be assigned equal plausibilities in Problem I (and, of

course, also in Problem II).
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At this point, depending on your personality and background in this subject, you will be

either greatly impressed or greatly disappointed by the result (2{70). The argument we have just

given is the �rst \baby" version of the group invariance principle for assigning plausibilities; it

will be extended greatly in a later Chapter, when we consider the general problem of assigning

\noninformative priors".

More generally, let fA00
1 : : :A

00
ng be any permutation of fA1 : : :Ang and let Problem III be that

of determining the p(A00
i jB). If the permutation is such thatA

00
k � Ai, there will be n transformation

equations of the form

p(AijB)I = p(A00
k jB)III (2{71)

which show how Problems I and III are related to each other; and these relations will hold whatever

the given information B.

But if information B is now indi�erent between all the propositions Ai, then the robot is in

exactly the same state of knowledge about the set of propositions fA00
1 : : :A

00
ng in Problem III as

it was about the set fA1 : : :Ang in Problem I; and again our desideratum of consistency demands

that it assign equivalent plausibilities in equivalent states of knowledge, leading to the n symmetry

conditions

p(AkjB)I = p(A00
k jB)III ; k = 1; 2; :::; n (2{72)

From (2{71) and (2{72) we obtain n equations of the form

p(AijB)I = p(AkjB)I (2{73)

Now these relations must hold whatever the particular permutation we used to de�ne Problem III.

There are n! such permutations, and so there are actually n! equivalent problems in which, for given

i, the index k will range over all of the (n � 1) others in (2{73). Therefore, the only possibility

is that all of the p(AijB)I be equal (indeed, this is required already by consideration of a single

permutation if it is cyclic of order n). Since the fA1 : : :Ang are exhaustive, Eq. (2{65) will hold,

and the only possibility is therefore

p(AijB)I =
1

n
; (l � i � n) (2{74)

and we have �nally arrived at a set of de�nite numerical values! Following Keynes (1921), we shall

call this result the Principle of Indi�erence.

Perhaps, in spite of our admonitions, the reader's intuition had already led to just this conclu-

sion, without any need for the rather tortuous reasoning we have just been through. If so, then at

least that intuition is consistent with our desiderata. But merely writing down (2{74) intuitively

gives one no appreciation of the importance and uniqueness of this result. To see the uniqueness,

note that if the robot were to assign any values di�erent from (2{74), then by a mere permutation

of labels we could exhibit a second problem in which the robot's state of knowledge is the same,

but in which it is assigning di�erent plausibilities.

To see the importance, note that (2{74) actually answers both of the questions posed at the

beginning of this Section. It shows { in one particular case which can be greatly generalized { how

the information given the robot can lead to de�nite numerical values, so that a calculation can get

started. But it also shows something even more important because it is not at all obvious intuitively;

the information given the robot determines the numerical values of the quantities p(x) = p(AijB),

and not the numerical values of the plausibilities x = AijB from which we started. This, also, will

be found to be true in general.
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Recognizing this gives us a beautiful answer to the �rst question posed at the beginning of this

Section; after having found the product and sum rules, it still appeared that we had not found any

unique rules of reasoning, because every di�erent choice of a monotonic function p(x) would lead

to a di�erent set of rules (i.e., a set with di�erent content). But now we see that no matter what

function p(x) we choose, we shall be led to the same result (2{74), and the same numerical value of

p. Furthermore, the robot's reasoning processes can be carried out entirely by manipulation of the

quantities p, as the product and sum rules show; and the robot's �nal conclusions can be stated

equally well in terms of the p's instead of the x's.

So, we now see that di�erent choices of the function p(x) correspond only to di�erent ways

we could design the robot's internal memory circuits. For each proposition Ai about which it is

to reason, it will need a memory address in which it stores some number representing the degree

of plausibility of Ai, on the basis of all the data it has been given. Of course, instead of storing

the number pi it could equally well store any strict monotonic function of pi. But no matter what

function it used internally, the externally observable behavior of the robot would be just the same.

As soon as we recognize this it is clear that, instead of saying that p(x) is an arbitrary monotonic

function of x, it is much more to the point to turn this around and say that:

The plausibility x � AjB is an arbitrary monotonic function of p, de�ned in (0 � p � 1).

It is p that is rigidly �xed by the data of a problem, not x.

The question of uniqueness is therefore disposed of automatically by the result (2{74); in spite

of �rst appearances, there is actually only one consistent set of rules by which our robot can do

plausible reasoning, and for all practical purposes, the plausibilities x � AjB from which we started

have faded entirely out of the picture! We will just have no further use for them.

Having seen that our theory of plausible reasoning can be carried out entirely in terms of the

quantities p, we �nally introduce their technical names; from now on, we will call these quantities

probabilities. The word \probability" has been studiously avoided up to this point, because while

the word does have a colloquial meaning to the proverbial \man on the street," it is for us a

technical term, which ought to have a precise meaning. But until it had been demonstrated that

these quantities are uniquely determined by the data of a problem, we had no grounds for supposing

that the quantities p were possessed of any precise meaning.

We now see that they de�ne a particular scale on which degrees of plausibility can be measured.

Out of all possible monotonic functions which could in principle serve this purpose equally well,

we choose this particular one, not because it is more \correct," but because it is more convenient;

i.e., it is the quantities p that obey the simplest rules of combination, the product and sum rules.

Because of this, numerical values of p are directly determined by our information.

This situation is analogous to that in thermodynamics, where out of all possible empirical

temperature scales t, which are monotonic functions of each other, we �nally decide to use the

Kelvin scale T ; not because it is more \correct" than others but because it is more convenient; i.e.,

the laws of thermodynamics take their simplest form [dU = TdS � PdV; dG = �SdT + V dP ,

etc.] in terms of this particular scale. Because of this, numerical values of Kelvin temperatures

are \rigidly �xed" in the sense of being directly measurable in experiments, independently of the

properties of any particular substance like water or mercury.

Another rule, equally appealing to our intuition, follows at once from (2{74). Consider the

traditional \Bernoulli Urn" of probability theory; ours is known to contain ten balls of identical

size and weight, labelled f1; 2; : : : ; 10g. Three balls (numbers 4, 6, 7) are black, the other seven are

white. We are to shake the Urn and draw one ball blindfolded. The background information B in

(2{74) consists of the statements in the last two sentences. What is the probability that we draw

a black one?
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De�ne the propositions: Ai � \The i'th ball is drawn" , 1 � i � 10. Since the background

information is indi�erent to these ten possibilities, (2{74) applies and the robot assigns

p(AijB) =
1

10
; 1 � i � 10

The statement that we draw a black ball is that we draw number 4, 6, or 7;

p(BlackjB) = p(A4 +A6 +A7jB) :

But these are mutually exclusive propositions (i.e., they assert mutually exclusive events) so (2{64)

applies and the robot's conclusion is

p(BlackjB) =
3

10
(2{75)

as intuition had told us already. More generally, if there are N such balls, and the proposition A is

de�ned to be true on any speci�ed subset of M of them, (0 �M � N), false on the rest, we have

p(AjB) =
M

N
: (2{76)

This was the original mathematical de�nition of probability, as given by James Bernoulli (1713)

and used by most writers for the next 150 years. For example, Laplace's great Th�eorie analytique

des probabilit�es (1812) opens with this sentence: \The Probability of an event is the ratio of the

number of cases favorable to it, to the number of all cases possible when nothing leads us to expect

that any one of these cases should occur more than any other, which renders them, for us, equally

possible."

Exercise 2.3. Limits on Probability Values. As soon as we have the numerical values a =

P (AjC) and b = P (BjC), the product and sum rules place some limits on the possible numerical

values for their conjunction and disjunction. Supposing that a � b, show that the probability of

the conjunction cannot exceed that of the least probable proposition: 0 � P (ABjC) � a, and

the probability of the disjunction cannot be less than that of the most probable proposition:

b � P (A + BjC) � 1. Then show that, if a + b > 1, there is a stronger inequality for the

conjunction; and if a+b < 1 there is a stronger one for the disjunction. These necessary general

inequalities are helpful in detecting errors in calculations.

Notation and Finite Sets Policy

Now we can introduce the notation to be used in the remainder of this work (discussed more fully

in Appendix B). Henceforth, our formal probability symbols will use the capital P :

P (AjB)

which signi�es that the arguments are propositions. Probabilities whose arguments are numerical

values are generally denoted by other functional symbols such as

f(rjn; p)

which denote ordinary mathematical functions. The reason for making this distinction is to avoid

ambiguity in the meaning of our symbols, which has been a recent problem in this �eld.
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However, in agreement with the customary loose notation in the existing literature, we some-

times relax our standards enough to allow the probability symbols with small p: p(xjy) or p(AjB)

or p(xjB) to have arguments which can be either propositions or numerical values, in any mix.

Thus the meaning of expressions with small p can be judged only from the surrounding context.

It is very important to note that our consistency theorems have been established only for

probabilities assigned on �nite sets of propositions. In principle, every problem must start with

such �nite set probabilities; extension to in�nite sets is permitted only when this is the result

of a well{de�ned and well{behaved limiting process from a �nite set. More generally, in any

mathematical operations involving in�nite sets the safe procedure is the �nite sets policy:

Apply the ordinary processes of arithmetic and analysis only to expressions with a �nite

number of terms. Then after the calculation is done, observe how the resulting �nite

expressions behave as the number of terms increases inde�nitely.

In laying down this rule of conduct, we are only following the policy that mathematicians from

Archimedes to Gauss have considered clearly necessary for nonsense avoidance in all of mathematics.

But more recently, the popularity of in�nite set theory and measure theory have led some to

disregard it and seek short{cuts which purport to use measure theory directly. Note, however,

that this rule of conduct is consistent with the original Lebesgue de�nition of measure, and when

a well{behaved limit exists it leads us automatically to correct \measure theoretic" results. Indeed,

this is how Lebesgue found his �rst results.

The danger is that the present measure theory notation presupposes the in�nite limit already

accomplished, but contains no symbol indicating which limiting process was used. Yet as noted

in our Preface, di�erent limiting processes { equally well{behaved { lead in general to di�erent

results. When there is no well{behaved limit, any attempt to go directly to the limit can result in

nonsense, the cause of which cannot be seen as long as one looks only at the limit, and not at the

limiting process.

This little Sermon is an introduction to Chapter 15 on In�nite Set Paradoxes, where we shall

see some of the results that have been produced by those who ignored this rule of conduct, and

tried to calculate probabilities directly on an in�nite set without considering any limit from a �nite

set. The results are at best ambiguous, at worst nonsensical.

COMMENTS

It has taken us two Chapters of close reasoning to get back to the point (2{76) from which Laplace

started some 180 years ago. We shall try to understand the intervening period, as a weird episode

of history, throughout the rest of the present work. The story is so complicated that we can unfold

it only gradually, over the next ten Chapters. To make a start on this, let us consider some of the

questions often raised about the use of probability theory as an extension of logic.

`Subjective" vs \Objective" These words are abused so much in probability theory that we try

to clarify our use of them. In the theory we are developing, any probability assignment is necessarily

\subjective" in the sense that it describes only a state of knowledge, and not anything that could

be measured in a physical experiment. Inevitably, someone will demand to know: \Whose state of

knowledge?" The answer is always: \The robot { or anyone else who is given the same information

and reasons according to the desiderata used in our derivations in this Chapter."

Anyone who has the same information but comes to a di�erent conclusion than our robot,

is necessarily violating one of those desiderata. While nobody has the authority to forbid such

violations, it appears to us that a rational person, should he discover that he was violating one of

them, would wish to revise his thinking (in any event, he would surely have di�culty in persuading

anyone else, who was aware of that violation, to accept his conclusions).
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Now it was just the function of our interface desiderata (IIIb), (IIIc) to make these probability

assignments completely \objective" in the sense that they are independent of the personality of

the user. They are a means of describing (or what is the same thing, of encoding) the information

given in the statement of a problem, independently of whatever personal feelings (hopes, fears,

value judgments, etc.) you or I might have about the propositions involved. It is \objectivity" in

this sense that is needed for a scienti�cally respectable theory of inference.

G�odel's Theorem. To answer another inevitable question, we recapitulate just what has and

what has not been proved in this Chapter. The main constructive requirement which determined

our product and sum rules was the desideratum (IIIa) of \structural consistency." Of course, this

does not mean that our rules have been proved consistent; it means only that any other rules which

represent degrees of plausibility by real numbers, but which di�er in content from ours, will lead

necessarily either to inconsistencies or violations of our other desiderata.

A famous theorem of Kurt G�odel (1931) states that no mathematical system can provide a

proof of its own consistency. Does this prevent us from ever proving the consistency of probability

theory as logic? We are not prepared to answer this fully, but perhaps we can clarify the situation

a little.

First, let us be sure that \inconsistency" means the same thing to us and to a logician. What we

had in mind was that if our rules were inconsistent, then it would be possible to derive contradictory

results from valid application of them; for example, by applying the rules in two equally valid ways,

one might be able to derive both P (AjBC) = 1=3 and P (AjBC) = 2=3. Cox's functional equations

sought to guard against this. Now when a logician says that a system of axioms fA1; A2; : : : ; Ang

is inconsistent, he means that a contradiction can be deduced from them; i.e., some proposition Q

and its denial Q are both deducible. Indeed, this is not really di�erent from our meaning.

To understand the above G�odel result, the essential point is the principle of elementary logic

that a contradiction AA implies all propositions, true and false. [For, given any two propositions

A and B, we have A ) (A + B), therefore AA ) A(A + B) = AA + AB ) B.] Then let

A = A1A2 � � �An be the system of axioms underlying a mathematical theory and T any proposition,

or theorem, deducible from them:y

A) T :

Now whatever T may assert, the fact that T can be deduced from the axioms cannot prove that

there is no contradiction in them, since if there were a contradiction, T could certainly be deduced

from them!

This is the essence of the G�odel theorem, as it pertains to our problems. As noted by R. A.

Fisher (1956), it shows us the intuitive reason why G�odel's result is true. We do not suppose that

any logician would accept Fisher's simple argument as a proof of the full G�odel theorem; yet for

most of us it is more convincing than G�odel's long and complicated proof.z

y In Chapter 1 we noted the tricky distinction between the weak property of formal implication and the

strong one of logical deducibility; by `implication of a proposition C' we really mean `logically deducible

from C and the totality of other background information'. Conventional expositions of Aristotelian logic

are, in our view, awed by their failure to make explicit mention of background information, which is usually

essential to our reasoning, whether inductive or deductive. But in the present argument, we can understand

A as including all the propositions that constitute that background information; then `implication' and

`logical deducibility' are the same thing.
z The 1957 Edition of Harold Je�reys' Scienti�c Inference has a short summary of G�odel's original rea-

soning which is far clearer and easier to read than any other `explanation' we have seen. The full theorem

refers to other matters of concern in 1931, but of no interest to us right now; the above discussion has

abstracted the part of it that we need to understand for our present purposes.
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Now suppose that the axioms contain an inconsistency. Then the opposite of T and therefore

the contradiction T T can also be deduced from them:

A) T :

So if there is an inconsistency, its existence can be proved by exhibiting any proposition T and its

opposite T that are both deducible from the axioms. However, in practice it may not be easy to

�nd a T for which one sees how to prove both T and T .

Evidently, we could prove the consistency of a set of axioms if we could �nd a feasible procedure

which is guaranteed to locate an inconsistency if one exists; so G�odel's theorem seems to imply that

no such procedure exists. Actually, it says only that no such procedure derivable from the axioms

of the system being tested exists.

Yet we shall �nd that probability theory comes close to this; it is a powerful analytical tool

which can search out a set of propositions and detect a contradiction in them if one exists. The

principle is that probabilities conditional on contradictory premises do not exist. Therefore, put

our robot to work; i.e., write a computer program to calculate probabilities p(BjE) conditional on a

set of propositions E = (E1E2 : : : En). Even though no contradiction is apparent from inspection,

if there is a contradiction hidden in E, the computer program will crash.

We discovered this \empirically", and after some thought realized that it is not a reason for

dismay, but rather a valuable diagnostic tool that warns us of unforeseen special cases in which

our formulation of a problem can break down. It will be used for this purpose later, particularly

in Chapter 21.

If the computer program does not crash, but prints out valid numbers, then we know that the

conditioning propositions Ei are mutually consistent, and we have accomplished what one might

have thought to be impossible in view of G�odel's theorem. But of course our use of probability

theory appeals to principles not derivable from the propositions being tested, so there is no di�culty;

it is important to understand what G�odel's theorem does and does not prove.

When G�odel's theorem �rst appeared, with its more general conclusion that a mathematical

system may contain certain propositions that are undecidable within that system, it seems to have

been a great psychological blow to logicians, who saw it at �rst as a devastating obstacle to what

they were trying to achieve.

Yet a moment's thought shows us that many quite simple questions are undecidable by de-

ductive logic. There are situations in which one can prove that a certain property must exist in

a �nite set, even though it is impossible to exhibit any member of the set that has that property.

For example, two persons are the sole witnesses to an event; they give opposite testimony about it

and then both die. Then we know that one of them was lying, but it is impossible to determine

which one.

In this example, the undecidability is not an inherent property of the proposition or the event;

it signi�es only the incompleteness of our own information. But this is equally true of abstract

mathematical systems; when a proposition is undecidable in such a system, that means only that

its axioms do not provide enough information to decide it. But new axioms, external to the original

set, might supply the missing information and make the proposition decidable after all.

In the future, as science becomes more and more oriented to thinking in terms of information

content, G�odel's result will come to seem more of a platitude than a paradox. Indeed, from our

viewpoint \undecidability" merely signi�es that a problem is one that calls for inference rather

than deduction. Probability theory as extended logic is designed speci�cally for such problems.

These considerations seem to open up the possibility that, by going into a still wider �eld by

invoking principles external to probability theory, one might be able to prove the consistency of

our rules. At the moment, this appears to us to be an open question.
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Needless to say, no inconsistency has ever been found from correct application of our rules,

although some of our calculations will put them to a severe test. Apparent inconsistencies have

always proved, on closer examination, to be misapplications of the rules. On the other hand,

guided by Cox's theorems which tell us where to look, we have never had the slightest di�culty

in exhibiting the inconsistencies in the ad hoc rules which abound in the literature, which di�er in

content from ours and whose sole basis is the intuitive judgment of their inventors. Examples are

found throughout the sequel, but particularly in Chapters 5, 15, 17.

Venn Diagrams. Doubtless, some readers will ask, \After the rather long and seemingly un-

motivated derivation of the extended sum rule (2{48), which in our new notation now takes the

form:

P (A+BjC) = P (AjC) + P (BjC)� P (ABjC) (2{48)

why did we not illustrate it by the Venn diagram? That makes its meaning so much clearer." [Here

we draw two circles labelled A and B, with intersection labelled AB, all within a circle C.]

The Venn diagram is indeed a useful device, illustrating { in one special case { why the negative

term appears in (2{48). But it can also mislead, because it suggests to our intuition more than the

actual content of (2{48). Looking at the Venn diagram, we are encouraged to ask, \What do the

points in the diagram mean?" If the diagram is intended to illustrate (2{48), then the probability

of A is, presumably, represented by the area of circle A; for then the total area covered by circles

A, B is the sum of their separate areas, minus the area of overlap, corresponding exactly to (2{48).

Now the circle A can be broken down into non{overlapping subregions in many di�erent ways;

what do these subregions mean? Since their areas are additive, if the Venn diagram is to remain

applicable they must represent a re�nement of A into the disjunction of some mutually exclusive

sub{propositions. We can { if we have no mathematical scruples about approaching in�nite limits {

imagine this subdivision carried down to the individual points in the diagram. Therefore these

points must represent some ultimate elementary propositions !i into which A can be resolved. Of

course, consistency then requires us to suppose that B and C can also be resolved into these same

propositions !i.

Already, we have jumped to the conclusion that the propositions to which we assign probabil-

ities correspond to sets of points in some space, that the logical disjunction A + B stands for the

union of the sets, the conjunction AB for their intersection, that the probabilities are an additive

measure over those sets. But the general theory we are developing has no such structure; all these

things are properties only of the Venn diagram.

In developing our theory of inference we have taken special pains to avoid restrictive assump-

tions which would limit its scope; it is to apply, in principle, to any propositions with unambiguous

meaning. In the special case where those propositions happen to be statements about sets, the

Venn diagram is an appropriate illustration of (2{48). But most of the propositions about which

we reason, for example,

A � \It will rain today,"

B � \The roof will leak,"

are simply declarative statements of fact, which may or may not be resolvable into more elementary

propositions within the context of our problem.

Of course, one can always force such a resolution by introducing irrelevancies; for example,

even though the above{de�ned B has nothing to do with penguins, we could still resolve it into the

disjunction:

B = BC1 + BC2 +BC3 + � � �+ BCN
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where Ck � \The number of penguins in Antarctica is k." By choosing N su�ciently large, we

will surely be making a valid statement of Boolean algebra; but this is idle and it cannot help us

to reason about a leaky roof.

Even if a meaningful resolution exists in our problem, it may not be of any use to us. For

example, the proposition \Rain Today" could be resolved into an enumeration of every conceivable

trajectory of each individual raindrop; but we do not see how this could help a meteorologist trying

to forecast rain. In real problems, there is a natural end to this resolving, beyond which it serves no

purpose and degenerates into an empty formal exercise. We shall give an explicit demonstration of

this later (Chapter 8), in the scenario of Sam's Broken Thermometer: does the exact way in which

it broke matter for the conclusions that Sam should draw from his corrupted data?

But in some cases there is a resolution so relevant to the context of the problem that it becomes

a useful calculational device; Eq. (2{75) was a trivial example. We shall be glad to take advantage

of this whenever we can, but we cannot expect it in general.

Even when both A and B can be resolved in a way meaningful and useful in our problem,

it would seldom be the case that they are resolvable into the same set of elementary propositions

!i. And we always reserve the right to enlarge our context by introducing more propositions

D;E; F; : : : into the discussion; and we could hardly ever expect that all of them would continue

to be expressible as disjunctions of the same original set of elementary propositions !i. To assume

this would be to place a quite unnecessary restriction on the generality of our theory.

Therefore, the conjunction AB should be regarded simply as the statement that both A and

B are true; it is a mistake to try to read any more detailed meaning, such as an intersection of sets,

into it in every problem. Then p(ABjC) should also be regarded as an elementary quantity in its

own right, not necessarily resolvable into a sum of still more elementary ones (although if it is so

resolvable this may be a good way of calculating it).

We have adhered to the original notation A + B, AB of Boole, instead of the more common

A _ B, A ^ B, or A [ B, A \ B which everyone associates with a set{theory context, in order to

head o� this confusion as much as possible.

So, rather than saying that the Venn diagram justi�es or explains (2{48), we prefer to say that

(2{48) explains and justi�es the Venn diagram, in one special case. But the Venn diagram has

played a major role in the history of probability theory, as we note next.

The \Kolmogorov Axioms" In 1933, A. N. Kolmogorov presented an approach to probability

theory phrased in the language of set theory and measure theory. This language was just then

becoming so fashionable that today many mathematical results are named, not for the discoverer,

but for the one who �rst restated them in that language. For example, in group theory the term

\Hurwitz invariant integral" disappeared, to be replaced by \Haar measure". Because of this

custom, some modern works { particularly by mathematicians { can give one the impression that

probability theory started with Kolmogorov.

Kolmogorov formalized and axiomatized the picture suggested by the Venn diagram, which

we have just described. At �rst glance, this system appears so totally di�erent from ours that

some discussion is needed to see the close relation between them. In Appendix A we describe

the Kolmogorov system and show that, for all practical purposes the four axioms concerning his

probability measure, �rst stated arbitrarily (for which Kolmogorov has been criticized) have all

been derived in this Chapter as necessary to meet our consistency requirements. As a result, we

shall �nd ourselves defending Kolmogorov against his critics on many technical points. The reader

who �rst learned probability theory on the Kolmogorov basis is urged to read Appendix A at this

point.

However, our system of probability di�ers conceptually from that of Kolmogorov in that we do

not interpret propositions in terms of sets. Partly as a result, our system has analytical resources not
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present at all in the Kolmogorov system. This enables us to formulate and solve many problems {

particularly the so{called \ill posed" problems and \generalized inverse" problems { that would

be considered outside the scope of probability theory according to the Kolmogorov system. These

problems are just the ones of greatest interest in current applications.
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CHAPTER 3

ELEMENTARY SAMPLING THEORY

At this point, the mathematical material we have available consists of the basic product and sum
rules

P (ABjC) = P (AjBC)P (BjC) = P (BjAC)P (AjC) (3{1)

P (AjB) + P (AjB) = 1 (3{2)

from which we derived the extended sum rule

P (A+BjC) = P (AjC) + P (BjC)� P (ABjC) (3{3)

and with the desideratum (III.c) of consistency, the principle of indi�erence: if on background
information B the hypotheses (H1 � � �HN ) are mutually exclusive and exhaustive, and B does not
favor any one of them over any other, then

P (HijB) =
1

N
; 1 � i � N : (3{4)

From (3{3) and (3{4) we then derived the Bernoulli urn rule; if B speci�es that A is true on some
subset of M of the Hi, false on the remaining (N �M), then

P (AjB) =
M

N
: (3{5)

It is important to realize how much of probability theory can be derived from no more than this.

In fact, essentially all of conventional probability theory as currently taught, plus many impor-
tant results that are often thought to lie beyond the domain of probability theory, can be derived
from the above foundation. We devote the next several Chapters to demonstrating this in some
detail, and then in Chapter 11 resume the basic development of our robot's brain, with a better
understanding of what additional principles are needed for advanced applications.

The �rst applications of the theory given in this Chapter are, to be sure, rather simple and
na��ve compared to the serious scienti�c inference that we hope to achieve later. Nevertheless, our
reason for considering them in close detail is not mere pedagogical form. Failure to understand
the logic of these simplest applications has been one of the major factors retarding the progress
of scienti�c inference { and therefore of science itself { for many decades. Therefore we urge the
reader, even one who considers himself already familiar with elementary sampling theory, to digest
the contents of this Chapter carefully before proceeding to more complicated problems.

Sampling Without Replacement.

Let us make the Bernoulli Urn scenario a little more speci�c by de�ning the propositions:

B � \An urn contains N balls, identical in every respect except that they carry num-
bers (1; 2 : : :N) and M of them are colored red, the remaining (N � M) white,
0 � M � N . We draw a ball from the urn blindfolded, observe and record its
color, lay it aside, and repeat the process until n balls have been drawn, 0 � n � N ."

Ri � \Red ball on the i'th draw."

Wi � \White ball on the i'th draw,"
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Since according to B only red or white can be drawn, we have

P (RijB) + P (WijB) = 1 ; 1 � i � N (3{6)

which amounts to saying that, in the \logical environment" created by knowledge of B, the propo-
sitions are related by negation:

Ri = Wi ; W i = Ri (3{7)

and for the �rst draw, (3{5) becomes

P (R1jB) =
M

N
; (3{8)

P (W1jB) = 1�
M

N
; (3{9)

Let us understand clearly what this means. The probability assignments (3{8), (3{9) are not
assertions of any physical property of the urn or its contents; they are a description of the state of

knowledge of the robot prior to the drawing. Indeed, were the robot's state of knowledge di�erent
from B as just de�ned (for example, if it knew the actual positions of the red and white balls in
the urn, or if it did not know the true values of N and M), then its probability assignments for R1

and W1 would be di�erent; but the real properties of the urn would be just the same.

It is therefore illogical to speak of \verifying" (3{8) by performing experiments with the urn;
that would be like trying to verify a boy's love for his dog by performing experiments on the dog.
At this stage, we are concerned with the logic of consistent reasoning from incomplete information;
not with assertions of physical fact about what will be drawn from the urn (which are in any event
impossible just because of the incompleteness of the information B).

Eventually, our robot will be able to make some very con�dent physical predictions which can
approach, but (except in degenerate cases) not actually reach, the certainty of logical deduction;
but the theory needs to be developed further before we are in a position to say what quantities
can be well predicted, and what kind of information is needed for this. Put di�erently, relations
between probabilities assigned by the robot in various states of knowledge, and observable facts in
experiments, may not be assumed arbitrarily; we are justi�ed in using only those relations that can
be deduced from the rules of probability theory, as we now seek to do.

Changes in the robot's state of knowledge appear already when we ask for probabilities referring
to the second draw. For example, what is the robot's probability for red on the �rst two draws?
From the product rule, this is

P (R1R2jB) = P (R1jB) P (R2jR1B) :

In the last factor, the robot must take into account that one red ball has been removed at the �rst
draw, so there remain (N � 1) balls of which (M � 1) are red. Therefore

P (R1R2jB) =
M

N

M � 1

N � 1
: (3{10)

Continuing in this way, the probability of red on the �rst r consecutive draws is

P (R1 � � � RrjB) =
M(M � 1) � � �(M � r + 1)

N(N � 1) � � �(N � r + 1)

=
M !(N � r)!

(M � r)!N !
; r �M

(3{11)
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The restriction r � M is not necessary if we understand that we de�ne factorials by the gamma
function relation n! = �(n+ 1), for then the factorial of a negative integer is in�nite, and (3{11) is
zero automatically when r > M .

The probability of white on the �rst w draws is similar but for the interchange of M and
(N �M):

P (W1 ::: WwjB) =
(N �M)!

(N �M � w)!

(N � w)!

N !
(3{12)

Then, the probability of white on draws (r+ 1; r+ 2; : : : ; r+w) given that we got red on the �rst
r draws, is given by (3{12) taking into account that N and M have been reduced to (N � r) and
(M � r):

P (Wr+1 : : :Wr+wjR1 : : :RrB) =
(N �M)! (N � r� w)!

(N �M � w)! (N � r)!
(3{13)

and so, by the product rule, the probability of obtaining r red followed by w = n � r white in n

draws is from (3{11), (3{13),

P (R1 � � �Rr Wr+1 : : :WnjB) =
M ! (N �M)! (N � n)!

(M � r)! (N �M � w)! N !
(3{14)

a term (N � r)! having cancelled out.

Although this result was derived for a particular order of drawing red and white balls, the
probability of drawing exactly r red balls in any speci�ed order in n draws is the same. To see this,
write out the expression (3{14) more fully, in the manner

M !

(M � r)!
= M(M � 1) � � � (M � r + 1)

and similarly for the other ratios of factorials in (3{14). The right-hand side becomes

M(M � 1) � � �(M � r + 1) (N �M)(N �M � 1) � � �(N �M � w + 1)

N(N � 1) � � �(N � n + 1)
: (3{15)

Now suppose that r red and (n � r) = w white are drawn, in any other order. The probability of
this is the product of n factors; every time red is drawn there is a factor (number of red balls in
urn)/(total number of balls), and similarly for drawing a white one. The number of balls in the
urn decreases by one at each draw; therefore for the k0th draw a factor (N � k + 1) appears in the
denominator, whatever the colors of the previous draws.

Just before the k'th red ball is drawn, whether this occurs at the k0th draw or any later one,
there are (M�k+1) red balls in the urn; so drawing the k0th one places a factor (M�k+1) in the
numerator. Just before the k0th white ball is drawn, there are (N �M � k + 1) white balls in the
urn, and so drawing the k0th white one places a factor (N�M �k+1) in the numerator, regardless
of whether this occurs at the k0th draw or any later one. Therefore, by the time all n balls have
been drawn, of which r were red, we have accumulated exactly the same factors in numerator and
denominator as in (3{15); di�erent orders of drawing them only permute the order of the factors
in the numerator. The probability of drawing exactly r balls in any speci�ed order in n draws, is
therefore given by (3{14).

Note carefully that in this result the product rule was expanded in a particular way that showed
us how to organize the calculation into a product of factors, each of which is a probability at one



304 3: Sampling Without Replacement. 304

speci�ed draw, given the results of all the previous draws. But the product rule could have been
expanded in many other ways, which would give factors conditional on other information than the
previous draws; the fact that all these calculations must lead to the same �nal result is a nontrivial
consistency property, which the derivations of Chapter 2 sought to ensure.

Next, we ask: what is the robot's probability for drawing exactly r red balls in n draws,
regardless of order? Di�erent orders of appearance of red and white balls are mutually exclusive
possibilities, so we must sum over all of them; but since each term is equal to (3{14), we merely
multiply it by the binomial coe�cient �

n

r

�
=

n!

r! (n� r)!
(3{16)

which represents the number of possible orders of drawing r red balls in n draws or as we shall call
it, the multiplicity of the event r. For example, to get 3 red in 3 draws can happen in only

�
3

3

�
= 1

way, namely R1R2R3; the event r = 3 has a multiplicity of 1. But to get 2 red in 3 draws can
happen in

�
3

2

�
= 3

ways, namely R1R2W3; R1W2R3; W1R2R3, so the event r = 2 has a multiplicity of 3.

Exercise 3.1. Why isn't the multiplicity factor (3{16) just n!? After all, we started this
discussion by stipulating that the balls, in addition to having colors, also carry labels (1 � � �N),
so that di�erent permutations of the red balls among themselves, which give the r! in the
denominator of (3{16), are distinguishable arrangements. Hint: in (3{14) we are not specifying
which red balls and which white ones are to be drawn.

Then taking the product of (3{14) and (3{16), the many factorials can be reorganized into three
binomial coe�cients. De�ning A � \Exactly r red balls in n draws, in any order" and the function

h(rjN;M; n) � P (AjB) (3{17)

we have

h(rjN;M; n) =

�
M

r

� �
N �M

n� r

�
�
N

n

� (3{18)

which we shall usually abbreviate to h(r). By the convention x! = �(x+1) it vanishes automatically
when r > M , or r > n, or (n� r) > (N �M), as it should.

We are here doing a little notational acrobatics for reasons explained in Appendix B. The
point is that in our formal probability symbols P (AjB) with the capital P , the arguments A;B
always stand for propositions, which can be quite complicated verbal statements. If we wish to use
ordinary numbers for arguments, then for consistency we should de�ne new functional symbols such
as h(rjN;M; n). To try to use a notation like P (rjN;M; n), thereby losing sight of the qualitative
stipulations contained in A and B, has led to serious errors from misinterpretation of the equations
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(such as the marginalization paradox discussed later). However, as already indicated in Chapter 2,
we follow the custom of most contemporary works by using probability symbols of the form p(AjB),
or p(rjn) with small p, in which we permit the arguments to be either propositions or algebraic
variables; in this case, the meaning must be judged from the context.

The fundamental result (3{18) is called the hypergeometric distribution because it is related to
the coe�cients in the power series representation of the Gauss hypergeometric function

F (a; b; c; t) =
1X
r=0

�(a+ r)�(b+ r)�(c)

�(a)�(b)�(c+ r)

tr

r!
: (3{19)

If either a or b is a negative integer, the series terminates and this is a polynomial. It is easily
veri�ed that the generating function

G(t) �
nX

r=0

h(rjN;M; n) tr (3{20)

is equal to

G(t) =
F (�M;�n; c; t)

F (�M;�n; c; 1)
(3{21)

with c = N �M � n + 1. The evident relation G(1) = 1 is from (3{20) just the statement that
the hypergeometric distribution is correctly normalized. In consequence of (3{21), G(t) satis�es
the second{order hypergeometric di�erential equation and has many other properties useful in
calculations. Further details about generating functions are in Appendix D.

Although the hypergeometric distribution h(r) appears complicated, it has some surprisingly
simple properties. The most probable value of r is found to within one unit by setting h(r0) =
h(r0 � 1) and solving for r0. We �nd

r0 =
(n+ 1)(M + 1)

N + 2
: (3{22)

If r0 is an integer, then r0 and r0 � 1 are jointly the most probable values. If r0 is not an integer,
then there is a unique most probable value

r̂ = INT (r0) (3{23)

that is, the next integer below r0. Thus the most probable fraction f = r=n of red balls in the
sample drawn is nearly equal to the fraction F = M=N originally in the urn, as one would expect
intuitively. This is our �rst crude example of a physical prediction: a relation between a quantity
F speci�ed in our information, and a quantity f measurable in a physical experiment, derived from
the theory.

The width of the distribution h(r) gives an indication of the accuracy with which the robot can
predict r. Many such questions are answered by calculating the cumulative probability distribution,
which is the probability of �nding R or fewer red balls. If R is an integer, that is

H(R) �
RX
r=0

h(r) ; (3{24)

but for later formal reasons we de�ne H(x) to be a staircase function for all real x; thus H(x) �
H(R), where R = INT(x) is the greatest integer � x.

The median of a probability distribution such as h(r) is de�ned to be a number m such that
equal probabilities are assigned to the propositions (r < m) and (r > m). Strictly speaking,
according to this de�nition a discrete distribution has in general no median. If there is an integer



306 3: Sampling Without Replacement. 306

R for which H(R� 1) = 1�H(R) and H(R) > H(R� 1), then R is the unique median. If there is
an integer R for which H(R) = 1=2, then any r in (R � r < R0) is a median, where R0 is the next
higher jump point of H(x); otherwise there is none.

But for most purposes we may take a more relaxed attitude and approximate the strict de�ni-
tion. If n is reasonably large, then it makes reasonably good sense to call that value of R for which
H(R) is closest to 1=2, the \median". In the same relaxed spirit, the values of R for which H(R)
is closest to 1=4, 3=4 may be called the \lower quartile" and \upper quartile", and if n >> 10 we
may call the value of R for which H(R) is closest to k=10 the \k'th decile", and so on. As n! 1

these loose de�nitions come into conformity with the strict one.

Usually, the �ne details of H(R) are unimportant and for our purposes it is su�cient to know
the median and the quartiles. Then the (median) � (interquartile distance) will provide a good
enough idea of the robot's prediction and its probable accuracy. That is, on the information given
to the robot, the true value of r is about as likely to lie in this interval as outside it. Likewise, the
robot assigns a probability of (5=6)� (1=6) = 2=3 (in other words, odds of 2 : 1) that r lies between
the �rst and �fth hexile, odds of 8 : 2 = 4 : 1 that it is bracketed by the �rst and ninth decile; and
so on.

Although one can develop rather messy approximate formulas for these distributions which
were much used in the past, it is easier today to calculate the exact distribution by computer.
In Appendix I we give a short program HYPERGEO.BAS which will run on almost any micro-
computer, and which prints out h(r) and H(R) for N up to 130. Beyond that, the binomial
approximation given below will be accurate enough.

For example, Tables 3.1 and 3.2 give the HYPERGEO printouts forN = 100; M = 50; n = 10
and N = 100; M = 10; n = 50. In the latter case, it is not possible to draw more than 10 red balls,
so the entries for r > 10 are all h(r) = 0,H(r) = 1 and are not tabulated. One is struck immediately
by the fact that the entries for positive h(r) are identical; the hypergeometric distribution has the
symmetry property

h(rjN;M; n) = h(rjN; n;M) (3{25)

under interchange ofM and n. Whether we draw 10 balls from an urn containing 50 red ones, or 50
from an urn containing 10 red ones, the probability of �nding r red ones in the sample drawn is the
same. This is readily veri�ed by closer inspection of (3{18), and it is evident from the symmetry
in a; b of the hypergeometric function (3{19).

r h(r) H(r)
0 0.000593 0.000593
1 0.007237 0.007830
2 0.037993 0.045824
3 0.113096 0.158920
4 0.211413 0.370333
5 0.259334 0.629667
6 0.211413 0.841080
7 0.113096 0.954177
8 0.037993 0.992170
9 0.007237 0.999407
10 0.000593 1.000000

r h(r) H(r)
0 0.000593 0.000593
1 0.007237 0.007830
2 0.037993 0.045824
3 0.113096 0.158920
4 0.211413 0.370333
5 0.259334 0.629667
6 0.211413 0.841080
7 0.113096 0.954177
8 0.037993 0.992170
9 0.007237 0.999407
10 0.000593 1.000000

Table 3.1: N;M; n = 100; 10; 50. Table 3.2: N;M; n = 100; 50; 10

Another symmetry evident from the printout is the symmetry of the distribution about its
peak: h(rj100; 50; 10) = h(10� rj100; 50; 10). However, this is not so in general; changing N to 99
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results in a slightly unsymmetrical peak as we see from Table 3.3. The symmetric peak in Table 3.1
arises as follows: if we interchange M and (N �M) and at the same time interchange r and (n�r)
we have in e�ect only interchanged the words \red" and \white", so the distribution is unchanged:

h(n� rjN;N �M;n) = h(rjN;M; n) (3{26)

But when M = N=2, this reduces to the symmetry

h(n� rjN;M; n) = h(rjN;M; n)

observed in Table 3.1. By (3{25) the peak must be symmetric also when n = N=2.

r h(r) H(r)
0 0.000527 0.000527
1 0.006594 0.007121
2 0.035460 0.042581
3 0.108070 0.150651
4 0.206715 0.357367
5 0.259334 0.616700
6 0.216111 0.832812
7 0.118123 0.950934
8 0.040526 0.991461
9 0.007880 0.999341
10 0.000659 1.000000

Table 3.3: Hypergeometric Distribution, N;M; n = 99; 50; 10.

The hypergeometric distribution has two more symmetries not at all obvious intuitively or
even visible in (3{18). Let us ask the robot for its probability P (R2jB) of red on the second draw.
This is not the same calculation as (3{8), because the robot knows that, just prior to the second
draw, there are only (N � 1) balls in the urn, not N . But it does not know what color of ball was
removed on the �rst draw, so it does not know whether the number of red balls now in the urn is
M or (M � 1). Then the basis for the Bernoulli urn result (3{5) is lost, and it might appear that
the problem is indeterminate.

Yet it is quite determinate after all; the following is our �rst example of one of the useful
techniques in probability calculations, which derives from the resolution of a proposition into dis-
junctions of simpler ones, as discussed in Chapters 1 and 2. The robot does know that either R1

or W1 is true, therefore a relation of Boolean algebra is

R2 = (R1 +W1)R2 = R1R2 +W1R2 : (3{27)

So we apply the sum rule and the product rule to get

P (R2jB) = P (R1R2jB) + P (W1R2jB)

= P (R2jR1B)P (R1jB) + P (R2jW1B)P (W1jB) :
(3{28)

But

P (R2jR1B) =
M � 1

N � 1
; P (R2jW1B) =

M

N � 1
(3{29)

and so
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P (R2jB) =
M � 1

N � 1

M

N
+

M

N � 1

N �M

N
=
M

N
: (3{30)

The complications cancel out, and we have the same probability of red on the �rst and second
draws. Let us see whether this continues. For the third draw we have

R3 = (R1 +W1)(R2 +W2)R3 = R1R2R3 +R1W2R3 +W1R2R3 +W1W2R3 (3{31)

and so

P (R3jB) =
M

N

M � 1

N � 1

M � 2

N � 2
+
M

N

N �M

N � 1

M � 1

N � 2

+
N �M

N

M

N � 1

M � 1

N � 2
+
N �M

N

N �M � 1

N � 1

M

N � 2

=
M

N
:

(3{32)

Again all the complications cancel out. The robot's probability of red at any draw, if it does not

know the result of any other draw, is always the same as the Bernoulli urn result (3{5). This is the
�rst non{obvious symmetry. We shall not prove this in generality here, because it is contained as
a special case of a more general result, Eq. (3{105) below.

The method of calculation illustrated by (3{28) and (3{31) is: resolve the quantity whose
probability is wanted into mutually exclusive sub-propositions, then apply the sum rule and the
product rule. If the sub-propositions are well chosen (i.e., if they have some simple meaning in
the context of the problem), their probabilities are often calculable. If they are not well chosen
(as in the example of the penguins in the Comments at the end of Chapter 2), then of course this
procedure cannot help us.

Logic Versus Propensity.

This suggests a new question. In �nding the probability of red at the k'th draw, knowledge of
what color was found at some earlier draw is clearly relevant because an earlier draw a�ects the
number Mk of red balls in the urn for the k'th draw. Would knowledge of the color for a later
draw be relevant? At �rst glance it seems that it could not be, because the result of a later draw
cannot inuence the value of Mk. For example, a well{known exposition of statistical mechanics
(Penrose, 1979) takes it as a fundamental axiom that probabilities referring to the present time can
depend only on what happened earlier, not on what happens later. The author considers this to
be a necessary physical condition of \causality".

Therefore we stress again, as we did in Chapter 1, that inference is concerned with logical

connections, which may or may not correspond to causal physical inuences. To show why knowl-
edge of later events is relevant to the probabilities of earlier ones, consider an urn which is known
(background information B) to contain only one red and one white ball: N = 2; M = 1. Given
only this information, the probability of red on the �rst draw is P (R1jB) = 1=2. But then if the
robot learns that red occurs on the second draw, it becomes certain that it did not occur on the
�rst:

P (R1jR2B) = 0 : (3{33)

More generally, the product rule gives us
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P (RjRkjB) = P (Rj jRkB)P (RkjB) = P (RkjRjB)P (Rj jB) :

But we have just seen that P (Rj jB) = P (RkjB) =M=N for all j; k, so

P (Rj jRkB) = P (RkjRjB) ; all j; k : (3{34)

Probability theory tells us that the results of later draws have precisely the same relevance as do
the results of earlier ones! Even though performing the later draw does not physically a�ect the
number Mk of red balls in the urn at the k'th draw, information about the result of a later draw
has the same e�ect on our state of knowledge about what could have been taken on the k'th draw,
as does information about an earlier one. This is our second non{obvious symmetry.

This result will be quite disconcerting to some schools of thought about the \meaning of
probability". Although it is generally recognized that logical implication is not the same as physical
causation, nevertheless there is a strong inclination to cling to the idea anyway, by trying to interpret
a probability P (AjB) as expressing some kind of partial causal inuence of B on A. This is evident
not only in the aforementioned work of Penrose, but more strikingly in the \propensity" theory of
probability expounded by the philosopher Karl Popper.y

It appears to us that such a relation as (3{34) would be quite inexplicable from a propensity
viewpoint, although the simple example (3{33) makes its logical necessity obvious. In any event,
the theory of logical inference that we are developing here di�ers fundamentally, in outlook and in
results, from the theory of physical causation envisaged by Penrose and Popper. It is evident that
logical inference can be applied in many problems where assumptions of physical causation would
not make sense.

This does not mean that we are forbidden to introduce the notion of \propensity" or physical
causation; the point is rather that logical inference is applicable and useful whether or not a
propensity exists. If such a notion (i.e., that some such propensity exists) is formulated as a well{
de�ned hypothesis, then our form of probability theory can analyze its implications. We shall do
this in \Correction for Correlations" below. Also, we can test that hypothesis against alternatives
in the light of the evidence, just as we can test any well{de�ned hypothesis. Indeed, one of the most
common and important applications of probability theory is to decide whether there is evidence
for a causal inuence: is a new medicine more e�ective, or a new engineering design more reliable?
Our study of hypothesis testing starts in Chapter 4.

y In his presentation at the Ninth Colston Symposium, Popper (1957) describes his propensity interpre-

tation as `purely objective' but avoids the expression `physical inuence'. Instead he would say that the

probability of a particular face in tossing a die is not a physical property of the die [as Cram�er (1946) in-

sisted] but rather is an objective property of the whole experimental arrangement, the die plus the method

of tossing. Of course, that the result of the experiment depends on the entire arrangement and procedure

is only a truism, and presumably no scientist from Galileo on has ever doubted it. However, unless Popper

really meant `physical inuence', his interpretation would seem to be supernatural rather than objective.

In a later article (Popper, 1959) he de�nes the propensity interpretation more completely; now a propensity

is held to be "objective" and "physically real" even when applied to the individual trial. In the follow-

ing we see by mathematical demonstration some of the logical di�culties that result from a propensity

interpretation. Popper complains that in quantum theory one oscillates between \� � � an objective purely

statistical interpretation and a subjective interpretation in terms of our incomplete knowledge" and thinks

that the latter is reprehensible and the propensity interpretation avoids any need for it. In Chapter 9 and

the Comments at the end of Chapter 17 we answer this in detail at the conceptual level; In Chapter 10 we

consider the detailed physics of coin tossing and see just how the method of tossing a�ects the results by

direct physical inuence.
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In all the sciences, logical inference is more generally applicable. We agree that physical
inuences can propagate only forward in time; but logical inferences propagate equally well in either
direction. An archaeologist uncovers an artifact that changes his knowledge of events thousands
of years ago; were it otherwise, archaeology, geology, and paleontology would be impossible. The
reasoning of Sherlock Holmes is also directed to inferring, from presently existing evidence, what
events must have transpired in the past. The sounds reaching your ears from a marching band
600 meters distant change your state of knowledge about what the band was playing two seconds
earlier.

As this suggests, and as we shall verify later, a fully adequate theory of nonequilibrium phe-
nomena such as sound propagation, also requires that backward logical inferences be recognized
and used, although they do not express physical causes. The point is that the best inferences we
can make about any phenomenon { whether in physics, biology, economics, or any other �eld {
must take into account all the relevant information we have, regardless of whether that information
refers to times earlier or later than the phenomenon itself; this ought to be considered a platitude,
not a paradox. At the end of this Chapter [Exercise (3.6)] the reader will have an opportunity to
demonstrate this directly, by calculating a backward inference that takes into account a forward
causal inuence.

More generally, consider a probability distribution p(x1 : : : xnjB), where xi denotes the result
of the i 'th trial, and could take on, not just two values (red or white) but, say, the values xi =
(1; 2; : : : ; k) labelling k di�erent colors. If the probability is invariant under any permutation of the
xi, then it depends only on the sample numbers (n1 : : :nk) denoting how many times the result
xi = 1 occurs, how many times xi = 2 occurs, etc. Such a distribution is called exchangeable; as
we shall �nd later, exchangeable distributions have many interesting mathematical properties and
important applications.

Returning to our Urn problem, it is clear already from the fact that the hypergeometric dis-
tribution is exchangeable, that every draw must have just the same relevance to every other draw
regardless of their time order and regardless of whether they are near or far apart in the sequence.
But this is not limited to the hypergeometric distribution; it is true of any exchangeable distribu-
tion (i.e., whenever the probability of a sequence of events is independent of their order). So with
a little more thought these symmetries, so inexplicable from the standpoint of physical causation,
become obvious after all as propositions of logic.

Let us calculate this e�ect quantitatively. Supposing j < k, the proposition RjRk (red at both
draws j and k) is in Boolean algebra the same as

RjRk = (R1 +W1) � � �(Rj�1 +Wj�1)Rj (Rj+1 +Wj+1) � � �(Rk�1 +Wk�1)Rk (3{35)

which we could expand in the manner of (3{31) into a logical sum of

2j�1 � 2k�j�1 = 2k�2

propositions, each specifying a full sequence, such as

W1R2W3 � � �Rj � � �Rk (3{36)

of k results. The probability P (RjRkjB) is the sum of all their probabilities. But we know that,
given B, the probability of any one sequence is independent of the order in which red and white
appear. Therefore we can permute each sequence, moving Rj to the �rst position, and Rk to the
second. That is, replace the sequence (W1 � � �Rj � � �) by (R1 � � �Wj � � �), etc. Recombining them, we
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have (R1R2) followed by every possible result for draws (3; 4 : : :k). In other words, the probability
of RjRk is the same as that of

R1R2(R3 +W3) � � �(Rk +Wk) = R1R2 (3{37)

and we have

P (RjRkjB) = P (R1R2jB) =
M(M � 1)

N(N � 1)
(3{38)

and likewise

P (WjRkjB) = P (W1R2jB) =
(N �M)M

N(N � 1)
: (3{39)

Therefore by the product rule

P (RkjRjB) =
P (RjRkjB)

P (Rj jB)
=
M � 1

N � 1
(3{40)

and

P (RkjWjB) =
P (WjRkjB)

P (Wj jB)
=

M

N � 1
(3{41)

for all j < k. By (3{34), the results (3{40), (3{41) are true for all j 6= k.

Since as noted this conclusion appears astonishing to many people, we shall belabor the point
by explaining it still another time in di�erent words. The robot knows that the urn contained
originally M red balls and (N �M) white ones. Then learning that an earlier draw gave red, it
knows that one less red ball is available for the later draws. The problem becomes the same as if
we had started with an urn of (N � 1) balls, of which (M � 1) are red; (3{40) corresponds just to
the solution (3{32) adapted to this di�erent problem.

But why is knowing the result of a later draw equally cogent? Because if the robot knows
that red will be drawn at any later time, then in e�ect one of the red balls in the urn must be \set
aside" to make this possible. The number of red balls which could have been taken in earlier draws
is reduced by one, as a result of having this information. The above example (3{33) is an extreme
special case of this, where the conclusion is particularly obvious.

Reasoning from Less Precise Information

Now let us try to apply this understanding to a more complicated problem. Suppose the robot
learns that red will be found at least once in later draws, but not at which draw or draws this will
occur. That is, the new information is, as a proposition of Boolean algebra,

Rlater � Rk+1 + Rk+2 + � � �+ Rn : (3{42)

This information reduces the number of red available for the k'th draw by at least one, but it is
not obvious whether Rlater has exactly the same implications as does Rn. To investigate this we
appeal again to the symmetry of the product rule:

P (RkRlaterjB) = P (RkjRlaterB) P (RlaterjB) = P (RlaterjRkB) P (RkjB) (3{43)

which gives us

P (RkjRlaterB) = P (RkjB)
P (RlaterjRkB)

P (RlaterjB)
(3{44)
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and all quantities on the right-hand side are easily calculated.

Seeing (3{42) one might be tempted to reason as follows:

P (RlaterjB) =
nX

j=k+1

P (Rj jB)

but this is not correct because, unless M = 1, the events Rj are not mutually exclusive, and as
we see from (2{61), many more terms would be needed. This method of calculation would be very
tedious.

To organize the calculation better, note that the denial of Rlater is the statement that white
occurs at all the later draws:

Rlater =Wk+1 Wk+2 � � �Wn : (3{45)

So P (Rlater jB) is the probability of white at all the later draws, regardless of what happens at the
earlier ones (i.e., when the robot does not know what happens at the earlier ones). By exchange-
ability this is the same as the probability of white at the �rst (n � k) draws, regardless of what
happens at the later ones; from (3{12),

P (Rlater jB) =
(N �M)! (N � n+ k)!

N ! (N �M � n + k)!
=

�
N �M

n� k

��
N

n� k

�
�1

: (3{46)

Likewise P (RlaterjRkB) is the same result for the case of (N � 1) balls, (M � 1) of which are red:

P (Rlater jRkB) =
(N �M)!

(N � 1)!

(N � n + k � 1)!

(N �M � n+ k)!
=

�
N �M

n� k

��
N � 1

n � k

�
�1

(3{47)

Now (3{44) becomes

P (RkjRlaterB) =
M

N � n + k
�

�
N�1

n�k

�
�
�
N�M

n�k

�
�

N

n�k

�
�
�
N�M

n�k

� (3{48)

As a check, note that if n = k + 1, this reduces to (M � 1)=(N � 1), as it should.

At the moment, however, our interest in (3{48) is not so much in the numerical values, but in
understanding the logic of the result. So let us specialize it to the simplest case that is not entirely
trivial. Suppose we draw n = 3 times from an urn containing N = 4 balls, M = 2 of which are
white, and ask how knowledge that red occurs at least once on the second and third draws, a�ects
the probability of red at the �rst draw. This is given by (3{48) with N = 4; M = 2; n = 3; k = 1:

P (R1j(R2 +R3)B) =
6� 2

12� 2
=

2

5
=

1

2

1� 1

3

1� 1

6

: (3{49)

The last form corresponding to (3{44). Compare this to the previously calculated probabilities:

P (R1jB) =
1

2
; P (R1jR2B) = P (R2jR1B) =

1

3
:

What seems surprising is that

P (R1jRlaterB) > P (R1jR2B) : (3{50)



313 Chap. 3: ELEMENTARY SAMPLING THEORY 313

Most people guess at �rst that the inequality should go the other way; i.e., knowing that red
occurs at least once on the later draws ought to decrease the chances of red at the �rst draw more
than does the information R2. But in this case the numbers are so small that we can check the
calculation (3{44) directly. To �nd P (RlaterjB) by the extended sum rule (2{61) now requires only
one extra term:

P (Rlater jB) = P (R2jB) + P (R3jB)� P (R2R3jB)

=
1

2
+

1

2
�

1

2
�
1

3
=

5

6
:

(3{51)

We could equally well resolve Rlater into mutually exclusive propositions and calculate

P (RlaterjB) = P (R2W3jB) + P (W2R3jB) + P (R2R3jB)

=
1

2
�
2

3
+

1

2
�
2

3
+

1

2
�
1

3
=

5

6
:

(3{52)

The denominator (1�1=6) in (3{49) has now been calculated in three di�erent ways, with the same
result. If the three results were not the same, we would have found an inconsistency in our rules,
of the kind we sought to prevent by Cox's functional equation arguments in Chapter 2. This is a
good example of what \consistency" means in practice, and it shows the trouble we would be in if
our rules did not have it.

Likewise, we can check the numerator of (3{44) by an independent calculation:

P (RlaterjR1B) = P (R2jR1B) + P (R3jR1B)� P (R2R3jR1B)

=
1

3
+

1

3
�

1

3
� 0 =

2

3

(3{53)

and the result (3{49) is con�rmed. So we have no choice but to accept the inequality (3{50) and try
to understand it intuitively. Let us reason as follows: The information R2 reduces the number of
red balls available for the �rst draw by one, and it reduces the number of balls in the urn available
for the �rst draw by one, giving P (R1jR2B) = (M � 1)=(N � 1) = 1

3
. The information Rlater

reduces the \e�ective number of red balls" available for the �rst draw by more than one, but it
reduces the number of balls in the urn available for the �rst draw by 2 (because it assures the
robot that there are two later draws in which two balls are removed). So let us try tentatively to
interpret the result (3{49) as

P (R1jRlaterB) =
(M)eff
N � 2

(3{54)

although we are not quite sure what this means. Given Rlater, it is certain that at least one red
ball is removed, and the probability that two are removed is by the product rule:

P (R2R3jRlaterB) =
P (R2R3RlaterjB)

P (RlaterjB)
=

P (R2R3jB)

P (Rlater jB)

=
1

2
� 1
3

5

6

=
1

5

(3{55)

because R2R3 implies Rlater; i.e., a relation of Boolean algebra is (R2R3Rlater = R2R3). Intuitively,
given Rlater there is probability 1/5 that two red balls are removed, so the e�ective number removed
is 1+(1=5) = 6=5. The `e�ective' number remaining for draw 1 is 4=5. Indeed, (3{54) then becomes
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P (R1jRlaterB) =
4=5

2
=

2

5
(3{56)

in agreement with our better motivated but less intuitive calculation (3{49).

Expectations.

Another way of looking at this result appeals more strongly to our intuition and generalizes far
beyond the present problem. We can hardly suppose that the reader is not already familiar with
the idea of expectation, but this is the �rst time it has appeared in the present work, so we pause
to de�ne it. If a variable quantity X can take on the particular values (x1; x2 � � �xn) in n mutually
exclusive and exhaustive situations and the robot assigns corresponding probabilities (p1; p2 � � �pn)
to them, then the quantity

hXi = E(X) =
nX
i=1

pixi (3{57)

is called the expectation (in the older literature, mathematical expectation or expectation value)
of X. It is a weighted average of the possible values, weighted according to their probabilities.
Statisticians and mathematicians generally use the notation E(X); but physicists, having already
pre{empted E to stand for energy and electric �eld, use the bracket notation hXi. We shall use
both notations here; they have the same meaning but sometimes one is easier to read than the
other.

Like most of the standard terms that arose out of the distant past, the term \expectation"
seems singularly inappropriate to us; for it is almost never a value that anyone \expects" to �nd.
Indeed, it is often known to be an impossible value. But we adhere to it because of centuries of
precedent.

Given Rlater, what is the expectation of the number of red balls in the urn for draw #1? There
are three mutually exclusive possibilities compatible with Rlater:

R2W3; W2R3; R2R3

for which M is (1; 1; 0) respectively, and for which the probabilities are as in (3{55), (3{56):

P (R2W3jRlaterB) =
P (R2W3jB)

P (RlaterjB)
=

(1=2) � (2=3)

(5=6)
=

2

5

P (W2R3jRlaterB) =
2

5
(3{58)

P (R2R3jRlaterB) =
1

5
So

hMi = 1 �
2

5
+ 1 �

2

5
+ 0 �

1

5
=

4

5
(3{59)

Thus what we called intuitively the \e�ective" value ofM in (3{54) is really the expectation ofM .

We can now state (3{54) in a more cogent way: when the fraction F = M=N of red balls is
known, then the Bernoulli urn rule applies and P (R1jB) = F . When F is unknown, the probability
of red is the expectation of F :

P (R1jB) = hF i = E(F ) : (3{60)
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IfM and N are both unknown, the expectation is over the joint probability distribution forM and
N .

That a probability is numerically equal to the expectation of a fraction will prove to be a
general rule that holds as well in thousands of far more complicated situations, providing one of
the most useful and common rules for physical prediction. We leave it as an exercise for the reader
to show that the more general result (3{48) can also be calculated in the way suggested by (3{60).

Other Forms and Extensions.

The hypergeometric distribution (3{18) can be written in various ways. The nine factorials can be
organized into binomial coe�cients also as follows:

h(r;N;M; n) =

�
n

r

� �
N � n

M � r

�
�
N

M

� (3{61)

But the symmetry under exchange of M and n is still not evident; to see it one must write out
(3{18) or (3{61) in full, displaying all the individual factorials.

We may also rewrite (3{18), as an aid to memory, in a more symmetric form: the probability
of drawing exactly r red balls and w white ones in n = r+ w draws from an urn containing R red
and W white, is

h(r) =

�
R

r

��
W

w

�
�
R+W

r + w

� (3{62)

and in this form it is easily generalized. Suppose that instead of only two colors, there are k

di�erent colors of balls, in the urn, N1 of color 1, N2 of color 2,: : :, Nk of color k. The probability
of drawing r1 balls of color 1, r2 of color 2,: : :, rk of color k in n = �ri draws is, as the reader may
verify, the generalized hypergeometric distribution:

h(r1 � � �rkjN1 � � �Nk) =

�
N1

r1

�
� � �

�
Nk

rk

�
�
�Ni

�ri

� (3{63)

Probability as a Mathematical Tool.

From the result (3{63) one may obtain a number of identities obeyed by the binomial coe�cients.
For example, we may decide not to distinguish between colors 1 and 2; i.e., a ball of either color
is declared to have color \a". Then from (3{63) we must have on the one hand,

h(ra; r3 � � �rkjNaN3 � � �Nk) =

�
Na

ra

��
N3

r3

�
� � �

�
Nk

rk

�
�
�Ni

�ri

� (3{64)

with

Na = N1 +N2 ; ra = r1 + r2 : (3{65)
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But the event ra can occur for any values of r1; r2 satisfying (3{65), and so we must have also, on
the other hand,

h(ra; r3 � � �rkjNaN3 � � �Nk) =
raX

r1=0

h(r1; ra � r1; r3 � � �rkjN1 � � �Nk) : (3{66)

Then, comparing (3{64) and (3{66) we have the identity

�
Na

ra

�
=

raX
r1=0

�
N1

r1

��
N2

ra � r1

�
: (3{67)

Continuing in this way, we can derive a multitude of more complicated identities obeyed by the
binomial coe�cients. For example,

�
N1 +N2 +N3

ra

�
=

raX
r1=0

r1X
r2=0

�
N1

r1

� �
N2

r2

� �
N3

ra � r1 � r2

�
: (3{68)

In many cases, probabilistic reasoning is a powerful tool for deriving purely mathematical results;
more examples of this are given by Feller (1951, Chapters 2, 3) and in later Chapters of the present
work.

The Binomial Distribution.

Although somewhat complicated mathematically, the hypergeometric distribution arises from a
problem that is very clear and simple conceptually; there are only a �nite number of possibilities
and all the above results are exact for the problems as stated. As an introduction to a mathe-
matically simpler, but conceptually far more di�cult problem, we examine a limiting form of the
hypergeometric distribution.

The complication of the hypergeometric distribution arises because it is taking into account
the changing contents of the urn; knowing the result of any draw changes the probability of red
for any other draw. But if the number N of balls in the urn is very large compared to the number
drawn (N >> n), then this probability changes very little, and in the limit N !1 we should have
a simpler result, free of such dependences. To verify this, we write the hypergeometric distribution
(3{18) as

h(r;N;M; n) =

�
1

Nr

�
M

r

�� �
1

Nn�r

�
N �M

n� r

��
�

1

Nn

�
N

n

�� : (3{69)

The �rst factor is
1

Nr

�
M

r

�
=

1

r!

M

N

�
M

N
�

1

N

� �
M

N
�

2

N

�
� � �

�
M

N
�
r � 1

N

�
(3{70)

and in the limit N !1; M ! 1; M=N ! f we have

1

Nr

�
M

r

�
!

fr

r!
(3{71)

Likewise
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1

Nn�r

�
M � 1

n� r

�
!

(1� f)n�r

(n� r)!
(3{72)

1

Nn

�
N

n

�
!

1

n!
: (3{73)

In principle we should, of course, take the limit of the product in (3{69), not the product of the
limits. But in (3{69) we have de�ned the factors so that each has its own independent limit, so the
result is the same; the hypergeometric distribution goes into

h(r;N;M; n)! b(rjn; f)�

�
n

r

�
fr(1� f)n�r (3{74)

called the binomial distribution, because evaluation of the generating function (3{20) now reduces
to

G(t) �
nX

r=0

b(rjn; f) tr = (1� f + ft)n ; (3{75)

an example of Newton's binomial theorem. The program BINOMIAL.BAS in Appendix I calculates
b(rjn; f) for most values of n; f likely to be of interest in applications.

Fig. 3.1 compares three hypergeometric distributions calculated by HYPERGEO.BAS with
N = 15; 30; 100 andM=N = 0:4; n = 10 to the binomial distribution with n = 10; f = 0:4 calculated
by BINOMIAL.BAS. All have their peak at r = 4, and all distributions have the same �rst moment
hri = E(r) = 4, but the binomial distribution is broader.

The N = 15 hypergeometric distribution is zero for r = 0 and r > 6, since on drawing 10
balls from an urn containing only 6 red and 9 white, it is not possible to get fewer than one or
more than 6 red balls. When N > 100 the hypergeometric distribution agrees so closely with the
binomial that for most purposes it would not matter which one we used. Analytical properties of
the binomial distribution are collected in Appendix E.

We can carry out a similar limiting process on the generalized hypergeometric distribution
(3{63). It is left as an exercise to show that in the limit where all Ni !1 in such a way that the
fractions

fi �
Ni

�Ni

(3{76)

tend to constants, (3{63) goes into the multinomial distribution

m(r1 � � �rkjf1 � � �fk) =
r!

r1! � � �rk!
fr11 � � �frkk ; (3{77)

where r � �ri. And, as in (3{75) we can de�ne a generating function of (k � 1) variables, from
which we can prove that (3{77) is correctly normalized, and derive many other useful results.
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Exercise 3.2. Probability of a Full Set. Suppose an urn contains N =
P

Ni balls, N1 of
color 1, N2 of color 2, � � � Nk of color k. We draw m balls without replacement; what is the
probability that we have at least one of each color? Supposing k = 5, all Ni = 10, how many do
we need to draw in order to have at least a 90% probability of getting a full set?

Exercise 3.3. Reasoning Backwards. Suppose that in the previous exercise k is initially
unknown, but we know that the urn contains exactly 50 balls. Drawing out 20 of them, we �nd
3 di�erent colors; now what do we know about k? We know from deductive reasoning (i.e.,
with certainty) that 3 � k � 33; but can you set narrower limits k1 � k � k2 within which
it is highly likely to be? [Hint: this question goes beyond the sampling theory of this Chapter

because, like most real scienti�c problems, the answer depends to some degree on our common

sense judgments; nevertheless our rules of probability theory are quite capable of dealing with

it, and persons with reasonable common sense cannot di�er appreciably in their conclusions].

Exercise 3.4. Matching. TheM urns are now numbered 1 toM , andM balls, also numbered
1 to M , are thrown into them, one in each urn. If the numbers of a ball and its urn are the
same, we have a match. Show that the probability of at least one match is

P =
MX
k=1

(�1)k+1=k!

AsM !1, this converges to 1�1=e = 0:632. The result is surprising to many, because however
large M is, there remains an appreciable probability of no match at all.

Exercise 3.5. Occupancy. N balls are tossed into M urns; there are evidently MN ways this
can be done. If the robot considers them all equally likely, what is its probability that each urn
receives at least one ball?

Sampling With Replacement

Up to now, we have considered only the case where we sample without replacement; and that is
evidently appropriate for many real situations. For example, in a quality control application, what
we have called simply \drawing a ball" might consist really of taking a manufactured item such as
an electric light bulb from a carton of them and testing it to destruction. In a chemistry experiment
it might consist of weighing out a sample of an unknown protein, then dissolving it in hot sulfuric
acid to measure its nitrogen content. In either case, there can be no thought of \drawing that same
ball" again.

But suppose now that, being less destructive, we sample balls from the urn and, after recording
the \color" (i.e., the relevant property) of each, we replace it in the urn before drawing the next ball.
This case, of sampling with replacement, is enormously more complicated conceptually, but with
some assumptions usually made, ends up being simpler mathematically, than sampling without
replacement. For, let us go back to the probability of drawing two red balls in succession. Denoting
by B0 the same background information as before except for the added stipulation that the balls
are to be replaced, we still have an equation like (3{9):

P (R1R2jB
0) = P (R1jB

0)P (R2jR1B
0) (3{78)

and the �rst factor is still, evidently, (M=N); but what is the second one?

Answering this would be, in general, a very di�cult problem requiring much additional analysis
if the background information B0 includes some simple but highly relevant common{sense informa-
tion that we all have. What happens to that red ball that we put back in the urn? If we merely
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dropped it into the urn, and immediately drew another ball, then it was left lying on the top of
the other balls, (or in the top layer of balls); and so it is more likely to be drawn again than any
other speci�ed ball, whose location in the urn is unknown. But this upsets the whole basis of our
calculation, because the probability of drawing any particular (i'th) ball is no longer given by the
Bernoulli Urn Rule which led to (3{10).

Digression: A Sermon on Reality vs. Models

The di�culty we face here is that many things which were irrelevant from symmetry as long as
the robot's state of knowledge was invariant under any permutation of the balls, suddenly become
relevant, and by one of our desiderata of rationality, the robot must take into account all the
relevant information it has. But the probability of drawing any particular ball now depends on
such details as the exact size and shape of the urn, the size of the balls, the exact way in which
the �rst one was tossed back in, the elastic properties of balls and urn, the coe�cients of friction
between balls and between ball and urn, the exact way you reach in to draw the second ball, etc.
In a symmetric situation, all of these details are irrelevant.

But even if all these relevant data were at hand, we do not think that a team of the world's
best scientists and mathematicians, backed up by all the world's computing facilities, would be
able to solve the problem; or would even know how to get started on it. Still, it would not be quite
right to say that the problem is unsolvable in principle; only so complicated that it is not worth
anybody's time to think about it. So what do we do?

In probability theory there is a very clever trick for handling a problem that becomes too
di�cult. We just solve it anyway by:

(1) Making it still harder;

(2) Rede�ning what we mean by \solving" it, so that it becomes something we can do;

(3) Inventing a digni�ed and technical{sounding word to describe this procedure, which
has the psychological e�ect of concealing the real nature of what we have done, and
making it appear respectable.

In the case of sampling with replacement, we apply this strategy by

(1) Supposing that after tossing the ball in, we shake up the urn. However complicated
the problem was initially, it now becomes many orders of magnitude more compli-
cated, because the solution now depends on every detail of the precise way we shake
it, in addition to all the factors mentioned above;

(2) Asserting that the shaking has somehow made all these details irrelevant, so that the
problem reverts back to the simple one where the Bernoulli Urn Rule applies;

(3) Inventing the digni�ed{sounding word randomization to describe what we have done.
This term is, evidently, a euphemism whose real meaning is: deliberately throwing

away relevant information when it becomes too complicated for us to handle.

We have described this procedure in laconic terms, because an antidote is needed for the impression
created by some writers on probability theory, who attach a kind of mystical signi�cance to it. For
some, declaring a problem to be \randomized" is an incantation with the same purpose and e�ect as
those uttered by an exorcist to drive out evil spirits; i.e., it cleanses their subsequent calculations
and renders them immune to criticism. We agnostics often envy the True Believer, who thus
acquires so easily that sense of security which is forever denied to us.

However, in defense of this procedure, we have to admit that it often leads to a useful approxi-
mation to the correct solution; i.e., the complicated details, while undeniably relevant in principle,
might nevertheless have little numerical e�ect on the answers to certain particularly simple ques-
tions, such as the probability of drawing r red balls in n trials when n is su�ciently small. But
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from the standpoint of principle, an element of vagueness necessarily enters at this point; for while
we may feel intuitively that this leads to a good approximation, we have no proof of this, much less
a reliable estimate of the accuracy of the approximation, which presumably improves with more
shaking.

The vagueness is evident particularly in the fact that di�erent people have widely divergent
views about how much shaking is required to justify step (2). Witness the minor furor surrounding
a Government{sponsored and nationally televised game of chance some years ago, when someone
objected that the procedure for drawing numbers from a �sh bowl to determine the order of call{up
of young men for Military Service was \unfair" because the bowl hadn't been shaken enough to
make the drawing \truly random," whatever that means. Yet if anyone had asked the objector:
\To whom is it unfair?" he could not have given any answer except, \To those whose numbers are
on top; I don't know who they are." But after any amount of further shaking, this will still be true!
So what does the shaking accomplish?

Shaking does not make the result \random", because that term is basically meaningless as an
attribute of the real world; it has no clear de�nition applicable in the real world. The belief that
\randomness" is some kind of real property existing in Nature is a form of the Mind Projection
Fallacy which says, in e�ect, \I don't know the detailed causes { therefore { Nature does not know
them." What shaking accomplishes is very di�erent. It does not a�ect Nature's workings in any
way; it only ensures that no human is able to exert any wilful inuence on the result. Therefore
nobody can be charged with \�xing" the outcome.

At this point, you may accuse us of nit{picking, because you know that after all this sermoniz-
ing, we are just going to go ahead and use the randomized solution like everybody else does. Note,
however, that our objection is not to the procedure itself, provided that we acknowledge honestly
what we are doing; i.e., instead of solving the real problem, we are making a practical compromise
and being, of necessity, content with an approximate solution. That is something we have to do
in all areas of applied mathematics, and there is no reason to expect probability theory to be any
di�erent.

Our objection is to this belief that by randomization we somehow make our subsequent equa-
tions exact; so exact that we can then subject our solution to all kinds of extreme conditions and
believe the results, applied to the real world. The most serious and most common error resulting
from this belief is in the derivation of limit theorems (i.e., when sampling with replacement, noth-
ing prevents us from passing to the limit n!1 and obtaining the usual \laws of large numbers").
If we do not recognize the approximate nature of our starting equations, we delude ourselves into
believing that we have proved things (such as the identity of probability and limiting frequency)
that are just not true in real repetitive experiments.

The danger here is particularly great because mathematicians generally regard these limit
theorems as the most important and sophisticated fruits of probability theory, and have a tendency
to use language which implies that they are proving properties of the real world. Our point is
that these theorems are valid properties of the abstract mathematical model that was de�ned and

analyzed . The issue is: to what extent does that model resemble the real world? It is probably safe
to say that no limit theorem is directly applicable in the real world, simply because no mathematical
model captures every circumstance that is relevant in the real world. The person who believes that
he is proving things about the real world, is a victim of the Mind Projection Fallacy.

Back to the Problem. Returning to the equations, what answer can we now give to the question
posed after Eq. (3{78)? The probability P (R2jR1B

0) of drawing a red ball on the second draw,
clearly depends not only on N and M , but also on the fact that a red one has already been
drawn and replaced. But this latter dependence is so complicated that we can't, in real life, take
it into account; so we shake the urn to \randomize" the problem, and then declare R1 to be
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irrelevant: P (R2jR1B
0) = P (R2jB

0) = M=N . After drawing and replacing the second ball, we
again shake the urn, declare it \randomized", and set P (R3jR2R1B

0) = P (R3jB
0) =M=N , etc. In

this approximation, the probability of drawing a red one at any trial, is (M=N).

But this is not just a repetition of what we learned in (3{32); what is new here is that the
result now holds whatever information the robot may have about what happened in the other trials.

This leads us to write the probability of drawing exactly r red balls in n trials regardless of order,
as

�
n

r

� �
M

N

�r �
N �M

N

�n�r
(3{79)

which is just the binomial distribution (3{74). Randomized sampling with replacement from an
urn with �nite N has approximately the same e�ect as passage to the limit N ! 1 without
replacement.

Evidently, for small n, this approximation will be quite good; but for large n these small errors
can accumulate (depending on exactly how we shake the urn, etc.) to the point where (3{79) is
misleading. Let us demonstrate this by a simple, but realistic, extension of the problem.

Correction for Correlations

Suppose that, from an intricate logical analysis, drawing and replacing a red ball increases the
probability of a red one at the next draw by some small amount � > 0, while drawing and replacing
a white one decreases the probability of a red one at the next draw by a (possibly equal) small
quantity � > 0; and that the inuence of earlier draws than the last one is negligible compared to
� or �. You may call this e�ect a small \propensity" if you like; at least it expresses a physical
causation that operates only forward in time. Then, letting C stand for all the above background
information including the statements just made about correlations, and the information that we
draw n balls, we have

P (RkjRk�1; C) = p+ � ; P (RkjWk�1; C) = p� �

(3{80)

P (Wk jRk�1; C) = 1� p� � ; P (WkjWk�1; C) = 1� p+ �

where p � M=N . From this, the probability of drawing r red, (n� r) white balls in any speci�ed
order, is easily seen to be:

p(p+ �)c(p� �)c
0

(1� p+ �)w(1� p� �)w
0

(3{81)

if the �rst draw is red, while if the �rst is white, the �rst factor in (3{81) should be (1� p). Here
c is the number of red draws preceded by red ones, c0 the number of red preceded by white, w the
number of white draws preceded by white, and w0 the number of white preceded by red. Evidently,

c+ c0 =

(
r � 1

r

)
; w + w0 =

(
n � r

n�r� 1

)
(3{82)

the upper case and lower cases holding when the �rst draw is red or white, respectively.

When r and (n� r) are small, the presence of � and � in (3{81) makes little di�erence, and it
reduces for all practical purposes to
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pr(1� p)n�r (3{83)

as in the binomial distribution (3{79). But as these numbers increase, we can use relations of the
form

�
1 +

�

p

�c

' exp

�
�c

p

�
(3{84)

and (3{81) goes into

pr(1� p)n�r exp

�
�c� �c0

p
+
�w� �w0

1� p

�
(3{85)

The probability of drawing r red, (n � r) white balls now depends on the order in which red
and white appear, and for a given �, when the numbers c; c0; w; w0 become su�ciently large, the
probability can become arbitrarily large (or small) compared to (3{79).

We see this e�ect most clearly if we suppose that N = 2M; p = 1=2, in which case we will
surely have � = �. The exponential factor in (3{85) then reduces to:

expf2�[(c� c0) + (w � w0)]g (3{86)

This shows that (1) as the number n of draws tends to in�nity, the probability of results contain-
ing \long runs"; i.e., long strings of red (or white) balls in succession, becomes arbitrarily large
compared to the value given by the \randomized" approximation; (2) this e�ect becomes appre-
ciable when the numbers (�c), etc., become of order unity. Thus, if � = 10�2, the randomized
approximation can be trusted reasonably well as long as n < 100; beyond that, we might delude
ourselves by using it. Indeed, it is notorious that in real repetitive experiments where conditions
appear to be the same at each trial, such runs { although extremely improbable on the randomized
approximation { are nevertheless observed to happen.

Now let us note how the correlations expressed by (3{80) a�ect some of our previous calcula-
tions. The probabilities for the �rst draw are of course the same as (3{8); now use the notation

p = P (R1jC) =
M

N
; q = 1� p = P (W1jC) =

N �M

N
: (3{87)

But for the second trial we have instead of (3{30)

P (R2jC) = P (R2R1jC) + P (R2W1jC)

= P (R2jR1C)P (R1jC) + P (R2jW1C)P (W1jC)

= (p+ �)p+ (p� �)q

= p+ (p�� q�)

(3{88)

and continuing for the third trial,

P (R3jC) = P (R3jR2C)P (R2jC) + P (R3jW2C)P (W2jC)

= (p+ �)(p+ p�� q�) + (p� �)(q � p�+ q�)

= p+ (1 + �+ �)(p�� q�) :

(3{89)
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We see that P (RkjC) is no longer independent of k; the correlated probability distribution is no
longer exchangeable. But does P (RkjC) approach some limit as k!1?

It would be almost impossible to guess the general P (RkjC) by induction, following the method
(3{88), (3{89) a few steps further. For this calculation we need a more powerful method. If we
write the probabilities for the k'th trial as a vector

Vk �

 
P (Rk jC)

P (Wk jC)

!
(3{90)

then Equation (3{80) can be expressed in matrix form:

Vk =MVk�1 ; (3{91)

with

M =

 
(p+ �) (p� �)

(q � �) (q + �)

!
: (3{92)

This de�nes a Markov chain of probabilities, and M is called the transition matrix. Now the slow
induction of (3{88), (3{89) proceeds instantly to any distance we please:

Vk =Mk�1V1 : (3{93)

So to have the general solution, we need only to �nd the eigenvectors and eigenvalues of M . The
characteristic polynomial is

C(�) � det(Mij � ��ij) = �2 � �(1 + � + �) + (�+ �) (3{94)

so the roots of C(�) = 0 are the eigenvalues

�1 = 1

�2 = � + � :
(3{95)

Now for any 2� 2 matrix

M =

�
a b

c d

�
(3{96)

with an eigenvalue �, the corresponding (non{normalized) right eigenvector is

x =

�
b

�� a

�
(3{97)

for which we have at once Mx = �x. Therefore, our eigenvectors are

x1 =

�
p� �

q � �

�
; x2 =

�
1
�1

�
: (3{98)

These are not orthogonal, since M is not a symmetric matrix. Nevertheless, if we use (3{98) to
de�ne the transformation matrix

S =

�
(p� �) 1
(q � �) �1

�
(3{99)
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we �nd its inverse to be

S�1 =
1

1� � � �

�
1 1

(q � �) �(p� �)

�
(3{100)

and we can verify by direct matrix multiplication that

S�1MS = � =

�
�1 0
0 �2

�
(3{101)

where � is the diagonalized matrix. Then we have for any r, positive, negative, or even complex:

Mr = S�rS�1 (3{102)

or,

Mr =
1

1� �� �

 
(p� �) + (�+ �)r(q � �) (p� �)[1� (� + �)r]

(q � �)[1� (�+ �)r] (q � �) + (�+ �)r(p� �)

!
(3{103)

and since

V1 =

�
p

q

�
(3{104)

the general solution (3{93) sought is

P (RkjC) =
(p� �)� (�+ �)k�1(p�� q�)

1� �� �
: (3{105)

We can check that this agrees with (3{87), (3{88), (3{89). From examining (3{105) it is clear why
it would have been almost impossible to guess the general formula by induction. When � = � = 0,
this reduces to P (RkjC) = p, supplying the proof promised after Eq. (3{32).

Although we started this discussion by supposing that � and � were small and positive, we
have not actually used that assumption and so, whatever their values, the solution (3{105) is exact
for the abstract model that we have de�ned. This enables us to include two interesting extreme
cases. If not small, � and � must be at least bounded, because all quantities in (3{80) must be
probabilities (that is, in [0; 1]). This requires that

�p � � � q ; �q � � � p (3{106)

or

�1 � �+ � � 1 : (3{107)

But from (3{106), �+ � = 1 if and only if � = q, � = p, in which case the transition matrix reduces
to the unit matrix

M =

�
1 0
0 1

�
(3{108)

and there are no \transitions". This is a degenerate case in which the positive correlations are so
strong that whatever color happens to be drawn on the �rst trial, is certain to be drawn also on
all succeeding ones:

P (RkjC) = p ; all k : (3{109)
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Likewise, if � + � = �1, then the transition matrix must be

M =

�
0 1
1 0

�
(3{110)

and we have nothing but transitions; i.e., the negative correlations are so strong that the colors
are certain to alternate after the �rst draw:

P (RkjC) =

(
p; k odd

q; k even

)
: (3{111)

This case is unrealistic because intuition tells us rather strongly that � and � should be positive
quantities; surely, whatever the logical analysis used to assign the numerical value of �, leaving a
red ball in the top layer must increase, not decrease, the probability of red on the next draw. But if
� and � must not be negative, then the lower bound in (3{107) is really zero, which is achieved only
when � = � = 0. Then M in (3{92) becomes singular, and we revert to the binomial distribution
case already discussed.

In the intermediate and realistic cases where 0 < j�+�j < 1, the last term of (3{105) attenuates
exponentially with k, and in the limit

P (RkjC)!
p� �

1� � � �
: (3{112)

But although these single{trial probabilities settle down to steady values as in an exchangeable
distribution, the underlying correlations are still at work and the limiting distribution is not ex-
changeable. To see this, let us consider the conditional probabilities P (RkjRjC). These are found
by noting that the Markov chain relation (3{91) holds whatever the vector Vk�1; i.e., whether or
not it is the vector generated from V1 as in (3{93). Therefore, if we are given that red occurred on
the j 'th trial, then

Vj =

�
1
0

�
and we have from (3{91)

Vk =Mk�j Vj ; j � k (3{113)

from which, using (3{102),

P (RkjRjC) =
(p� �) + (� + �)k�j (q � �)

1� �� �
; j < k : (3{114)

which approaches the same limit (3{112). The forward inferences are about what we might expect;
the steady value (3{112) plus a term that decays exponentially with distance. But the backward
inferences are di�erent; note that the general product rule holds, as always:

P (RkRj jC) = P (RkjRjC)P (RjjC) = P (Rj jRkC)P (RkjC) : (3{115)

Therefore, since we have seen that P (RkjC) 6= P (Rj jC), it follows that

P (Rj jRkC) 6= P (RkjRjC) : (3{116)

The backward inference is still possible, but it is no longer the same formula as the forward inference
as it would be in an exchangeable sequence.



326 3: Simpli�cation 326

As we shall see later, this example is the simplest possible `baby' version of a very common
and important physical problem; an irreversible process in the `Markovian approximation'. Another
common technical language would call it an autoregressive model of �rst order. It can be generalized
greatly to the case of matrices of arbitrary dimension and many{step or continuous, rather than
single{step, memory inuences. But for reasons noted earlier (confusion of inference and causality
in the literature of statistical mechanics) the backward inference part of the solution is almost
always missed. Some try to do backward inference by extrapolating the forward solution backward
in time, with quite bizarre and unphysical results. Therefore the reader is, in e�ect, conducting
new research in doing the following exercise.

Exercise (3.6) Find the explicit formula P (Rj jRkC) for the backward inference corresponding
to the result (3{114) by using (3{105) and (3{115). Then (a) Explain the reason for the di�erence
between forward and backward inferences in simple intuitive terms. (b) In what way does the
backward inference di�er from the forward inference extrapolated backward? Which is more
reasonable intuitively? (c) Do backward inferences also decay to steady values? If so, is a
property somewhat like exchangeability restored for events su�ciently separated? For example,
if we consider only every tenth draw or every hundredth draw, do we approach an exchangeable
distribution on this subset?

Simpli�cation

The above formulas (3{87) { (3{118) hold for any �, � satisfying the inequalities (3{106). But
surveying them, we note that a remarkable simpli�cation occurs if they satisfy

p� = q� : (3{117)

For then we have
p� �

1� � � �
= p ;

q � �

1� �� �
= q ; � + � =

�

q
(3{118)

and our main results (3{105), (3{114) collapse to

P (RkjC) = p ; all k (3{119)

P (RkjRjC) = P (Rj jRkC) = p+ q

�
�

q

�
jk�jj

; all k; j : (3{120)

The distribution is still not exchangeable, since the conditional probabilities (3{120) still depend on
the separation jk�jj of the trials; but the symmetry of forward and backward inferences is restored
even though the causal inuences �, � operate only forward. Indeed, we see from our derivation of
(3{34) that this forward { backward symmetry is a necessary consequence of (3{119) whether or
not the distribution is exchangeable.

What is the meaning of this magic condition (3{117)? It does not make the matrixM assume
any particularly simple form, and it does not turn o� the e�ect of the correlations. What it does
is to make the solution (3{119) invariant; that is, the initial vector (3{104) is then equal but for
normalization to the eigenvector x1 in (3{98), so the initial vector remains unchanged by the matrix
(3{92).

In general, of course, there is no reason why this simplifying condition should hold. Yet in the
case of our urn, we can see a kind of rationale for it. Suppose that when the urn has initially N

balls, they are in L layers. Then after withdrawing one ball, there are about n = (N � 1)=L of
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them in the top layer, of which we expect about np to be red, nq = n(1 � p) white. Now we toss
the drawn ball back in. If it was red, the probability of getting red at the next draw if we do not
shake the urn, is about

np+ 1

n + 1
= p+

1� p

n
+ O

� 1

n2

�
(3{121)

and if it is white, the probability of getting white at the next draw is about

n(1� p) + 1

n + 1
= 1� p+

p

n
+ O

� 1

n2

�
(3{122)

Comparing with (3{80) we see that we could estimate � and � by

� ' q=n ; � ' p=n (3{123)

whereupon our magic condition (3{117) is satis�ed. Of course, the argument just given is too crude
to be called a derivation, but at least it indicates that there is nothing inherently unreasonable
about (3{117). We leave it for the reader to speculate about what signi�cance and use this curious
fact might have, and whether it generalizes beyond the Marko�an approximation.

We have now had a �rst glimpse of some of the principles and pitfalls of standard sampling
theory. All the results we have found will generalize greatly, and will be useful parts of our \toolbox"
for the applications to follow.

COMMENTS

In most real physical experiments we are not, literally, drawing from any \urn". Nevertheless,
the idea has turned out to be a useful conceptual device, and in the 250 years since Bernoulli's
Ars Conjectandi it has appeared to scientists that many physical measurements are very much like
\drawing from Nature's urn". But to some the word \urn" has gruesome connotations and in much
of the literature one �nds such expressions as \drawing from a population".

In a few cases, such as recording counts from a radioactive source, survey sampling, and
industrial quality control testing, one is quite literally drawing from a real, �nite population, and
the urn analogy is particular apt. Then the probability distributions just found, and their limiting
forms and generalizations noted in Appendix E, will be appropriate and useful. In some cases, such
as agricultural experiments or testing the e�ectiveness of a new medical procedure, our credulity
can be strained to the point where we see a vague resemblance to the urn problem.

But in other cases, such as ipping a coin, making repeated measurements of the temperature
and wind velocity, the position of a planet, the weight of a baby, or the price of a commodity, the
urn analogy seems so far{fetched as to be dangerously misleading. Yet in much of the literature
one still uses urn distributions to represent the data probabilities, and tries to justify that choice by
visualizing the experiment as drawing from some \hypothetical in�nite population" which is entirely
a �gment of our imagination. Functionally, the main consequence of this is strict independence of
successive draws, regardless of all other circumstances. Obviously, this is not sound reasoning, and
a price must be paid eventually in erroneous conclusions.

This kind of conceptualizing often leads one to suppose that these distributions represent not
just our prior state of knowledge about the data, but the actual long{run variability of the data
in such experiments. Clearly, such a belief cannot be justi�ed; anyone who claims to know in
advance the long{run results in an experiment that has not been performed, is drawing on a vivid
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imagination, not on any fund of actual knowledge of the phenomenon. Indeed, if that in�nite
population is only imagined, then it seems that we are free to imagine any population we please.

But from a mere act of the imagination we cannot learn anything about the real world. To
suppose that the resulting probability assignments have any real physical meaning is just another
form of the Mind Projection Fallacy. In practice this diverts our attention to irrelevancies and away
from the things that really matter (such as information about the real world that is not expressible
in terms of any sampling distribution, or does not �t into the urn picture; but which is nevertheless
highly cogent for the inferences we want to make). Usually, the price paid for this folly is missed
opportunities; had we recognized that information, more accurate and/or more reliable inferences
could have been made.

Urn { type conceptualizing is capable of dealing with only the most primitive kind of infor-
mation, and really sophisticated applications require us to develop principles that go far beyond
the idea of urns. But the situation is quite subtle, because as we stressed before in connection
with G�odel's theorem, an erroneous argument does not necessarily lead to a wrong conclusion. In
fact, as we shall �nd in Chapter 9, highly sophisticated calculations sometimes lead us back to
urn { type distributions, for purely mathematical reasons that have nothing to do conceptually
with urns or populations. The hypergeometric and binomial distributions found in this Chapter
will continue to reappear, because they have a fundamental mathematical status quite independent
of arguments that we used to �nd them here. In a similar way, exponential functions appear in all
parts of analysis because of their fundamental mathematical properties, although their conceptual
basis varies widely.

On the other hand, we could imagine a di�erent problem in which we would have full con�dence
in urn { type reasoning leading to the binomial distribution, although it probably never arises in the
real world. If we had a large supply fU1 � � �Ung of urns known to have identical contents and those
contents known with certainty in advance { and then we used a fresh new urn for each draw { then
we would assign P (A) = M=N for every draw, strictly independently of what we know about any
other draw. Such prior information would take precedence over any amount of data. If we did not
know the contents (M;N) of the urns { but we knew they all had identical contents { this strict
independence would be lost, because then every draw from one urn would tell us something about
the contents of the other urns, although it does not physically inuence them.

From this we see once again that logical dependence is in general very di�erent from causal
physical dependence. We belabor this point so much because it is not recognized at all in most
expositions of probability theory, and this has led to errors, as is suggested by Exercise (3.6). In
Chapter 4 we shall see a more serious error of this kind [discussion following (4{27)]. But even when
one manages to avoid actual error, to restrict probability theory to problems of physical causation
is to lose its most important applications. The extent of this restriction { and the magnitude of
the missed opportunity { does not seem to be realized by those who are victims of this fallacy.

Indeed, most of the problems we have solved in this Chapter are not considered to be within the
scope of probability theory { and do not appear at all { in those expositions which regard probability
as a physical phenomenon. Such a view restricts one to a small subclass of the problems which
can be dealt with usefully by probability theory as logic. For example, in the `physical probability'
theory it is not even considered legitimate to speak of the probability of an outcome at a speci�ed
trial; yet that is exactly the kind of thing about which it is necessary to reason in conducting
scienti�c inference. The calculations of this Chapter have illustrated this many times.

In summary: in each of the applications to follow, one must consider whether the experiment is
really \like" drawing from an urn; if it is not, then we must go back to �rst principles and apply the
basic product and sum rules in the new context. This may or may not yield the urn distributions.

A Look Ahead. The probability distributions found in this Chapter are called sampling distribu-

tions, or direct probabilities, which names indicate that they are of the form; given some hypothesis
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H about the phenomenon being observed (in the case just studied, the contents (M;N) of the urn),
what is the probability that we shall obtain some speci�ed data D (in this case, some sequence
of red and white balls)? Historically, the term \direct probability" has long had the additional
connotation of reasoning from a supposed physical cause to an observable e�ect. But we have
seen that not all sampling distributions can be so interpreted. In the present work we shall not
use this term, but use `sampling distribution' in the general sense of reasoning from some speci�ed

hypothesis to potentially observable data, whether the link between hypothesis and data is logical
or causal.

Sampling distributions make predictions, such as the hypergeometric distribution (3{18), about
potential observations (for example, the possible values and relative probabilities of di�erent values
of r). If the correct hypothesis is indeed known, then we expect the predictions to agree closely with
the observations. If our hypothesis is not correct, they may be very di�erent; then the nature of
the discrepancy gives us a clue toward �nding a better hypothesis. This is, very broadly stated, the
basis for scienti�c inference. Just how wide the disagreement between prediction and observation
must be in order to justify our rejecting the present hypothesis and seeking a new one, is the subject
of signi�cance tests. It was the need for such tests in astronomy that led Laplace and Gauss to
study probability theory in the 18'th and 19'th Centuries.

Although sampling theory plays a dominant role in conventional pedagogy, in the real world
such problems are an almost negligible minority. In virtually all real problems of scienti�c inference
we are in just the opposite situation; the data D are known but the correct hypothesis H is not.
Then the problem facing the scientist is of the inverse type; given the dataD, what is the probability
that some speci�ed hypothesis H is true? Exercise (3.3) above was a simple introduction to this
kind of problem. Indeed, the scientists' motivation for collecting data is usually to enable him to
learn something about the phenomenon, in this way.

Therefore, in the present work our attention will be directed almost exclusively to the methods
for solving the inverse problem. This does not mean that we do not calculate sampling distributions;
we need to do this constantly and it may be a major part of our computational job. But it does
mean that for us the �nding of a sampling distribution is almost never an end in itself.

Although the basic rules of probability theory solve such inverse problems just as readily as
sampling problems, they have appeared quite di�erent conceptually to many writers. A new feature
seems present, because it is obvious that the question: \What do you know about the hypothesis H
after seeing the data D?" cannot have any defensible answer unless we take into account: \What
did you know about H before seeing D?" But this matter of previous knowledge did not �gure
in any of our sampling theory calculations. When we asked: \What do you know about the data
given the contents (M;N) of the urn?" we did not seem to consider: \What did you know about
the data before you knew (M;N)?"

This apparent dissymmetry, it will turn out, is more apparent than real; it arises mostly from
some habits of notation that we have slipped into, which obscure the basic unity of all inference.
But we shall need to understand this very well before we can use probability theory e�ectively for
hypothesis tests and their special cases, signi�cance tests. In the next Chapter we turn to this
problem.
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Figure 3.1. The Hypergeometric Distribution for N = 15; 30; 100;1.
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CHAPTER 4

ELEMENTARY HYPOTHESIS TESTING

\I conceive the mind as a moving thing, and arguments as

the motive forces driving it in one direction or the other."

| John Craig (1699)

John Craig was a Scottish mathematician, and one of the �rst scholars to recognize the merit in
Isaac Newton's new invention of \the calculus". The above sentence, written some 300 years ago
in one of the early attempts to create a mathematical model of reasoning, requires changing only
one word in order to describe our present attitude. We would like to think that our minds are
swayed not by arguments, but by evidence. And if fallible humans do not always achieve this
objectivity, our desiderata were chosen with the aim of achieving it in our robot. Therefore to see
how our robot's mind is \driven in one direction or the other" by new evidence, we examine some
applications that, although simple mathematically, have proved to have practical importance in
several di�erent �elds.

As is clear from the basic desiderata listed in Chapter 1, the fundamental principle underlying
all probabilistic inference is:

To form a judgment about the likely truth or falsity of any proposition A,

the correct procedure is to calculate the probability that A is true:

P (AjE1 E2 : : :) (4{1)

conditional on all the evidence at hand.

In a sampling context (i.e. when A stands for some data set), this principle has seemed obvious to
everybody from the start. We used it implicitly throughout Chapter 3 without feeling any need to
state it explicitly. But when we turn to a more general context the principle needs to be stressed
because it has not been obvious to all workers (as we shall see repeatedly in later Chapters).

The essence of \honesty" or \objectivity" demands that we take into account all the evidence
we have, not just some arbitrarily chosen subset of it. Any such choice would amount either to
ignoring evidence that we have, or presuming evidence that we do not have. This leads us to
recognize at the outset that some information is always available to the robot.

Prior Probabilities

Generally, when we give the robot its current problem, we will give it also some new information or
\data" D pertaining to the speci�c matter at hand. But almost always the robot will have other
information which we denote, for the time being, by X . This includes, at the very least, all its past
experience, from the time it left the factory to the time it received its current problem. That is
always part of the information available, and our desiderata do not allow the robot to ignore it. If
we humans threw away what we knew yesterday in reasoning about our problems today, we would
be below the level of wild animals; we could never know more than we can learn in one day, and
education and civilization would be impossible.

So to our robot there is no such thing as an \absolute" probability; all probabilities are
necessarily conditional on X at least. In solving a problem, its inferences should, according to the
principle (4{1), take the form of calculating probabilities of the form P (AjDX). Usually, part of X
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is irrelevant to the current problem, in which case its presence is unnecessary but harmless; if it is
irrelevant, it will cancel out mathematically. Indeed, that is what we really mean by \irrelevant".

Any probability P (AjX) that is conditional on X alone is called a prior probability. But
we caution that the term \prior" is another of those terms from the distant past that can be
inappropriate and misleading today. In the �rst place, it does not necessarily mean \earlier in time."
Indeed, the very concept of time is not in our general theory (although we may of course introduce
it in a particular problem). The distinction is a purely logical one; any additional information
beyond the immediate data D of the current problem is by de�nition \prior information".

For example, it has happened more than once that a scientist has gathered a mass of data,
but before getting around to the data analysis he receives some surprising new information that
completely changes his ideas of how the data should be analyzed. That surprising new information
is, logically, \prior information" because it is not part of the data. Indeed, the separation of the
totality of the evidence into two components called \data" and \prior information" is an arbitrary
choice made by us, only for our convenience in organizing a chain of inferences. Although all such
organizations must lead to the same �nal results if they succeed at all, some may lead to much
easier calculations than others. Therefore, we do need to consider the order in which di�erent pieces
of information shall be taken into account in our calculations.

Because of some strange things that have been thought about prior probabilities in the past,
we point out also that it would be a big mistake to think of X as standing for some hidden major
premise, or some universally valid proposition about Nature. Old misconceptions about the origin,
nature, and proper functional use of prior probabilities are still common among those who continue
to use the archaic term \a{priori probabilities". The term \a{priori" was introduced by Immanuel
Kant to denote a proposition whose truth can be known independently of experience; which is most
emphatically what we do not mean here. X denotes simply whatever additional information the
robot has beyond what we have chosen to call \the data". Those who are actively familiar with the
use of prior probabilities in current real problems usually abbreviate further, and instead of saying
\the prior probability" or \the prior probability distribution", they say simply, \the prior".

There is no single universal rule for assigning priors { the conversion of verbal prior informa-
tion into numerical prior probabilities is an open{ended problem of logical analysis, to which we
shall return many times. At present, four fairly general principles are known { group invariance,
maximum entropy, marginalization, and coding theory { which have led to successful solutions of
many di�erent kinds of problems. Undoubtedly, more principles are waiting to be discovered, which
will open up new areas of application.

In conventional sampling theory, the only scenario considered is essentially that of \drawing
from an urn", and the only probabilities that arise are those that presuppose the contents of the
\urn" or the \population" already known, and seek to predict what \data" we are likely to get as
a result. Problems of this type can become arbitrarily complicated in the details, and there is a
highly developed mathematical literature dealing with them. For example, the massive two{volume
work of Feller (1951, 1971) and the weighty compendium of Kendall and Stuart (1977; Vol. 1) are
restricted entirely to the calculation of sampling distributions. These works contain hundreds of
nontrivial solutions that are useful in all parts of probability theory, and every worker in the �eld
should be familiar with what is available in them.

However, as noted in the last Chapter, almost all real problems of scienti�c inference involve us
in the opposite situation; we already know the dataD, and want probability theory to help us decide
on the likely contents of the \urn". Stated more generally, we want probability theory to indicate
which of a given set of hypotheses fH1; H2; : : :g is most likely to be true in the light of the data
and any other evidence at hand. For example, the hypotheses may be various suppositions about
the physical mechanism that is generating the data. But fundamentally, as in the last Chapter,
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physical causation is not an essential ingredient of the problem; what is essential is only that there
be some kind of logical connection between the hypotheses and the data.

To solve this problem does not require any new principles beyond the product rule (3{1) that
we used to �nd conditional sampling distributions; we need only to make a di�erent choice of the
propositions. Let us now use the notation

X = Prior information

H = Some hypothesis to be tested

D = the data

and write the product rule in the form

P (DH jX) = P (DjHX) P (H jX) = P (H jDX) P (DjX) : (4{2)

We recognize P (DjHX) as the sampling distribution which we studied in Chapter 3, but now
written in a more exible notation. In Chapter 3 we did not need to take any particular note of
the prior information X , because all probabilities were conditional on H , and so we could suppose
implicitly that the general verbal prior information de�ning the problem was included in H . This
is the habit of notation that we have slipped into, which has obscured the uni�ed nature of all
inference. Throughout all of sampling theory one can get away with this, and as a result the very
term \prior information" is absent from the literature of sampling theory.

But now we are advancing to probabilities that are not conditional on H , but are still condi-
tional on X , so we need separate notations for them. We see from (4{2) that to judge the likely
truth of H in the light of the data, we need not only the sampling probability P (DjHX) but also
the prior probabilities for D and H :

P (H jDX) = P (H jX)
P (DjHX)

P (DjX)
(4{3)

Although the derivation (4{2) { (4{3) is only the same mathematical result as (3{43) { (3{44), it
has appeared to many workers to have a di�erent logical status. From the start it has seemed clear
how one determines numerical values of sampling probabilities, but not what determines the prior
probabilities. In the present work we shall see that this was only an artifact of an unsymmetrical way
of formulating problems, which left them ill{posed. One could see clearly how to assign sampling
probabilities because the hypothesis H was stated very speci�cally; had the prior information X

been speci�ed equally well, it would have been equally clear how to assign prior probabilities.

When we look at these problems on a su�ciently fundamental level and realize how careful one
must be to specify the prior information before we have a well{posed problem, it becomes evident
that there is in fact no logical di�erence between (3{44) and (4{3); exactly the same principles
are needed to assign either sampling probabilities or prior probabilities, and one man's sampling
probability is another man's prior probability.

The left{hand side of (4{3), P (H jDX), is generally called a \posterior probability", with the
same caveat that this means only \logically later in the particular chain of inference being made",
and not necessarily \later in time". And again the distinction is conventional, not fundamental;
one man's prior probability is another man's posterior probability. There is really only one kind of
probability; our di�erent names for them refer only to a particular way of organizing a calculation.

The last factor in (4{3) also needs a name, and it is called the likelihood L(H). To explain
current usage, we may consider a �xed hypothesis and its implications for di�erent data sets; as we
have noted before, the term P (DjHX), in its dependence on D for �xed H , is called the \sampling
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distribution". But we may consider a �xed data set in the light of various di�erent hypotheses
fH; H 0; � � �g; in its dependence on H for �xed D, P (DjHX) is called the \likelihood".

A likelihood L(H) is not itself a probability for H ; it is a factor which when multiplied by a
prior probability and a normalization factor may become a probability. Because of this, constant
factors are irrelevant, and may be struck out. Thus the quantity L(Hi) = y(D)P (DjHiX) is
equally deserving to be called the likelihood, where y is any positive number which may depend on
D but is independent of the hypotheses fHig.

Equation (4{3) is then the fundamental principle underlying a wide class of scienti�c inferences
in which we try to draw conclusions from data. Whether we are trying to learn the character of a
chemical bond from nuclear magnetic resonance data, the e�ectiveness of a medicine from clinical
data, the structure of the earth's interior from seismic data, the elasticity of a demand from economic
data, or the structure of a distant galaxy from telescopic data, (4{3) indicates what probabilities
we need to �nd in order to see what conclusions are justi�ed by the totality of our evidence. If
P (H jDX) is very close to one (zero), then we may conclude that H is very likely to be true (false)
and act accordingly. But if P (H jDX) is not far from 1

2
, then the robot is warning us that the

available evidence is not su�cient to justify any very con�dent conclusion, and we need to get more
and better evidence.

Testing Binary Hypotheses with Binary Data

The simplest nontrivial problem of hypothesis testing is the one where we have only two hypotheses
to test and only two possible data values. Surprisingly, this turns out to be a realistic and valuable
model of many important inference and decision problems. First, let us adapt (4{3) to this binary
case. It gives us the probability that H is true, but we could have written it equally well for the
probability that H is false:

P (H jDX) = P (H jX)
P (DjHX)

P (DjX)
(4{4)

and if we take the ratio of the two equations:

P (H jDX)

P (HjDX)
=

P (H jX)

P (HjX)

P (DjH X)

P (DjHX)
: (4{5)

the term P (DjX) will drop out. This may not look like any particular advantage, but the quantity
that we have here, the ratio of the probability that H is true to the probability that it's false, has a
technical name. We call it the \odds" on the proposition H . So if we write the \odds on H , given
D and X ," as the symbol

O(H jD X) �
P (H jD X)

P (H jDX)
(4{6)

then we can combine (4{3) and (4{4) into the following form:

O(H jD X) = O(H jX)
P (DjHX)

P (DjHX)
: (4{7)
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The posterior odds on H is (are?) equal to the prior odds multiplied by a dimensionless factor which
is also called a likelihood ratio. The odds are (is?) a strict monotonic function of the probability,
so we could equally well calculate this quantity.y

In many applications it is convenient to take the logarithm of the odds because of the fact
that we can then add up terms. Now we could take logarithms to any base we please, and this cost
the writer some trouble. Our analytical expressions always look neater in terms of natural (base e)
logarithms. But back in the 1940's and 1950's when this theory was �rst developed, we used base
10 logarithms because they were easier to �nd numerically; the four{�gure tables would �t on a
single page. Finding a natural logarithm was a tedious process, requiring lea�ng through enormous
old volumes of tables.

Today, thanks to hand calculators, all such tables are obsolete and anyone can �nd a ten digit
natural logarithm just as easily as a base 10 logarithm, in one second. Therefore we started happily
to rewrite this section in terms of the aesthetically prettier natural logarithms. But the result
taught us that there is another, even stronger, reason for using base 10 logarithms. Our minds are
thoroughly conditioned to the base 10 number system, and base 10 logarithms have an immediate,
clear intuitive meaning to all of us. But we just don't know what to make of a conclusion that is
stated in terms of natural logarithms, until it is translated back into base 10 terms. Therefore, we
re{re{wrote this discussion, reluctantly, back into the old, ugly base 10 convention.

We de�ne a new function which we will call the evidence for H given D and X :

e(H jD X) � 10 log10O(H jDX) : (4{8)

This is still a monotonic function of the probability. By using the base 10 and putting the factor
10 in front, we are now measuring evidence in decibels (hereafter abbreviated to db). The evidence
for H , given D, is equal to the prior evidence plus the number of db provided by working out the
log likelihood in the last term below:

e(H jDX) = e(H jX) + 10 log10

�
P (DjHX)

P (DjHX)

�
(4{9)

Now suppose that this new information D actually consisted of several di�erent propositions:

D = D1D2D3 � � �

Then we could expand the likelihood ratio by successive applications of the product rule:

e(H jDX) = e(H jX) + 10 log10

�
P (D1jH X)

P (D1jHX)

�
+ 10 log10

�
P (D2jD1 H X)

P (D2jD1 HX)

�
+ � � � (4{10)

But in many cases, the probability of getting D2 is not inuenced by knowledge of D1:

P (D2jD1HX) = P (D2jHX)

y Our uncertain phrasing here indicates that \odds" is a grammatically slippery word. We are inclined

to agree with purists who say that it is, like \mathematics" and \physics", a singular noun in spite of

appearances. Yet the urge to follow the vernacular and treat it as plural is sometimes irresistible, and so

we shall be knowingly inconsistent and use it both ways, judging what seems euphonious in each case.
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One then says conventionally that D1 and D2 are independent. Of course, we should really say
that the probabilities which the robot assigns to them are independent. It is a semantic confusion
to attribute the property of \independence" to propositions or events; for that implies, in common
language, physical causal independence. We are concerned here with the very di�erent quality of
logical independence.

To emphasize this, note that neither kind of independence implies the other. Two events
may be in fact causally dependent (i.e., one inuences the other); but for a scientist who has not
yet discovered this, the probabilities representing his state of knowledge { which determine the
only inferences he is able to make { might be independent. On the other hand, two events may
be causally independent in the sense that neither exerts any causal inuence on the other (for
example, the apple crop and the peach crop); yet we perceive a logical connection between them,
so that new information about one changes our state of knowledge about the other. Then for us
their probabilities are not independent.

Quite generally, as the robot's state of knowledge represented by H and X changes, probabil-
ities conditional on them may change from independent to dependent or vice versa; yet the real
properties of the events remain the same. Then one who attributed the property of dependence or
independence to the events would be, in e�ect, claiming for the robot the power of psychokinesis.
We must be vigilant against this confusion between reality and a state of knowledge about reality,
which we have called the \Mind Projection Fallacy".

The point we are making is not just pedantic nit-picking; we shall see presently [Eq. (4{
27)] that it has very real, substantive consequences. In Chapter 3 we have discussed some of
the conditions under which these probabilities might be independent, in connection with sampling
from a very large known population, and sampling with replacement. In the closing Comments we
noted that whether urn probabilities do or do not factor can depend on whether we do or do not
know that the contents of several urns are the same. In our present problem, as in Chapter 3, to
interpret causal independence as logical independence, or to interpret logical dependence as causal
dependence, has led some to nonsensical conclusions in �elds ranging from psychology to quantum
theory.

In case these several pieces of data are logically independent given (HX) and also given (HX),
the above equation becomes:

e(H jDX) = e(H jX) + 10
X
i

log10

�
P (DijHX)

P (DijHX)

�
; (4{11)

where the sum is over all the extra pieces of information that we get.

To get some feeling for numerical values here, let us construct a table. We have three di�erent
scales on which we can measure degrees of plausibility; evidence, odds, or probability; they're all
monotonic functions of each other. Zero db of evidence corresponds to odds of 1 or to a probability
of 1/2. Now every physicist or electrical engineer knows that 3 db means a factor of 2 (nearly) and
10 db is a factor of 10 (exactly); and so if we go in steps of 3 db, or 10, we can construct this table
very easily:
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e O p

0 1:1 1=2
3 2:1 2=3
6 4:1 4=5
10 10:1 10=11
20 100:1 100=101
30 1000:1 .999
40 104:1 .9999
�e 1=O 1� p

Table 4.1 Evidence, Odds, and Probability

You see here why it is very cogent to give evidence in db. When probabilities get very close to
one or very close to zero, our intuition doesn't work very well. Does the di�erence between the
probability of 0.999 and 0.9999 mean a great deal to you? It certainly doesn't to the writer. But
after living with this for only a short while, the di�erence between evidence of plus 30 db and plus
40 db does have a clear meaning to us. It's now in a scale which our minds comprehend naturally.
This is just another example of the Weber{Fechner law; intuitive human sensations tend to be
logarithmic functions of the stimulus.

Even the factor of 10 in (4{8) is appropriate. In the original acoustical applications, it was
introduced so that a 1 db change in sound intensity would be, psychologically, about the smallest
change perceptible to our ears. With a little familiarity and a little introspection, we think that the
reader will agree that a 1 db change in evidence is about the smallest increment of plausibility that
is perceptible to our intuition. Nobody claims that the Weber{Fechner law is a precise rule for all
human sensations, but its general usefulness and appropriateness is clear; almost always it is not
the absolute change, but more nearly the relative change, in some stimulus that we perceive. For
an interesting account of the life and work of Gustav Theodor Fechner (1801 { 1887), see Stigler
(1986).

Now let's apply (4{11) to a speci�c calculation, which we shall describe as a problem of
industrial quality control (although it could be phrased equally well as a problem of cryptography,
chemical analysis, interpretation of a physics experiment, judging two economic theories, etc).
Following the example of I. J. Good (1950) we assume numbers which are not very realistic, in
order to bring out some points of principle better. Let the prior information X consist of the
following statements:

X � \We have eleven automatic machines turning out widgets, which pour out of a machine
loosely into a box. This example corresponds to a very early stage in the development
of widgets, because ten of the machines produce one in six defective. The eleventh
machine is even worse; it makes one in three defective. The output of each machine
has been collected in an unlabelled box and stored in the warehouse."

We choose one of the boxes and test a few of the widgets, classifying them as \good" or \bad".
Our job is to decide whether we got a box from the bad machine or not; that is, whether we're
going to accept this batch or reject it.

Let us turn this job over to our robot and see how it performs. First it must �nd the prior
evidence for the various propositions of interest. Let

A � \We got a bad batch (1/3 defective)"

B � \We got a good batch (1/6 defective)"
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The qualitative part of our prior information X told us that there are only two possibilities; so in
the \logical environment" generated by X , these propositions are related by negation: given X , we
can say that

A = B ; B = A : (4{12)

The only quantitative prior information is that there are eleven machines and we don't know which
one made our batch, so by the principle of indi�erence P (AjX) = 1=11, and

e(AjX) = 10 log
10

P (AjX)

P (AjX)
= 10 log

10

(1=11)

(10=11)
= �10 db (4{13)

whereupon we have necessarily e(BjX) = +10 db.

Evidently, in this problem the only properties of X that will be relevant for the calculation are
just these numbers, �10 db. Any other kind of prior information which led to the same numbers
would give us just the same mathematical problem from this point on. So, it is not necessary to
say that we're talking only about a problem where there are eleven machines, and so on. There
might be only one machine, and the prior information consists of our previous experience with it.

Our reason for stating the problem in terms of eleven machines was that we have, thus far,
only one principle, indi�erence, by which we can convert raw information into numerical probability
assignments. We interject this remark because of a famous statement by Feller (1951) about a single
machine, which we consider in Chapter 17 after accumulating some more evidence pertaining to
the issue he raised. To our robot, it makes no di�erence how many machines there are; the only
thing that matters is the prior probability of a bad batch, however arrived at.y

Now from this box we take out a widget and test it to see whether it is defective. If we pull
out a bad one, what will that do to the evidence for a bad batch? That will add to it

10 log10
P (badjA X)

P (badjAX)
db (4{14)

where P (badjAX) represents the probability of getting a bad widget, given A, etc.; these are
sampling probabilities, and we have already seen how to calculate them. Our procedure is very
much \like" drawing from an urn and as in Chapter 3, on one draw our datum D now consists only
of a binary choice: (good/bad). The sampling distribution P (DjHX) reduces to

P (badjAX) =
1

3
; P (goodjAX) =

2

3
; (4{15)

P (badjBX) =
1

6
; P (goodjBX) =

5

6
: (4{16)

Thus, if we �nd a bad widget on the �rst draw, this will increase the evidence for A by

10 log10
(1=3)

(1=6)
= 10 log10 2 = 3 db : (4{17)

y Notice that in this observation we have the answer to a point raised in Chapter 1: how does one make a

machine `cognizant' of the meanings of the various propositions that it is being called upon to deal with?

The answer is that the robot does not need to be `cognizant' of anything. If we give it, in addition to the

model and the data, a coded list of the propositions to be considered, with their prior probabilities, this

conveys all the `meaning' needed to de�ne the mathematical problem.
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What happens now if we draw a second bad one? We are sampling without replacement, so as we
noted in (3{10) , the factor (1/3) in (4{17) should be updated to

(N=3)� 1

N � 1
=

1

3
�

2

3(N � 1)
(4{18)

where N is the number of widgets in the batch. But to avoid this complication, we suppose that N
is very much larger than any number that we contemplate testing; i.e., we are going to test such
a negligible fraction of the batch that the proportion of bad and good ones in it is not changed
appreciably by the drawing. Then the limiting form of the hypergeometric distribution (3{18) will
apply, namely the binomial distribution (3{74). Thus we shall consider that, given A or B, the
probability of drawing a bad one is the same at every draw regardless of what has been drawn
previously; so every bad one we draw will provide +3 db of evidence in favor of hypothesis A.

Now suppose we �nd a good widget. Using (4{12), we'll get evidence for A of

10 log10
P (goodjAX)

P (goodjBX)
= 10 log10

2=3

5=6
= �0:97 db : (4{19)

but let's call it �1 db. Again, this will hold for any draw, if the number in the batch is su�ciently
large. If we have inspected n widgets, of which we found nb bad ones and ng good ones, the evidence
that we have the bad batch will be

e(AjDX) = e(AjX) + 3nb � ng (4{20)

You see how easy this is to do once we've set up the logarithmic machinery. The robot's mind is
\driven in one direction or the other" in a very simple, direct way.

Perhaps this result gives us a deeper insight into why theWeber{Fechner law applies to intuitive
plausible inference. Our \evidence" function is related to the data that we have observed in about
the most natural way imaginable; a given increment of evidence corresponds to a given increment
of data. For example, if the �rst twelve we test yield �ve bad ones, then

e(AjDX) = �10 + 3 � 5� 7 = �2 db (4{21)

or, the probability of a bad batch is raised by the data from (1=11) = :09 to P (AjDX) ' 0:4.

In order to get at least 20 db of evidence for proposition A, how many bad ones would we have
to �nd in a certain sequence of n = nb + ng tests? This requires

3nb � ng = 4nb � n = n (4fb � 1) � 20 (4{22)

so if the fraction fb � nb=n of bad ones remains greater than 1/4, then we shall accumulate
eventually 20 db, or any other positive amount, of evidence for A. It appears that fb = 1=4 is the
threshold value at which the test can provide no evidence for either A or B over the other; but
note that the +3 and �1 in (4{20) are only approximate. The exact threshold fraction of bad ones
is, from (4{17) and (4{19),

ft =
log(5

4
)

log(2) + log(5
4
)
= 0:2435292 ; (4{23)
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in which the base of the logarithms does not matter. Sampling fractions greater (less) than this
give evidence for A over B (B over A); but if the observed fraction is close to the threshold, it will
require many tests to accumulate very much evidence.

Now all we have here is the probability or odds or evidence, whatever you wish to call it, of
the proposition that we got the bad batch. Eventually, we have to make a decision. We're going
to accept it or we're going to reject it. How are we going to do that? Well, we might decide
beforehand: if the probability of proposition A reaches a certain level then we'll decide that A is
true. If it gets down to a certain value, then we'll decide that A is false.

There is nothing in probability theory per se which can tell us where to put these critical
levels at which we make our decision. This has to be based on value judgments: what are the
consequences of making wrong decisions, and what are the costs of making further tests? This
takes into the realm of Decision Theory, considered in Chapters 13 and 14. But for now it is clear
that making one kind of error (accepting a bad batch) might be more serious than making the
other kind of error (rejecting a good batch). That would have an obvious e�ect on where we place
our critical levels.

So we could give the robot some instructions such as \If the evidence for A gets greater than
+0 db, then reject this batch (it is more likely to be bad than good). If it goes as low as �13, then
accept it (there is at least a 95% probability that it is good). Otherwise, continue testing." We
start doing the tests, and every time we �nd a bad widget the evidence for the bad batch goes up
3 db; every time we �nd a good one, it goes down 1 db. The tests terminate as soon as we get into
either the accept or reject region for the �rst time.

This is the way our robot would do it if we told it to reject or accept on the basis that
the posterior probability of proposition A reaches a certain level. This very useful and powerful
procedure is called \Sequential Inference" in the statistical literature, the term signifying that the
number of tests is not determined in advance, but depends on the sequence of data values that we
�nd; at each step in the sequence we make one of three choices: (a) stop with acceptance; (b) stop
with rejection; (c) make another test. The term should not be confused with what has come to
be called \Sequential Analysis with Non{optional Stopping", which is a serious misapplication of
probability theory; see the discussions of optional stopping in Chapters 6 and 17.

Non{Extensibility Beyond the Binary Case

This binary hypothesis testing problem turned out to have such a beautifully simple solution that
we might like to extend it to the case of more than two hypotheses. Unfortunately, the convenient
independent additivity over data sets in (4{11) and the linearity in (4{20) do not generalize. By
\independent additivity" we mean that the increment of evidence from a given datum Di depends
only on Di and H ; not on what other data have been observed. As (4{10) shows, we always have
additivity, but not independent additivity unless the probabilities are independent.

We state the reason for this non{extensibility in the form of an exercise for the reader; to
prepare for it, suppose that we have n hypotheses fH1 : : :Hng which on prior information X are
mutually exclusive and exhaustive:

P (HiHj jX) = P (HijX) �ij ;
nX
i=1

P (HijX) = 1 : (4{24)

Also, we have acquired m data sets fD1 : : :Dmg, and as a result the probabilities of the Hi become
updated in odds form by (4{7) , which now becomes

O(HijD1 : : :DmX) = O(HijX)
P (D1 : : :DmjHiX)

P (D1 : : :DmjHiX)
: (4{25)
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It is common that the numerator will factor because of the logical independence of the Dj , given
Hi:

P (D1 : : :DmjHiX) =
Y
j

P (Dj jHiX); 1 � i � n : (4{26)

If the denominator should also factor:

P (D1 : : :DmjHiX) =
Y
j

P (Dj jHiX); 1 � i � n (4{27)

then (4{25) would split into a product of the updatings produced by each Dj separately, and the
log{odds formula (4{9) would again take a form independently additive over the Dj as in (4{11).

Exercise 4.1. Show that there is no such nontrivial extension of the binary case. More
speci�cally, prove that if (4{26) and (4{27) hold with n > 2, then at most one of the factors

P (D1jHi X)

P (D1jHi X)
� � �

P (DmjHi X)

P (DmjHi X)

is di�erent from unity, therefore at most one of the data sets Dj can produce any updating of
the probability of Hi.

This has been a controversial issue in the literature of Arti�cial Intelligence (Glymour, 1985;
Johnson, 1985). Those who fail to distinguish between logical independence and causal indepen-
dence would suppose that (4{27) is always valid, provided only that noDi exerts a physical inuence
on any other Dj. But we have already noted the folly of such reasoning; this is a place where the
semantic confusion can lead to serious numerical errors. When n = 2, (4{27) follows from (4{26).
But when n > 2, (4{27) is such a strong condition that it would reduce the whole problem to a
triviality not worth considering; we have left it as the above exercise for the reader to examine the
equations to see why this is so. Because of Cox's theorems expounded in Chapter 2, the verdict of
probability theory is that our conclusion about nonextensibility can be evaded only at the price of
committing demonstrable inconsistencies in our reasoning.

To head o� a possible misunderstanding of what is being said here, let us add the following.
However many hypotheses we have in mind, it is of course always possible to pick out two of them
and compare them only against each other. This reverts to the binary choice case already analyzed,
and the independent additive property holds within that smaller problem (�nd the status of an
hypothesis relative to a single alternative).

We can organize this by choosing A1 as the standard \null hypothesis" and comparing each
of the others to it by solving n � 1 binary problems; whereupon the relative status of any two
propositions is determined. For example, if A5 and A7 are favored over A1 by 22.3 db and 31.9 db
respectively, then A7 is favored over A5 by 31:9�22:3 = 9:6 db. If such binary comparisons provide
all the information one wants, there is no need to consider multiple hypothesis testing at all.

But that would not solve our present problem; given the solutions of all these binary problems,
it would still require a calculation as big as the one we are about to do, to convert that information
into the absolute status of any given hypothesis relative to the entire class of n hypotheses. Here
we are going after the solution of the larger problem directly.

In any event, we need not base our stance merely on claims of authoritarian �nality for an
abstract theorem; more constructively, we now show that probability theory does lead us to a
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de�nite, useful procedure for multiple hypothesis testing, which gives us a much deeper insight and
makes it clear why the independent additivity cannot, and should not, hold when n > 2. It would
then ignore some very cogent information; that is the demonstrable inconsistency.

Multiple Hypothesis Testing

Suppose that something very remarkable happens in the sequential test just discussed; we tested
�fty widgets and every one turned out to be bad. According to (4{20), that would give us 150
db of evidence for the proposition that we had the bad batch. e(AjE) would end up at +140 db,
which is a probability which di�ers from 1 by one part in 1014. Now our common sense rejects this
conclusion; some kind of innate skepticism rises in us. If you test 50 of them and you �nd that all
50 are bad, you are not willing to believe that you have a batch in which only 1 in 3 are really bad.
So what went wrong here? Why doesn't our robot work in this case?

We have to recognize that our robot is immature; it reasons like a 4-year-old child does. The
remarkable thing about small children is that you can tell them the most ridiculous things and they
will accept it all with wide open eyes, open mouth, and it never occurs to them to question you.
They will believe anything you tell them.

Adults learn to make mental allowance for the reliability of the source when told something
hard to believe. One might think that, ideally, the information which our robot should have put
into its memory was not that we had either 1/3 bad or 1/6 bad; the information it should have put
in was that some unreliable human said that we had either 1/3 bad or 1/6 bad.

More generally, it might be useful in many problems if the robot could take into account the
fact that the information it has been given may not be perfectly reliable to begin with. There is
always a small chance that the prior information or data that we fed to the robot was wrong. In a
real problem there are always hundreds of possibilities, and if you start out the robot with dogmatic
initial statements which say that there are only two possibilities, then of course you mustn't expect
its conclusions to make sense in every case.

To accomplish this skeptically mature behavior automatically in a robot is something that we
can do, when we come to consider signi�cance tests; but fortunately, after further reection we
realize that for most problems the present immature robot is what we want after all, because we
have better control over it.

We do want the robot to believe whatever we tell it; it would be dangerous to have a robot
who suddenly became skeptical in a way not under our control when we tried to tell it some true
but startling { and therefore highly important { new fact. But then the onus is on us to be aware
of this situation, and when there is a good chance that skepticism will be needed, it is up to us to
give the robot a hint about how to be skeptical for that particular problem.

In the present problem we can give the hint which makes the robot skeptical about A when it
sees \too many" bad widgets, by providing it with one more possible hypothesis, which notes that
possibility and therefore, in e�ect, puts the robot on the lookout for it. As before, let proposition
A mean that we have a box with 1/3 defective, and proposition B is the statement that we have
a box with 1/6 bad. We add a third proposition C, that something went entirely wrong with the
machine that made our widgets, and it's turning out 99 per cent defective.

Now we have to adjust our prior probabilities to take this new possibility into account. But
we do not want this to be a major change in the nature of the problem; so let hypothesis C
have a very low prior probability P (CjX) of 10�6 (�60 db). We could write out X as a verbal
statement which would imply this, but we can state what proposition X is, with no ambiguity at
all for purposes of this problem, simply by giving the probabilities conditional on X , of all the
propositions that we're going to use in this problem. In that way we don't state everything about
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X that is important conceptually; but we state everything about X that is relevant to our current
mathematical problem.

So suppose we start out with these initial probabilities:

P (AjX) =
1

11
(1� 10�6)

P (BjX) =
10

11
(1� 10�6)

P (CjX) = 10�6

(4{28)

where

A means \We have a box with 1/3 defective"

B means \We have a box with 1/6 defective"

C means \We have a box with 99/100 defective."

The factors (1 � 10�6) are practically negligible, and for all practical purposes, we will start out
with the initial values of evidence:

�10 db for A

+10 db for B

�60 db for C :

The data proposition D stands for the statement that \m widgets were tested and every one was
defective." Now, from (4{9) the posterior evidence for proposition C is equal to the prior evidence
plus 10 times the logarithm of this probability ratio:

e(CjDX) = e(CjX) + 10 log10
P (DjCX)

P (DjCX)
: (4{29)

Our discussion of sampling with and without replacement in Chapter 3 shows that

P (DjCX) =

�
99

100

�m

(4{30)

is the probability that the �rst m are all bad, given that 99 per cent of the machine's output is
bad, under our assumption that the total number in the box is large compared to the number m
tested.

We also need the probability P (DjCX), which we can evaluate by two applications of the
product rule (4{3):

P (DjCX) = P (DjX)
P (CjDX)

P (CjX)
: (4{31)

But in this problem the prior information states dogmatically that there are only three possibilities,
and so the statement C � \C is false" implies that either A or B must be true:

P (CjDX) = P (A+ BjDX) = P (AjDX) + P (BjDX) (4{32)

where we used the general sum rule (2{48), the negative term dropping out because A and B are
mutually exclusive. Similarly,
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P (CjX) = P (AjX) + P (BjX) : (4{33)

Now if we substitute (4{32) into (4{31), the product rule will be applicable again in the form

P (ADjX) = P (DjX) P (AjDX) = P (AjX) P (DjAX)

P (BDjX) = P (DjX) P (BjDX) = P (BjX) P (DjBX)
(4{34)

and so (4{31) becomes

P (DjCX) =
P (DjAX) P (AjX) + P (DjBX) P (BjX)

P (AjX) + P (BjX)
(4{35)

in which all probabilities are known from the statement of the problem.

Digression on Another Derivation: Although we have the desired result (4{35), let us note
that there is another way of deriving it, which is often easier than direct application of (4{3). The
principle was introduced in our derivation of (3{28): resolve the proposition whose probability
is desired (in this case D) into mutually exclusive propositions, and calculate the sum of their
probabilities. We can carry out this resolution in many di�erent ways by \introducing into the
conversation" any set of mutually exclusive and exhaustive propositions fP;Q;R; � � �g and using
the rule of Boolean algebra:

D = D(P +Q+ R+ � � � ) = DP +DQ+DR+ � � �

But the success of the method depends on our cleverness at choosing a particular set for which
we can complete the calculation. This means that the propositions introduced must have a known
kind of relevance to the question being asked; the example of penguins at the end of Chapter 2 will
not be helpful if that question has nothing to do with penguins.

In the present case, for evaluation of P (DjC X), it appears that propositions A and B have
this kind of relevance. Again, we note that proposition C implies (A+B); and so

P (DjCX) = P (D(A+B)jCX) = P (DA+DBjCX)

= P (DAjCX) + P (DBjCX) :
(4{36)

These probabilities can be factored by the product rule:

P (DjCX) = P (DjACX) P (AjCX) + P (DjBCX) P (BjCX) : (4{37)

But we can abbreviate: P (DjACX) � P (DjAX) and P (DjBCX) � P (DjBX), because in the
way we set up this problem, the statement that either A or B is true implies that C must be false.
For this same reason, P (CjAX) = 1, and so by the product rule,

P (AjCX) =
P (AjX)

P (CjX)
(4{38)

and similarly for P (BjCX). Substituting these results into (4{37) and using (4{33), we again arrive
at (4{35). This agreement provides another illustration { and test { of the consistency of our rules
for extended logic.
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Back to the Problem: Returning to (4{35), we have the numerical value

P (DjCX) =

�
1

3

�m
�

�
1

11

�
+

�
1

6

�m

�
10

11
(4{39)

and everything in (4{29) is now at hand. If we put all these things together, we �nd that the
evidence for proposition C is:

e(CjDX) = �60 + 10 log
10

�
( 99

100
)m

1

11
(1
3
)m + 10

11
(1
6
)m

�
: (4{40)

If m is larger than 5, a good approximation is

e(CjDX)' �49:6 + 4:73 m ; m > 5 (4{41)

and if m is less than 3, a crude approximation is

e(CjDX)' �60 + 7:73 m ; m < 3 (4{42)

Proposition C starts out at minus 60 db, and the �rst few bad ones we �nd will each give about
7.73 db of evidence in favor of C, so the graph of e(CjDX) vs: m will start upward at a slope
of 7.73. But then the slope drops, when m > 5, to 4.73. The evidence for C reaches 0 db when
m ' 49:6=4:73 = 10:5. So, ten consecutive bad widgets would be enough to raise this initially very
improbable hypothesis up 58 db, to the place where the robot is ready to consider it very seriously;
and eleven consecutive bad ones would take it over the threshold, to where the robot considers it
more likely to be true than false.

In the meantime, what is happening to our propositions A and B? As before, A starts o� at
�10, B starts o� at +10, and the plausibility of A starts going up 3 db per defective widget. But
after we've found too many bad ones, that skepticism would set in, and you and I would begin to
doubt whether the evidence really supports proposition A after all; proposition C is becoming a
much easier way to explain what is observed. Has the robot also learned to be skeptical?

After m widgets have been tested, and all proved to be bad, the evidence for propositions A
and B, and the approximate forms, are as follows:

e(AjDX) = �10 + 10 log10

�
(1
3
)m

(1
6
)m + 11

10
� 10�6( 99

100
)m

�

'

(
� 10 + 3 m for m < 7

+ 49:6� 4:73 m for m > 8

) (4{43)

e(BjDX) = +10 + 10 + log10

�
(1
6
)m

(1
3
)m + 11� 10�6( 99

100
)m

�

'

(
10� 3m for m < 10

59:6� 7:33m for m > 11

) (4{44)

The exact results, printed out by the program SEQUENT.BAS, are tabulated in Appendix I, and
summarized in Fig. 4.1. We can learn quite a lot about multiple hypothesis testing from studying
this diagram. The initial straight line part of the A and B curves represents the solution as we
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found it before we introduced proposition C; the change in plausibility of propositions A and B

starts o� just the same as in the previous problem. The e�ect of proposition C does not appear
until we have reached the place where C crosses B. At this point, suddenly the character of the A
curve changes; instead of going on up, at m = 7 it has reached its highest value of 10 db. Then it
turns around and comes back down; the robot has indeed learned how to become skeptical. But
the B curve does not change at this point; it continues on linearly until it reaches the place where
A and C have the same plausibility, and at this point it has a change in slope. From then on, it
falls o� more rapidly.

Figure 4.1. A Surprising Multiple Sequential Test

Wherein a Dead Hypothesis (C) is Resurrected.

Most people �nd all this surprising and mysterious at �rst glance; but then a little meditation
is enough to make us perceive what is happening and why. The change in plausibility of A due to
one more test arises from the fact that we are now testing hypothesis A against two alternatives:
B and C. But initially B is so much more plausible than C, that for all practical purposes we
are simply testing A against B, and reproducing our previous solution (4{20). But after enough
evidence has accumulated to bring the plausibility of C up to the same level as B, then from that
point on A is essentially being tested against C instead of B, which is a very di�erent situation.

All of these changes in slope can be interpreted in this way. Once we see this principle, it is
clear that the same thing is going to be true more generally. As long as we have a discrete set of
hypotheses, a change in plausibility of any one of them will be approximately the result of a test of
this hypothesis against a single alternative { the single alternative being that one of the remaining
hypotheses which is most plausible at that time. As the relative plausibilities of the alternatives
change, the slope of the A curve must also change; this is the cogent information that would be lost

if we tried to retain the independent additive form (4{11) when n > 2.

But whenever the hypotheses are separated by about 10 db or more, then multiple hypothesis
testing reduces approximately to testing each hypothesis against a single alternative. So, seeing
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this, you can construct curves of the sort shown in Fig. 4.1 very rapidly without even writing down
the equations, because what would happen in the two{hypothesis case is easily seen once and for
all. The diagram has a number of other interesting geometrical properties, suggested by drawing
the six asymptotes and noting their vertical alignment (dotted lines), which we leave for the reader
to explore.

All the information needed to construct fairly accurate charts resulting from any sequence of
good and bad tests is contained in the \plausibility ow diagrams" of Fig. 4.2, which summarize
the solutions of all those binary problems; every possible way to test one proposition against a
single alternative. It indicates, for example, that �nding a good one raises the evidence for B by 1
db if B is being tested against A, and by 19.22 db if it is being tested against C. Similarly, �nding
a bad one raises the evidence for A by 3 db if A is being tested against B, but lowers it by 4.73 db
if it is being tested against C:

GOOD: A ! 1:0! B  19:22 C ! 18:24! A

BAD: A  3:0 B ! 7:73! C  4:73 A

Figure 4.2 Plausibility Flow Diagrams

Likewise, we see that �nding a single good one lowers the evidence for C by an amount that cannot
be recovered by two bad ones; so there is a \threshold of skepticism". C will never attain an
appreciable probability; i.e., the robot will never become skeptical about propositions A and B, as
long as the observed fraction f of bad ones remains less than 2/3.

More precisely, de�ne a threshold fraction ft thus: as the number of tests m ! 1 with
f = mb=m! const:, e(CjDX) tends to +1 if f > ft, and to �1 if f < ft. The exact threshold
turns out to be greater than 2/3: ft = 0:793951 (Exercise 4.2). If the observed fraction bad remains
above this value, the robot will be led eventually to prefer proposition C over A and B.

Exercise 4.2. Calculate the exact threshold of skepticism ft(x; y), supposing that proposition
C has instead of 10�6 an arbitrary prior probability P (CjX) = x and speci�es instead of
(99/100) an arbitrary fraction y of bad widgets. Then discuss how the dependence on x and y

corresponds { or fails to correspond { to human common sense. [In problems like this, always try
�rst to get an analytic solution in closed form. If you are unable to do this, then you must write
a short computer program like SEQUENT.BAS in Appendix I, which will display the correct
numerical values in tables or graphs.]

Exercise 4.3. Show how to make the robot skeptical about both unexpectedly high and
unexpectedly low numbers of bad widgets in the observed sample. Give the full equations.
Note particularly the following: if A is true, then we would expect, according to the binomial
distribution (3{74), that the observed fraction of bad ones would tend to about 1/3 with many
tests, while if B is true it should tend to 1/6. Suppose that it is found to tend to the threshold
value (4{22), close to 1/4. On su�ciently large m, you and I would then become skeptical about
A and B; but intuition tells us that this would require a much larger m than 10, which was
enough to make us and the robot skeptical when we �nd them all bad. Do the equations agree
with our intuition here, if a new hypothesis F is introduced which speci�es P (badjFX) ' 1=4?
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In summary, the role of our new hypothesis C was only to be held in abeyance until needed,
like a �re extinguisher. In a normal testing situation it is \dead", playing no part in the inference
because its probability is and remains far below that of the other hypotheses. But a dead hypothesis
can be resurrected to life by very unexpected data. Exercises (4.2) and (4.3) ask the reader to
explore the phenomenon of resurrection of dead hypotheses in more detail than we do in this
Chapter, but we return to the subject in Chapter 5.

Figure 4.1 shows an interesting thing. Suppose we had decided to stop the test and accept
hypothesis A if the evidence for it reached plus 6 db. You see, it would overshoot that value at the
sixth trial. If we stopped the testing at that point, then we would never see the rest of this curve
and see that it really goes down again. If we had continued the testing beyond this point, then we
would have changed our minds again.

At �rst glance this seems disconcerting, but notice that it is inherent in all problems of hy-
pothesis testing. If you stop the test at any �nite number of trials, then you can never be absolutely
sure that you have made the right decision. It is always possible that still more tests would have led
you to change your decision. But note also that probability theory as logic has automatic built{in
safety devices that can protect the user against unpleasant surprises. Although it is always possible
that your decision is wrong, this is extremely improbable if your critical level for decision requires
e(AjDX) to be large and positive. For example, if e(AjDX) � 20 db, then P (AjDX) > 0:99,
and the total probability of all the alternatives is less than 0.01; then few would hesitate to decide
con�dently in favor of A.

In a real problem we may not have enough data to give such good evidence, and one might
suppose that one could decide safely if the most likely hypothesis A is well separated from the
alternatives, even though e(AjDX) is itself not large. Indeed, if there are 1000 alternatives but
the separation of A from the most likely alternative is more than 20 db, then the odds favor A by
more than 100:1 over any one of the alternatives, and if we were obliged to make a de�nite choice
of one hypothesis here and now, there could still be no hesitation in choosing A; it is clearly the
best we can do with the information we have. Yet we cannot do it so con�dently, for it is now
very plausible that the decision is wrong, because the class of alternatives as a whole is about as
probable as A. But probability theory warns us, by the numerical value of e(AjDX), that this is
the case; we need not be surprised by it.

In scienti�c inference our job is always to do the best we can with whatever information we
have; there is no advance guarantee that our information will be su�cient to lead us to the truth.
But many of the supposed di�culties arise from an inexperienced user's failure to recognize and
use the safety devices that probability theory as logic always provides. Unfortunately, the current
literature o�ers no help here because its viewpoint, concentrated exclusively on sampling theory
aspects, directs attention to other things such as assumed sampling frequencies, as the following
exercises illustrate.

Exercise 4.4. Suppose that B is in fact true; estimate how many tests it will probably
require in order to accumulate an additional 20 db of evidence (above the prior 10 db) in favor
of B. Show that the sampling probability that we could ever obtain 20 db of evidence for A
is negligibly small, even if we sample millions of times. In other words it is, for all practical
purposes, impossible for a doctrinaire zealot to sample to a foregone false conclusion merely by
continuing until he �nally gets the evidence he wants. Note: The calculations called for here
are called \random walk" problems; they are sampling theory exercises. Of course, the results
are not wrong, only incomplete. Some essential aspects of inference in the real world are not
recognized by sampling theory.
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Exercise 4.5. The estimate asked for in Exercise 4.4 is called the \Average Sample Number"
(ASN), and the original rationale for the sequential procedure (Wald, 1947) was not our deriva-
tion from probability theory as logic, but Wald's conjecture (unproven at the time) that the
sequential probability{ratio tests such as (4{17) and (4{19) minimize the ASN for a given reli-
ability of conclusion. Discuss the validity of this conjecture; can one de�ne the term \reliability
of conclusion" in such a way that the conjecture can be proved true?

Evidently, we could extend this example in many di�erent directions. Introducing more \dis-
crete" hypotheses would be perfectly straightforward, as we have seen. More interesting would be
the introduction of a continuous range of hypotheses, such as:

Hf � \The machine is putting out a fraction f bad."

Then instead of a discrete prior probability distribution, our robot would have a continuous distri-
bution in 0 � f � 1, and it would calculate the posterior probabilities for various values of f on
the basis of the observed samples, from which various decisions could be made. In fact, although
we have not yet given a formal discussion of continuous probability distributions, the extension is
so easy that we can give it as an introduction to this example.

Continuous Probability Distribution Functions (pdf's)

Our rules for inference were derived in Chapter 2 only for the case of �nite sets of discrete propo-
sitions (A;B; : : : ). But this is all we ever need in practice; for suppose that f is any continuously
variable real parameter of interest. Then the propositions

F 0

� (f � q)

F 00

� (f > q)

are discrete, mutually exclusive, and exhaustive; so our rules will surely apply to them. Given some
information Y , the probability of F 0 will in general depend on q, de�ning a function

G(q) � P (F 0

jY ) (4{45)

which is evidently monotonic increasing. Then what is the probability that f lies in any speci�ed
interval (a < f � b)? The answer is probably obvious intuitively, but it is worth noting that it is
determined uniquely by the sum rule of probability theory, as follows. De�ne the propositions

A � (f � a) ; B � (f � b) ; W � (a < f � b)

Then a relation of Boolean algebra is B = A+W , and since A and W are mutually exclusive, the
sum rule reduces to

P (BjY ) = P (AjY ) + P (W jY ) (4{46)

But P (BjY ) = G(b), and P (AjY ) = G(a), so we have the result:

P (a < f � b jY ) = P (W jY ) = G(b)�G(a): (4{47)

In the present case G(q) is continuous and di�erentiable, so we may write also

P (a < f � b jY ) =

Z b

a

g(f) df; (4{48)
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where g(f) = G0(f) � 0 is the derivative of G, generally called the probability distribution function,
or the probability density function for f , given Y ; either reading is consistent with the abbreviation
\pdf" which we use henceforth, following the example of Zellner (1971). Its integral G(f) may be
called the cumulative distribution function (CDF) for f .

Thus limiting our basic theory to �nite sets of propositions has not in any way hindered our
ability to deal with continuous probability distributions; we have applied the basic product and sum
rules only to discrete propositions in �nite sets. As long as continuous distributions are de�ned
as above [Equations (4{47), (4{48)] from a basis of �nite sets of propositions, we are protected
safely from inconsistencies by Cox's theorems. But if one becomes overcon�dent and tries to
operate directly on in�nite sets without considering how they are to be generated from �nite sets,
this protection is lost and one stands at the mercy of all the paradoxes of in�nite set theory, as
discussed in Chapter 15; one can then derive sense and nonsense with equal ease.

We must warn the reader about another semantic confusion which has caused error and contro-
versy in probability theory for many decades. It would be quite wrong and misleading to call g(f)
the \posterior distribution of f", because that verbiage would imply to the unwary that f itself
is varying and is \distributed" in some way. This would be another form of the Mind Projection
Fallacy, confusing reality with a state of knowledge about reality. In the problem we are discussing,
f is simply an unknown constant parameter; what is \distributed" is not the parameter, but the
probability. Use of the terminology \probability distribution for f" will be followed, in order to
emphasize this constantly.

Of course, nothing in probability theory forbids us to consider the possibility that f might vary
with time or with circumstance; indeed, probability theory enables us to analyze that case fully,
as we shall see later. But then we should recognize that we are considering a di�erent problem
than the one just discussed; it involves di�erent quantities with di�erent states of knowledge about
them, and requires a di�erent calculation. Confusion of these two problems is perhaps the major
occupational disease of those who fool themselves by using the above misleading terminology. The
pragmatic consequence is that one is led to quite wrong conclusions about the accuracy and range
of validity of the results.

Questions about what happens when G(q) is discontinuous at a point q0 are discussed further
in Appendix B; for the present it su�ces to note that, of course, approaching a discontinuous G(q)
as the limit of a sequence of continuous functions leads us to the correct results. As Gauss stressed
long ago, any kind of singular mathematics acquires a meaning only as a limiting form of some kind
of well{behaved mathematics, and it is ambiguous until we specify exactly what limiting process we
propose to use. In this sense, singular mathematics has necessarily a kind of \anthropomorphic"
character; the question is not \What is it?", but rather \How shall we de�ne it so that it is in some
way useful to us?"

In the present case, we approach the limit in such a way that the density function develops a
sharper and sharper peak, going in the limit into a delta function p0 �(q � q0) signifying a discrete
hypothesis H0, and enclosing a limiting area equal to the probability p0 of that hypothesis. Eq.
(4{55) below is an example. There is no di�culty except for those who are determined to make
di�culties.

But in fact, if we become pragmatic we note that f is not really a continuously variable
parameter. In its working lifetime, a machine will produce only a �nite number of widgets; if it is so
well built that it makes 108 of them, then the possible values of f are a �nite set of integer multiples
of 10�8. Then our �nite set theory will apply, and consideration of a continuously variable f is only
an approximation to the exact discrete theory. There is never any need to consider in�nite sets or
measure theory in the real, exact problem. Likewise, any data set that can actually be recorded and
analyzed is digitized into multiples of some smallest element. Most cases of allegedly continuously
variable quantities are like this when one takes note of the actual, real{world situation.
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Testing an In�nite Number of Hypotheses

In spite of the pragmatic argument just given, thinking of continuously variable parameters is
often a natural and convenient approximation to a real problem (only we should not take it so
seriously that we get bogged down in the irrelevancies for the real world that in�nite sets and
measure theory generate). So suppose that we are now testing simultaneously an uncountably
in�nite number of hypotheses about the machine. As often happens in mathematics, this actually
makes things simpler because analytical methods become available. However, the logarithmic form
of the previous equations is now awkward, and so we will go back to the original probability form
(4{3):

P (AjDX) = P (AjX)
P (DjAX)

P (DjX)
:

Letting A now stand for the proposition \The fraction of bad ones is in the range (f; f+df)", there
is a prior pdf

P (AjX) = g(f jX) df (4{49)

which gives the probability that the fraction of bad ones is in the range df ; and let D stand for the
result thus far of our experiment:

D � \N widgets were tested and we found the results GGBGBBG � � � ,
containing in all n bad ones and (N � n) good ones."

Then the posterior pdf for f is given by

P (AjDX) = P (AjX)
P (DjA;X)

P (DjX)
= g(f jDX) df;

so the prior and posterior pdf 's are related by

g(f jDX) = g(f jX)
P (DjAX)

P (DjX)
: (4{50)

The denominator is just a normalizing constant, which we could calculate directly; but usually
it is easier to determine (if it is needed at all) from requiring that the posterior pdf satisfy the
normalization condition

P (0 � f � 1jDX) =

Z
1

0

g(f jDX) df = 1 ; (4{51)

which we should think of as an extremely good approximation to the exact formula, which has a
sum over an enormous number of discrete values of f , instead of an integral.

The evidence of the data thus lies entirely in the f dependence of P (DjAX). At this point,
let us be very careful, in view of some errors that have trapped the unwary. In this probability,
the conditioning statement A speci�es an interval df , not a point value of f . Are we justi�ed in
taking an implied limit df ! 0 and replacing P (DjAX) with P (DjHfX)? Most writers have not
hesitated to do this.

Mathematically, the correct procedure would be to evaluate P (DjAX) exactly for positive df ,
and pass to the limit df ! 0 only afterward. But a tricky point is that if the problem contains
another parameter � in addition to f , then this procedure is ambiguous until we take the warning
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of Gauss very seriously, and specify exactly how the limit is to be approached (does df tend to zero
at the same rate for all values of �?). For example, if we set df = �h(�) and pass to the limit � ! 0,
our �nal conclusions may depend on which function h(�) was used. Those who fail to notice this
fall into the famous Borel{Kolmogorov Paradox, in which a seemingly well{posed problem appears
to have many di�erent correct solutions. We shall discuss this in more detail later (Chapter 15)
and show that the paradox is averted by strict adherence to our Chapter 2 rules.

In the present relatively simple problem, f is the only parameter present and P (DjHfX) is
a continuous function of f ; this is surely enough to guarantee that the limit is well{behaved and
uneventful. But just to be sure, let us take the trouble to demonstrate this by direct application
of our Chapter 2 rules, keeping in mind that this continuum treatment is really an approximation
to an exact discrete one. Then with df > 0, we can resolve A into a disjunction of a �nite number
of discrete propositions:

A = A1 + A2 + : : :+An

where A1 = Hf (f being one of the possible discrete values) and the Ai specify the discrete values
of f in the interval (f; f + df). They are mutually exclusive, so as we noted in Chapter 2, Eq.
(2{49), application of the product rule and the sum rule gives the general result

P (DjAX) = P (Dj(A1 +A2 + : : :+ An)X) =

P
i P (AijX)P (DjAiX)P

i P (AijX)
(4{52)

which is a weighted average of the separate probabilities P (DjAiX). This may be regarded also as
a generalization of (4{35).

Then if all the P (DjAiX) were equal, (4{52) would become independent of their prior proba-
bilities P (AijX) and equal to P (DjA1X) = P (DjHfX); the fact that the conditioning statement
in the left{hand side of (4{52) is a logical sum makes no di�erence, and P (DjAX) would be rigor-
ously equal to P (DjHfX). Even if the P (DjAiX) are not equal, as df ! 0, we have n ! 1 and
eventually A = A1, with the same result.

It may appear that we have gone to extraordinary lengths to argue for an almost trivially
simple conclusion. But the story of the schoolboy who made a mistake in his sums and concluded
that the rules of arithmetic are all wrong, is not fanciful. There is a long history of workers who
did seemingly obvious things in probability theory without bothering to derive them by strict
application of the basic rules, obtained nonsensical results { and concluded that probability theory
as logic was at fault. The greatest, most respected mathematicians and logicians have fallen into
this trap momentarily, and some philosophers spend their entire lives mired in it; we shall see some
examples in the next Chapter.

Such a simple operation as passing to the limit df ! 0 may produce results that seem to us
obvious and trivial; or it may generate a Borel{Kolmogorov paradox. We have learned from much
experience that this care is needed whenever we venture into a new area of applications; we must
go back to the beginning and derive everything directly from �rst principles applied to �nite sets.
If we obey the Chapter 2 rules prescribed by Cox's theorems, we are rewarded by �nding beautiful
and useful results, free of contradictions.

Now if we were given that f is the correct fraction of bad ones, then the probability of getting
a bad one at each trial would be f , and the probability of getting a good one would be (1�f). The
probabilities at di�erent trials are, by hypothesis (i.e., one of the many statements hidden there in
X), logically independent given f , and so, as in our derivation of the binomial distribution (3{74),

P (DjHfX) = fn(1� f)N�n (4{53)
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(note that the experimental data D told us not only how many good and bad ones were found, but
also the order in which they appeared). Therefore, we have the posterior pdf

g(f jDX) =
fn(1� f)N�n g(f jX)R

1

0
fn(1� f)N�n g(f jX) df

: (4{54)

You may be startled to realize that all of our previous discussion in this Chapter is contained in
this simple looking equation, as special cases. For example, the multiple hypothesis test starting
with (4{38) and including the �nal results (4{40) { (4{44) is all contained in (4{54) corresponding
to the particular choice of prior pdf :

g(f jX) =
10

11
(1� 10�6) �(f �

1

6
) +

1

11
(1� 10�6) �(f �

1

3
) + 10�6 �(f �

99

100
) (4{55)

This is a case where the cumulative pdf , G(f) is discontinuous. The three delta{functions corre-
spond to the three discrete hypotheses B;A;C respectively, of that example. They appear in the
prior pdf (4{55) with coe�cients which are the prior probabilities (4{28); and in the posterior pdf
(4{54) with altered coe�cients which are just the posterior probabilities (4{40), (4{43), (4{44).

Readers who have been taught to mistrust delta{functions as \nonrigorous" are urged to read
Appendix B at this point. The issue has nothing to do with mathematical rigor; it is simply one of
notation appropriate to the problem. It would be di�cult and awkward to express the information
conveyed in (4{55) by a single equation in Lebesgue{Stieltjes type notation. Indeed, failure to use
delta{functions where they are clearly called for has led mathematicians into elementary errors, as
noted in Appendix B.

Suppose that at the start of this test our robot was fresh from the factory; it had no prior
knowledge about the machines at all, except for our assurance that it is possible for a machine to
make a good one, and also possible for it to make a bad one. In this state of ignorance, what prior
pdf g(f jX) should it assign? If we have de�nite prior knowledge about f , this is the place to put
it in; but we have not yet seen the principles needed to assign such priors. Even the problem of
assigning priors to represent \ignorance" will need much discussion later; but for a simple result
now it may seem to the reader, as it did to Laplace 200 years ago, that in the present case the
robot has no basis for assigning to any particular interval df a higher probability than to any other
interval of the same size; so the only honest way it can describe what it knows is to assign a uniform
prior probability density, g(f jX) = const: This will receive a better theoretical justi�cation later;
to normalize it correctly as in (4{51) we must take

g(f jX) = 1; 0 � f � 1: (4{56)

The integral in (4{54) is then the well{known Eulerian integral of the �rst kind, today more
commonly called the complete Beta{function; and (4{54) reduces to

g(f jDX) =
(N + 1)!

n! (N � n)!
fn(1� f)N�n (4{57)

[Historical Digression: It appears that this result was �rst found by an amateur mathematician,
the Rev. Thomas Bayes (1763). For this reason, the kind of calculations we are doing are often
called \Bayesian". The general result (4{3) is usually called \Bayes' theorem", although Bayes
never wrote it. This terminology is misleading in several respects; �rstly, (4{3) is nothing but the
product rule of probability theory which was recognized by other writers, such as Bernoulli and
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de Moivre, long before the work of Bayes. It was not Bayes, but Laplace (1774) who �rst saw the
result in generality and showed how to use it in real problems of hypothesis testing. Finally, the
calculations we are doing { the direct application of probability theory as logic { are more general
than mere application of Bayes' theorem; that is only one of several items in our toolbox.]

The right{hand side of (4{57) has a single peak in (0 � f � 1), located by di�erentiation at

f = f̂ �
n

N
; (4{58)

just the observed proportion, or relative frequency, of bad ones. To �nd the sharpness of the peak,
write

L(f) � log g(f jDX) = n log f + (N � n) log(1� f) + const: (4{59)

and expand L(f) in a Taylor series about f̂ . The �rst terms are

L(f) = L(f̂ ) �
(f � f̂)2

2�2
+ � � � (4{60)

where

�2 �
f̂(1� f̂ )

N
(4{61)

and so, to this approximation, (4{57) is a gaussian, or normal, distribution:

g(f jDX)' K exp

(
�
(f � f̂)2

2�2

)
(4{62)

and K is a normalizing constant. As explained in Appendix E, (4{62) is actually an excellent
approximation to (4{57) in the entire interval (0 < f < 1), provided that n >> 1 and (N�n) >> 1.
Properties of the gaussian distribution are discussed in depth in Chapter 7.

Thus after observing n bad ones in N trials, the robot's state of knowledge about f can be
described reasonably well by saying that it considers the most likely value of f to be just the
observed fraction of bad ones, and it considers the accuracy of this estimate to be such that the
interval f̂ �� is reasonably likely to contain the true value. The parameter � is called the standard
deviation and �2 the variance of the pdf (4{62). More precisely, from numerical analysis of (4{62)
the robot assigns:

50% probability that the true value of f is contained in the interval f̂ � 0:68 �,

90% probability that it is contained in f̂ � 1:65 �,

99% probability that it is contained in f̂ � 2:57 �.

As the number N of tests increases, these intervals shrink, according to (4{61), proportional to
N�1=2, a common rule that arises repeatedly in probability theory.

In this way, we see that the robot starts in a state of \complete ignorance" about f ; but as
it accumulates information from the tests, it acquires more and more de�nite opinions about f ,
which correspond very nicely to common sense. Two cautions; (1) all this applies only to the case
where, although the numerical value of f is initially unknown, it was one of the conditions de�ning
the problem that f is known not to be changing with time, and (2) again we must warn against
the error of calling � the \variance of f", which would imply that f is varying, and that � is a
real (i.e., measurable) physical property of f . That is one of the most common forms of the Mind
Projection Fallacy.
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It is really necessary to belabor this point: � is not a real property of f , but only a property of
the probability distribution that the robot assigns to represent its state of knowledge about f . Two
robots with di�erent information would, naturally and properly, assign di�erent pdf 's for the same
unknown quantity f , and the one which is better informed will probably { and deservedly { be able
to estimate f more accurately; that is, to use a smaller �.

But as noted, we may consider a di�erent problem in which f is variable if we wish to do so.
Then the mean{square variation s2 of f over some class of cases will become a \real" property, in
principle measurable, and the question of its relation, if any, to the �2 of the robot's pdf for that
problem can be investigated mathematically, as we shall do later in connection with time series.
The relation will prove to be: if we know � but have as yet no data and no other prior information

about s, then the best prediction of s that we can make is essentially equal to �; and if we do have
the data but do not know � and have no other prior information about �, then the best estimate of
� that we can make is nearly equal to s. These relations are mathematically derivable consequences
of probability theory as logic.

Indeed, it would be interesting, and more realistic for some quality{control situations, to
introduce the possibility that f might vary with time, and the robot's job is to make the best
possible inferences about whether a machine is drifting slowly out of adjustment, with the hope of
correcting trouble before it became serious. Many other extensions of our problem occur to one:
a simple classi�cation of widgets as good and bad is not too realistic; there is likely a continuous
gradation of quality, and by taking that into account we could re�ne these methods. There might
be several important properties instead of just \badness" and \goodness" (for example, if our
widgets are semiconductor diodes, forward resistance, noise temperature, rf impedance, low{level
recti�cation e�ciency, etc.), and we might also have to control the quality with respect to all of
these. There might be a great many di�erent machine characteristics, instead of just Hf , about
which we need plausible inference.

You see that we could spend years and write volumes on all the further rami�cations of this
problem, and there is already a huge literature on it. But although there is no end to the complicated
details that can be generated, there is in principle no di�culty in making whatever generalization
you need. It requires no new principles beyond what we have given.

In the problem of detecting a drift in machine characteristics, you would want to compare
our robot's procedure with the ones proposed long ago by Shewhart (1931). You would �nd that
Shewhart's methods are intuitive approximations to what our robot would do; in some of the cases
involving a normal distribution they are the same (but for the fact that Shewhart was not thinking
sequentially; he considered the number of tests determined in advance). These are, incidentally,
the only cases where Shewhart felt that his proposed methods were fully satisfactory.

This is really the same problem as that of detecting a signal in noise, which we shall study in
more detail later on.

Simple and Compound (or Composite) Hypotheses

The hypotheses (A;B;C;Hf) that we have considered thus far refer to a single parameter f =M=N ,
the unknown fraction of bad widgets in our box, and specify a sharply de�ned value for f (in Hf ,
it can be any prescribed number in 0 � f � 1). Such hypotheses are called simple, because if we
formalize this a bit more by de�ning an abstract \parameter space" 
 consisting of all values of
the parameter or parameters that we consider to be possible, such an hypothesis is represented by
a single point in 
.

But testing all the simple hypotheses in 
 may be more than we need for our purposes. It may
be that we care only whether our parameter lies in some subset 
1 of 
 or in the complementary
set 
2 = 
� 
1, and the particular value of f in that subset is uninteresting (i.e., it would make



426 4: COMMENTS 426

no di�erence for what we plan to do next). Can we proceed directly to the question of interest,
instead of requiring our robot to test every simple hypothesis in 
1?

The question is, to us, trivial; our starting point, Eq. (4{3), applies for all hypotheses H ,
simple or otherwise, so we have only to evaluate the terms in it for this case. But in (4{54) we
have done almost all of that, and need only one more integration. Suppose that if f > 0:1 then we
need to take some action (stop the machine and readjust it), but if f � 0:1 we should allow it to
continue running. The space 
 then consists of all f in [0, 1], and we take 
1 as comprising all f
in (0.1, 1], H as the hypothesis that f is in 
1. Since the actual value of f is not of interest, f is
now called a nuisance parameter; and we want to get rid of it.

In view of the fact that the problem has no other parameter than f and di�erent intervals
df are mutually exclusive, the discrete sum rule P (A1 + � � � + AnjB) =

P
i P (AijB) will surely

generalize to an integral as the Ai become more and more numerous. Then the nuisance parameter
f is removed by integrating it out of (4{54):

P (
1jDX) =

R

1

fn(1� f)N�n g(f jX) dfR


fn(1� f)N�n g(f jX) df

(4{63)

In the case of a uniform prior pdf for f , we may use (4{54) and the result is the incomplete Beta
function: the posterior probability that f is in any speci�ed interval (a < f < b) is

P (a < f < bjDX) =
(N + 1)!

n! (N � n)!

Z b

a

fn(1� f)N�n df (4{64)

and in this form computer evaluation is easy.

More generally, when we have any composite hypothesis to test, probability theory tells us
that the proper procedure is simply to apply the principle (4{1) by summing or integrating out,
with respect to appropriate priors, whatever nuisance parameters it contains. The conclusions thus
found take fully into account all of the evidence contained in the data and in the prior information
about the parameters. Probability theory used as logic enables us to test, with a single principle,
any number of hypotheses, simple or compound, in the light of the data and prior information. In
later Chapters we shall demonstrate these properties in many quantitatively worked out examples.

COMMENTS

Etymology: Our opening quotation from John Craig (1699) is from a curious work on the proba-
bilities of historical events, and how they change as the evidence changes. Craig's work was ridiculed
mercilessly in the 19'th Century; and indeed, his applications to religious issues do seem weird to us
today. But S. M. Stigler (1986) notes that Craig was writing at a time when the term \probability"
had not yet settled down to its present technical meaning, as referring to a (0{1) scale; and if we
merely interpret Craig's \probability of an hypothesis" as our log{odds measure (which we have
seen to have in some respects a more primitive and intuitive meaning than probability), Craig's
reasoning was actually quite good, and may be regarded as an anticipation of what we have done
in this Chapter.

Today, the logarithm{of{odds fu = log[p=(1�p)]g has proved to be such an important quantity
that it deserves a shorter name; but we seem to have trouble �nding one. I. J. Good (1950) was
perhaps the �rst author to stress its importance in a published work, and he proposed the name
lods, but the term has a leaden ring to our ears, as well as a non{descriptive quality, and it has
never caught on.

Our same quantity (4{8) was used by Alan Turing and I. J. Good from 1941, in classi�ed
cryptographic work in England during World War II. Good (1980) later reminisced about this
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briey, and noted that Turing coined the name \deciban" for it. This has not caught on, presumably
because nobody today can see any rationale for it.

The present writer, in his lectures of 1955{1964 (for example, Jaynes, 1958), proposed the
name evidence, which is intuitive and descriptive in the sense that for given proportions, twice as
many data provide twice as much evidence for an hypothesis. This was adopted by Tribus (1969),
but it has not caught on either.

More recently, the term logit for U � log[y=(a � y)] where fyig are some items of data and
a is chosen by some convention such as a = 100, has come into use. Likewise, graphs using U for
one axis, are called logistic. For example, in one commercial software graphics program, an axis
on which values of U are plotted is called a \logit axis" and regression on that graph is called
\logistic regression". There is at least a mathematical similarity to what we do here, but not any
very obvious conceptual relation because U is not a measure of probability. In any event, the term
\logistic" had already an established usage dating back to Poincar�e and Peano, as referring to the
Russell{Whitehead attempt to reduce all mathematics to logic.

In the face of this confusion, we propose and use the following terminology. Note that we need
two terms; the name of the quantity, and the name of the units in which it is measured. For the
former we have retained the name evidence, which has at least the merit that it has been de�ned,
and used consistently with the de�nition, in previously published works. One can then use various
di�erent units, with di�erent names. In this Chapter we have measured evidence in decibels because
of its familiarity to scientists, the ease of �nding numerical values, and the connection with the
base 10 number system which makes the results intuitively clear.

What Have We Accomplished?

The things which we have done in such a simple way in this Chapter have been, in one sense,
deceptive. We have had an introduction, in an atmosphere of apparent triviality, into almost every
kind of problem that arises in the hypothesis testing business. But do not be deceived by the
simplicity of our calculations into thinking that we have not reached the real nontrivial problems
of the �eld. Those problems are only straightforward mathematical generalizations of what we
have done here, and the mathematically mature reader who has understood this Chapter can now
solve them for himself, probably with less e�ort than it would require to �nd and understand the
solutions available in the literature.

In fact, the methods of solution that we have indicated have far surpassed, in power to yield
useful results, the methods available in the conventional non{Bayesian literature of hypothesis
testing. To the best of our knowledge, no comprehension of the facts of multiple hypothesis testing,
as illustrated in Fig. 4.1, can be found in the orthodox literature (which explains why the principles
of multiple hypothesis testing have been controversial in that literature). Likewise, our form of
solution of the compound hypothesis problem (4{63) will not be found in the \orthodox" literature
of the subject.

It was our use of probability theory as logic that has enabled us to do so easily what was impos-
sible for those who thought of probability as a physical phenomenon associated with \randomness".
Quite the opposite; we have thought of probability distributions as carriers of information. At the
same time, under the protection of Cox's theorems, we have avoided the inconsistencies and ab-
surdities which are generated inevitably by those who try to deal with the problems of scienti�c
inference by inventing ad hoc devices instead of applying the rules of probability theory. For a
devastating criticism of these devices, see the book review by Pratt (1961).

However, it is not only in hypothesis testing that the foundations of the theory matter for
applications. As indicated in Chapter 1 and Appendix A, our formulation was chosen with the aim
of giving the theory the widest possible range of useful applications. To drive home how much the
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scope of solvable problems depends on the chosen foundations, the reader may try the following
exercise:

Exercise 4.6. In place of our product and sum rules, Ruelle (1991, p. 17) de�nes the `mathe-
matical presentation' of probability theory by three basic rules, which are in our notation:

p(A) = 1� p(A)

If A and B are mutually exclusive; p(A+ B) = p(A) + p(B)

if A and B are independent; p(AB) = p(A) p(B) :

Survey our last two Chapters, and determine how many of the applications that we solved in
Chapters 3 and 4 could have been solved by application of these rules. Hints : If A and B are not
independent, is p(AB) determined by them? Is the notion of conditional probability de�ned?
Ruelle makes no distinction between logical and causal independence; he de�nes `independence'
of A and B as meaning: \the fact that one is realized has in the average no inuence on the
realization of the other." It appears, then, that he would always accept (4{27) for all n.

This exercise makes it clear why conventional expositions do not consider scienti�c inference
to be a part of probability theory. Indeed, orthodox statistical theory is helpless to deal with such
problems because, thinking of probability as a physical phenomenon, it recognizes the existence
only of sampling probabilities; thus it denies itself the technical tools needed to incorporate prior
information, eliminate nuisance parameters, or to recognize the information contained in a posterior
probability. But even most of the sampling theory results that we derived in Chapter 3, are beyond
the scope of the mathematical and conceptual foundation given by Ruelle, as are virtually all of
the parameter estimation results to be derived in Chapter 6.

We shall �nd later that our way of treating compound hypotheses illustrated here also generates
automatically the conventional orthodox signi�cance tests or superior ones; and at the same time
gives a clear statement of what they are testing and their range of validity, previously lacking in
the orthodox literature.

Now that we have seen the beginnings of this situation, before turning to more serious and
mathematically more sophisticated problems, we shall relax and amuse ourselves in the next Chap-
ter by examining how probability theory as logic can clear up all kinds of weird errors in the older
literature, that arose from very simple misuse of probability theory, but whose consequences were
relatively trivial. In Chapter 15 we consider some more complicated and serious errors, that are
causing major confusion in the current literature. Finally, in Chapter 17 and Section B on Ad-
vanced Applications we shall see some even more serious errors of orthodox thinking, which today
block the progress of science and endanger the public health and safety.
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Figure 4.1. A Surprising Multiple Sequential Test

Wherein a Dead Hypothesis (C) is Resurrected.

1
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CHAPTER 5

QUEER USES FOR PROBABILITY THEORY

\I cannot conceal the fact here that in the speci�c application of these

rules, I foresee many things happening which can cause one to be badly

mistaken if he does not proceed cautiously : : : "

| James Bernoulli (1713); Part 4, Chapter III

I. J. Good (1950) has shown how we can use probability theory backwards to measure our own
strengths of belief about propositions. For example, how strongly do you believe in extrasensory
perception?

Extrasensory Perception

What probability would you assign to the hypothesis that Mr. Smith has perfect extrasensory
perception? More speci�cally, he can guess right every time which number you have written down.
To say zero is too dogmatic. According to our theory, this means that we are never going to allow
the robot's mind to be changed by any amount of evidence, and we don't really want that. But
where is our strength of belief in a proposition like this?

Our brains work pretty much the way this robot works, but we have an intuitive feeling for
plausibility only when it's not too far from 0 db. We get fairly de�nite feelings that something is
more than likely to be so or less than likely to be so. So the trick is to imagine an experiment.
How much evidence would it take to bring your state of belief up to the place where you felt very
perplexed and unsure about it? Not to the place where you believed it { that would overshoot the
mark, and again we'd lose our resolving power. How much evidence would it take to bring you just
up to the point where you were beginning to consider the possibility seriously?

We take this man who says he has extrasensory perception, and we will write down some
numbers from 1 to 10 on a piece of paper and ask him to guess which numbers we've written down.
We'll take the usual precautions to make sure against other ways of �nding out. If he guesses the
�rst number correctly, of course we will all say \you're a very lucky person, but I don't believe it."
And if he guesses two numbers correctly, we'll still say \you're a very lucky person, but I don't
believe it." By the time he's guessed four numbers correctly { well, I still wouldn't believe it. So
my state of belief is certainly lower than �40 db.

How many numbers would he have to guess correctly before you would really seriously consider
the hypothesis that he has extrasensory perception? In my own case, I think somewhere around
10. My personal state of belief is, therefore, about �100 db. You could talk me into a �10 change,
and perhaps as much as �30, but not much more than that.

But on further thought we see that, although this result is correct, it is far from the whole
story. In fact, if he guessed 1000 numbers correctly, I still would not believe that he has ESP, for an
extension of the same reason that we noted in Chapter 4 when we �rst encountered the phenomenon
of resurrection of dead hypotheses. An hypothesis A that starts out down at�100 db can hardly ever
come to be believed whatever the data, because there are almost sure to be alternative hypotheses
(B1; B2; : : :) above it, perhaps down at �60 db. Then when we get astonishing data that might
have resurrected A, the alternatives will be resurrected instead. Let us illustrate this by two famous
examples, involving telepathy and the discovery of Neptune. Also we note some interesting variants
of this. Some are potentially useful, some are instructive case histories of probability theory gone
wrong, in the way Bernoulli warned us about.
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Mrs. Stewart's Telepathic Powers

Before venturing into this weird area, the writer must issue a disclaimer. I was not there, and am
not in a position to a�rm that the experiment to be discussed actually took place; or if it did,
that the data were actually obtained in a valid way. Indeed, that is just the problem that you and
I always face when someone tries to persuade us of the reality of ESP or some other marvelous
thing { such things never happen to us or in our presence. All we are able to a�rm is that the
experiment and data have been reported in a real, veri�able reference (Soal and Bateman, 1954).
This is the circumstance that we want to analyze now by probability theory. Lindley (1957) and
Bernardo (1980) have also taken note of it from the standpoint of probability theory, and Boring
(1955) discusses it from the standpoint of psychology.

In the reported experiment, from the experimental design the probability of guessing a card
correctly should have been p = 0:2, independently in each trial. Let Hp be the \null hypothesis"
which states this, and supposes that only \pure chance" is operating (whatever that means). Ac-
cording to the binomial distribution (3{74) Hp predicts that if a subject has no ESP, the number
r of successful guesses in n trials should be about (mean � standard deviation):

(r)est = np �
p
np(1� p) : (5{1)

For n = 37100 trials, this is 7420� 77.

But according to the report, Mrs. Gloria Stewart guessed correctly r = 9410 times in 37100
trials, for a fractional success rate of f = 0:2536. These numbers constitute our data D. At �rst
glance, they may not look very sensational; note, however, that her score was

9410� 7420

77
= 25:8 (5{2)

standard deviations away from the chance expectation.

The probability of getting these data, on hypothesis Hp, is then the binomial

P (DjHp) =

�
n

r

�
pr(1� p)n�r : (5{3)

But the numbers n; r are so large that we need the Stirling approximation to the binomial, derived
in Appendix E:

P (DjHp) = AenH(f;p) (5{4)

where

H(f; p) = f log(p=f) + (1� f) log[(1� p)=(1� f)] = �0:008452 (5{5)

is the entropy of the observed distribution (f; 1 � f) = (0:2536; 0:7464) relative to the expected
one (p; 1� p) = (0:2000; 0:8000), and

A �

�
n

2� r(n� r)

�1=2
= 0:00476 : (5{6)

Then we may take as the likelihood Lp of Hp, the sampling probability

Lp = P (DjHp) = 0:00476 exp(�313:6) = 3:15� 10�139 : (5{7)
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This looks fantastically small; but before jumping to conclusions the robot should ask: are the data
also fantastically improbable on the hypothesis that Mrs. Stewart has telepathic powers? If they
are, then (5{7) may not be so signi�cant after all.

Consider the Bernoulli class of alternative hypotheses Hq (0 � q � 1), which suppose that the
trials are independent, but that assign di�erent probabilities of success q to Mrs. Stewart (q > 0:2
if the hypothesis considers her to be telepathic). Out of this class, the hypothesis Hf that assigns
q = f = 0:2536 yields the greatest P (DjHq) that can be attained in the Bernoulli class, and for
this the entropy (5{5) is zero, yielding a maximum likelihood of

Lf = P (DjHf) = A = 0:00476 : (5{8)

So if the robot knew for a fact that Mrs. Stewart is telepathic to the extent of q = 0:2536, then the
probability that she could generate the observed data would not be particularly small. Therefore,
the smallness of (5{7) is indeed highly signi�cant; for then the likelihood ratio for the two hypotheses
must be fantastically small. The relative likelihood depends only on the entropy factor:

Lp

Lf
=

P (DjHp)

P (DjHf)
= enH = exp(�313:6) = 6:61� 10�137 : (5{9)

and the robot would report: \the data do indeed support Hf over Hp by an enormous factor".

Digression on the Normal Approximation

Note, in passing, that in this calculation large errors could be made by unthinking use of the normal
approximation to the binomial, also derived in Appendix E (or compare with (4{62)):

P (DjHp; X) ' (const:)� exp

�
�n(f � p)2

2p(1� p)

�
(5{10)

To use it here instead of the entropy approximation (5{4), amounts to replacing the entropyH(f; p)
by the �rst term of its power series expansion about the peak. Then we would have found instead
a likelihood ratio exp (�333:1). Thus the normal approximation would have made Mrs. Stewart
appear even more marvelous than the data indicate, by an additional odds ratio factor of

exp (19:5) = 2:94� 108 : (5{11)

This should warn us that, quite generally, normal approximations cannot be trusted far out in
the tails of a distribution. In this case, we are 25.8 standard deviations out, and the normal
approximation is in error by over eight orders of magnitude.

Unfortunately, this is just the approximation used by the Chi{squared test discussed later,
which can therefore lead us to wildly misleading conclusions when the \null hypothesis" being
tested �ts the data very poorly. Those who use the Chi{squared test to support their claims
of marvels are usually helping themselves by factors such as (5{11). In practice, as discussed in
Appendix E, the entropy calculation (5{5) is just as easy and far more trustworthy (although they
amount to the same thing within one or two standard deviations of the peak).
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Back to Mrs. Stewart

In any event, our present numbers are indeed fantastic; on the basis of such a result, ESP researchers
would proclaim a virtual certainty that ESP is real. If we compareHp andHf by probability theory,
the posterior probability that Mrs. Stewart has ESP to the extent of q = f = 0:2536, is

P (Hf jD;X) = P (Hf jX)
P (DjHf ; X)

P (DjX)
=

PfLf

PfLf + PpLp
(5{12)

where Pp, Pf are the prior probabilities of Hp, Hf . But because of (5{9), it hardly matters what
these prior probabilities are; in the view of an ESP researcher who does not consider the prior
probability Pf = P (Hf jX) particularly small, P (Hf jD;X) is so close to unity that its decimal
expression starts with over a hundred 9's.

He will then react with anger and dismay when, in spite of what he considers this overwhelming
evidence, we persist in not believing in ESP. Why are we, as he sees it, so perversely illogical and
unscienti�c?

The trouble is that the above calculations (5{9) and (5{12) represent a very na��ve application
of probability theory, in that they consider only Hp and Hf ; and no other hypotheses. If we really
knew thatHp and Hf were the only possible ways the data (or more precisely, the observable report
of the experiment and data) could be generated, then the conclusions that follow from (5{9) and
(5{12) would be perfectly all right. But in the real world, our intuition is taking into account some
additional possibilities that they ignore.

Probability theory gives us the results of consistent plausible reasoning from the information
that was actually used in our calculation. It can lead us wildly astray, as Bernoulli noted in our
opening quotation, if we fail to use all the information that our common sense tells us is relevant
to the question we are asking. When we are dealing with some extremely implausible hypothesis,
recognition of a seemingly trivial alternative possibility can make orders of magnitude di�erence in
the conclusions. Taking note of this, let us show how a more sophisticated application of probability
theory explains and justi�es our intuitive doubts.

Let Hp, Hf , and Lp, Lf , Pp, Pf be as above; but now we introduce some new hypotheses
about how this report of the experiment and data might have come about, which will surely be
entertained by the readers of the report even if they are discounted by its writers.

These new hypotheses (H1; H2 : : :Hk) range all the way from innocent possibilities such as
unintentional error in the record keeping, through frivolous ones (perhaps Mrs. Stewart was having
fun with those foolish people, with the aid of a little mirror that they did not notice), to less
innocent possibilities such as selection of the data (not reporting the days when Mrs. Stewart was
not at her best), to deliberate falsi�cation of the whole experiment for wholly reprehensible motives.
Let us call them all, simply, \deception". For our purposes it does not matter whether it is we or
the researchers who are being deceived, or whether the deception was accidental or deliberate. Let
the deception hypotheses have likelihoods and prior probabilities Li, Pi, i = (1; 2; :::; k).

There are, perhaps, 100 di�erent deception hypotheses that we could think of and are not too
far{fetched to consider, although a single one would su�ce to make our point.

In this new logical environment, what is the posterior probability of the hypothesis Hf that
was supported so overwhelmingly before? Probability theory now tells us that

P (Hf jD;X) =
PfLf

PfLf + PpLp + �PiLi
: (5{13)

Introduction of the deception hypotheses has changed the calculation greatly; in order for
P (Hf jDX) to come anywhere near unity it is now necessary that
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PpLp +�iPiLi << PfLf : (5{14)

Let us suppose that the deception hypotheses have likelihoods Li of the same order as Lf in (5{
8); i.e., a deception mechanism could produce the reported data about as easily as could a truly
telepathic Mrs. Stewart. From (5{7), PpLp is completely negligible, so (5{14) is not greatly di�erent
from

X
Pi << Pf : (5{15)

But each of the deception hypotheses is, in my judgment, more likely than Hf , so there is not the
remotest possibility that the inequality (5{15) could ever be satis�ed.

Therefore, this kind of experiment can never convince me of the reality of Mrs. Stewart's
ESP; not because I assert Pf = 0 dogmatically at the start, but because the veri�able facts can
be accounted for by many alternative hypotheses, every one of which I consider inherently more
plausible than Hf , and none of which is ruled out by the information available to me.

Indeed, the very evidence which the ESP'ers throw at us to convince us, has the opposite e�ect
on our state of belief; issuing reports of sensational data defeats its own purpose. For if the prior
probability of deception is greater than that of ESP, then the more improbable the alleged data
are on the null hypothesis of no deception and no ESP, the more strongly we are led to believe, not
in ESP, but in deception. For this reason, the advocates of ESP (or any other marvel) will never
succeed in persuading scientists that their phenomenon is real, until they learn how to eliminate
the possibility of deception in the mind of the reader. As (5{15) shows, the reader's total prior
probability of deception by all mechanisms must be pushed down below that of ESP.

It is interesting that Laplace perceived this phenomenon long ago. His Essai Philosophique

sur les probabilit�es (1819) has a long chapter on the \Probabilities of Testimonies", in which he
calls attention to \the immense weight of testimonies necessary to admit a suspension of natural

laws". He notes that those who make recitals of miracles, \decrease rather than augment the belief

which they wish to inspire; for then those recitals render very probable the error or the falsehood

of their authors. But that which diminishes the belief of educated men often increases that of the

uneducated, always avid for the marvelous ."

We observe the same phenomenon at work today, not only in the ESP enthusiast, but in the
astrologer, reincarnationist, exorcist, fundamentalist preacher or cultist of any sort, who attracts
a loyal following among the uneducated by claiming all kinds of miracles; but has zero success in
converting educated people to his teachings. Educated people, taught to believe that a cause{e�ect
relation requires a physical mechanism to bring it about, are scornful of arguments which invoke
miracles; but the uneducated seem actually to prefer them.

Note that we can recognize the clear truth of this psychological phenomenon without taking
any stand about the truth of the miracle; it is possible that the educated people are wrong. For
example, in Laplace's youth educated persons did not believe in meteorites, but dismissed them as
ignorant folklore because they are so rarely observed. For one familiar with the laws of mechanics
the notion that \stones fall from the sky" seemed preposterous, while those without any conception
of mechanical law saw no di�culty in the idea. But the fall at Laigle in 1803, which left fragments
studied by Biot and other French scientists, changed the opinions of the educated { including
Laplace himself. In this case the uneducated, avid for the marvelous, happened to be right: c'est
la vie.

Indeed, in the course of writing this Chapter, the writer found himself a victim of this phe-
nomenon. In the Ph. D. thesis of G. L. Bretthorst (1987), reported in Chapter 21 below and more
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fully in Bretthorst (1988), we applied Bayesian analysis to estimation of frequencies of nonstation-
ary sinusoidal signals, such as exponential decay in nuclear magnetic resonance (NMR) data, or
chirp in oceanographic waves. We found { as was expected on theoretical grounds { an improved
resolution over the previously used fourier transform methods.

If we had claimed a 50% improvement, we would have been believed at once, and other re-
searchers would have adopted this method eagerly. But in fact we found orders of magnitude
improvement in resolution. It was, in retrospect, foolish of us to mention this at the outset, for in
the minds of others the prior probability that we were irresponsible charlatans was greater than the
prior probability that a new method could possibly be that good; and we were not at �rst believed.

Fortunately, we were able, by presenting many numerical analyses of data and distributing free
computer programs so that doubters could check our claims for themselves on whatever data they
chose, to eliminate the possibility of deception in the minds of our audience, and the method did �nd
acceptance after all. The Bayesian analyses of free decay NMR signals now permits expermentalists
to extract much more information from their data than was possible by taking fourier transforms.

However, the reader should be warned that our probability analysis (5{13) of Mrs. Stewart's
performance is still rather na��ve in that it neglects correlations; having seen a persistent deviation
from the chance expectation p = 0:2 in the �rst few hundred trials, common sense would lead us
to form the hypothesis that some unknown systematic cause is at work, and we would come to
expect the same deviation in the future. This would alter the numerical values given above, but
not enough to change our general conclusions. More sophisticated probability models which are
able to take such things into account are given in our discussions of advanced applications below;
relevant topics are Dirichlet priors, exchangeable sequences, and autoregressive models.

Now let us return to that original device of I. J. Good, which started this train of thought. After
all this analysis, why do we still hold that na��ve �rst answer of �100 db for my prior probability of
ESP, as recorded above, to be correct? Because Jack Good's imaginary device can be applied to
whatever state of knowledge we choose to imagine; it need not be the real one. If I knew that true
ESP and pure chance were the only possibilities, then the device would apply and my assignment
of �100 db would hold. But knowing that there are other possibilities in the real world does not
change my state of belief about ESP; so the �gure of �100 db still holds.

Therefore, in the present state of development of probability theory, the device of imaginary
results is usable and useful in a very wide variety of situations, where we might not at �rst think
it applicable. We shall �nd it helpful in many cases where our prior information seems at �rst
too vague to lead to any de�nite prior probabilities; it stimulates our thinking and tells us how
to assign them after all. Perhaps in the future we shall have more formal principles that make it
unnecessary.

Exercise 5.1. By applying the device of imaginary results, �nd your own strength of belief in
any three of the following propositions: (1) Julius Caesar is a real historical person (i.e., not a
myth invented by later writers); (2) Achilles is a real historical person; (3) The Earth is more
than a million years old; (4) Dinosaurs did not die out; they are still living in remote places; (5)
Owls can see in total darkness; (6) The con�guration of the planets inuences our destiny; (7)
Automobile seat belts do more harm than good; (8) High interest rates combat ination; (9)
High interest rates cause ination. [Hint : Try to imagine a situation in which the proposition
H0 being tested, and a single alternative H1, would be the only possibilities, and you receive
new \data" D consistent with H0: P (DjH0) ' 1. The imaginary alternative and data are to be
such that you can calculate the probability P (DjH1). Always use an H0 that you are inclined
not to believe; if the proposition as stated seems highly plausible to you, then for H0 choose its
denial.]
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Much more has been written about the Soal experiments in ESP. The deception hypothesis,
already strongly indicated by our probability analysis, is supported by additional evidence (Hansel,
1980; Kurtz, 1985). Altogether, an appalling amount of e�ort has been expended on this incident,
and it might appear that the only result was to provide a pedagogical example of the use of
probability theory with very unlikely hypotheses. Can anything more useful be salvaged from it?

We think that this incident has some lasting value both for psychology and for probability
theory, because it has made us aware of an important general phenomenon which has nothing to
do with ESP; a person may tell the truth and not be believed, even though the disbelievers are
reasoning in a rational, consistent way. To the best of our knowledge it has not been noted before
that probability theory as logic automatically reproduces and explains this phenomenon. This
leads us to conjecture that it may generalize to other more complex and puzzling psychological
phenomena.

Converging and Diverging Views

Suppose that two people, Mr. A and Mr. B have di�ering views (due to their di�ering prior
information) about some issue, say the truth or falsity of some controversial proposition S. Now
we give them both a number of new pieces of information or \data", D1; D2; : : :Dn, some favorable
to S, some unfavorable. As n increases, the totality of their information comes to be more nearly
the same, therefore we might expect that their opinions about S will converge toward a common
agreement. Indeed, some authors consider this so obvious that they see no need to demonstrate it
explicitly, while Howson & Urbach (1989, p. 290) claim to have demonstrated it.

Nevertheless, let us see for ourselves whether probability theory can reproduce such phenomena.
Denote their prior information by IA; IB respectively; and let Mr. A be initially a believer, Mr. B
a doubter:

P (SjIA) ' 1 ; P (SjIB) ' 0 (5{16)

and after receiving data D, their posterior probabilities are changed to

P (SjDIA) = P (SjIA)
P (DjSIA)

P (DjIA)

P (SjDIB) = P (SjIB)
P (DjSIB)

P (DjIB)

(5{17)

If D supports S, then since Mr. A already considers S almost certainly true, we have P (DjSIA) '
P (DjIA), and so

P (SjDIA) ' P (SjIA) (5{18)

Data D have no appreciable e�ect on Mr. A's opinion (at least, on the probability scale; it might
have on the evidence scale). But now one would think that if Mr. B reasons soundly, he must
recognize that P (DjSIB) > P (DjIB), and thus

P (SjDIB) > P (SjIB) (5{19)

Mr. B's opinion should be changed in the direction of Mr. A's. Likewise, if D had tended to refute
S, one would expect that Mr. B's opinions are little changed by it, while Mr. A's will move in the
direction of Mr. B's.

From this we might conjecture that, whatever the new information D, it should tend to bring
di�erent people into closer agreement with each other, in the sense that.
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jP (SjDIA))� P (SjDIB)j < jP (SjIA)� P (SjIB)j (5{20)

But although this can be veri�ed in special cases, it is not true in general.

Is there some other measure of \closeness of agreement" such as log[P (SjDIA)=P (SjDIB)], for
which this converging of opinions can be proved as a general theorem? Not even this is possible; the
failure of probability theory to give this expected result tells us that convergence of views is not a
general phenomenon. For robots and humans who reason according to the desiderata of Chapter 1,
something more subtle and sophisticated is at work.

Indeed, in practice we �nd that this convergence of opinions usually happens for small children;
for adults it happens sometimes but not always. For example, new experimental evidence does cause
scientists to come into closer agreement with each other about the explanation of a phenomenon.

Then it might be thought (and for some it is an article of faith in democracy) that open
discussion of public issues would tend to bring about a general concensus on them. On the contrary,
we observe repeatedly that when some controversial issue has been discussed vigorously for a few
years, society becomes polarized into opposite extreme camps; it is almost impossible to �nd anyone
who retains a moderate view. The Dreyfus a�air in France, which tore the nation apart for 20 years,
is one of the most thoroughly documented examples of this (Bredin, 1986). Today, such issues as
nuclear power, abortion, criminal justice, etc. are following the same course. New information
given simultaneously to di�erent people may cause a convergence of views; but it may equally well
cause a divergence.

This divergence phenomenon is observed also in relatively well{controlled psychological exper-
iments. Some have concluded that people reason in a basically irrational way; prejudices seem to
be strengthened by new information which ought to have the opposite e�ect. Kahneman & Tversky
(1972) draw the opposite conclusion from such psychological tests, and consider them an argument
against Bayesian methods.

But now, in view of the above ESP example, we wonder whether probability theory might also
account for this divergence and indicate that people may be, after all, thinking in a reasonably
rational, Bayesian way (i.e., in a way consistent with their prior information and prior beliefs).
The key to the ESP example is that our new information was not

S � \Fully adequate precautions against error or deception were taken;
and Mrs: Stewart did in fact deliver that phenomenal performance:"

(5{21)

It was that some ESP researcher has claimed that S is true. But if our prior probability for S is
lower than our prior probability that we are being deceived, hearing this claim has the opposite
e�ect on our state of belief from what the claimant intended.

But the same is true in science and politics; the new information a scientist gets is not that
an experiment did in fact yield this result, with adequate protection against error. It is that some
colleague has claimed that it did. The information we get from the TV evening news is not that a
certain event actually happened in a certain way; it is that some news reporter has claimed that it
did. Even seeing the event on our screens can no longer convince us, after recent revelations that
all major U.S. networks had faked some videotapes of alleged news events.

Scientists can reach agreement quickly because we trust our experimental colleagues to have
high standards of intellectual honesty and sharp perception to detect possible sources of error. And
this belief is justi�ed because, after all, hundreds of new experiments are reported every month,
but only about once in a decade is an experiment reported that turns out later to have been
wrong. So our prior probability of deception is very low; like trusting children, we believe what
experimentalists tell us.
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In politics, we have a very di�erent situation. Not only do we doubt a politician's promises, few
people believe that news reporters deal truthfully and objectively with economic, social, or political
topics. We are convinced that virtually all news reporting is selective and distorted, designed not
to report the facts, but to indoctrinate us in the reporter's socio{political views. And this belief is
justi�ed abundantly by the internal evidence in the reporter's own product { every choice of words
and inection of voice shifting the bias invariably in the same direction.

Not only in political speeches and news reporting, but wherever we seek for information on
political matters, we run up against this same obstacle; we cannot trust anyone to tell us the truth,
because we perceive that everyone who wants to talk about it is motivated either by self{interest
or by ideology. In political matters, whatever the source of information, our prior probability of
deception is always very high. However, it is not obvious whether this alone can prevent us from
coming to agreement.

With this in mind, let us reexamine the equations of probability theory. To compare the
reasoning of Mr. A and Mr. B we could write Bayes' theorem (5{17) in the logarithmic form

log

�
P (SjDIA)

P (SjDIB)

�
= log

�
P (SjIA)

P (SjIB)

�
+ log

�
P (DjSIA)P (DjIB)

P (DjIA)P (DjSIB)

�
(5{22)

which might be described by a simple hand{waving mnemonic like

\log posterior = log prior + log likelihood"

Note, however, that (5{22) di�ers from our log{odds equations of Chapter 4, which might be
described by the same mnemonic. There we compared di�erent hypotheses, given the same prior
information, and some factors P (DjI) cancelled out. Here we are considering a �xed hypothesis
S, in the light of di�erent prior information and they do not cancel, so the \likelihood" term is
di�erent.

In the above we supposed Mr. A to be the believer, so log (prior) > 0. Then it is clear that
on the log scale their views will converge as expected, the left{hand side of (5{22) tending to zero
monotonically (i.e., Mr A will remain a stronger believer than Mr. B) if

�log prior < log likelihood < 0 ;

and they will diverge monotonically if

log likelihood > 0 :

But they will converge with reversal (Mr. B becomes a stronger believer than Mr. A) if

�2 log prior < log likelihood < �log prior ;

and they will diverge with reversal if

log likelihood < �2 log prior :

Thus probability theory appears to allow, in principle, that a single piece of new information D

could have every conceivable e�ect on their relative states of belief.

But perhaps there are additional restrictions, not yet noted, which make some of these outcomes
impossible; can we produce speci�c and realistic examples of all four types of behavior? Let us
examine only the monotonic convergence and divergence by the following scenario, leaving it as an
exercise for the reader to make a similar examination of the reversal phenomena.

The new information D is: \Mr. N has gone on TV with a sensational claim that a commonly
used drug is unsafe" and three viewers, Mr. A, Mr. B, and Mr. C, see this. Their prior probabilities
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P (SjI) that the drug is safe are (0.9, 0.1, 0.9) respectively; i.e., initially, Mr. A and Mr. C were
believers in the safety of the drug, Mr. B a disbeliever.

But they interpret the information D very di�erently, because they have di�erent views about
the reliability of Mr. N. They all agree that, if the drug had really been proved unsafe, Mr. N
would be right there shouting it: that is, their probabilities P (DjSI) are (1, 1, 1); but Mr. A
trusts his honesty while Mr. C does not; their probabilities P (DjSI) that, if the drug is safe, Mr.
N would say that it is unsafe, are (0.01, 0.3, 0.99) respectively.

Applying Bayes' theorem P (SjDI) = P (SjI)P (DjSI)=P (DjI) and expanding the denominator
by the product and sum rules: P (DjI) = P (SjI)P (DjSI)+P (SjI)P (DjSI), we �nd their posterior
probabilities that the drug is safe to be (.083, .032, .899) respectively. Put verbally, they have
reasoned as follows:

A: \Mr. N is a �ne fellow, doing a notable public service. I had thought the drug to be
safe from other evidence, but he would not knowingly misrepresent the facts; therefore
hearing his report leads me to change my mind and think that the drug is unsafe after
all. My belief in safety is lowered by 20:0 db, so I will not buy any more."

B: \Mr. N is an erratic fellow, inclined to accept adverse evidence too quickly. I was
already convinced that the drug is unsafe; but even if it is safe he might be carried
away into saying otherwise. So hearing his claim does strengthen my opinion, but
only by 5:3 db. I would never under any circumstances use the drug."

C: \Mr. N is an unscrupulous rascal, who does everything in his power to stir up trouble
by sensational publicity. The drug is probably safe, but he would almost certainly
claim it is unsafe whatever the facts. So hearing his claim has practically no e�ect
(only :005 db) on my con�dence that the drug is safe. I will continue to buy it and
use it."

The opinions of Mr. A and Mr. B converge in about the way we conjectured in (5{20) because both
are willing to trust Mr. N's veracity to some extent. But Mr. A and Mr. C diverge because their
prior probabilities of deception are entirely di�erent. So one cause of divergence is, not merely that
prior probabilities of deception are large, but that they are greatly di�erent for di�erent people.

However, this is not the only cause of divergence; to show this we introduce Mr. X and Mr.
Y, who agree in their judgment of Mr. N:

P (DjSIX) = P (DjSIY ) = a ; P (DjSIX) = P (DjSIY ) = b (5{23)

If a < b, then they consider him to be more likely to be telling the truth than lying. But they have
di�erent prior probabilities for the safety of the drug:

P (SjIX) = x ; P (SjIY ) = y : (5{24)

Their posterior probabilities are then

P (SjDIX) =
ax

ax+ b(1� x)
; P (SjDIY ) =

ay

ay + b(1� y)
(5{25)

from which we see that not only are their opinions always changed in the same direction, on the
evidence scale they are always changed by the same amount, log(a=b):
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log
P (SjDIX)

P (SjDIX)
= log

x

1� x
+ log

a

b

log
P (SjDIY )

P (SjDIY )
= log

y

1� y
+ log

a

b

(5{26)

But this means that on the probability scale, they can either converge or diverge (Exercise 5.2).
These equations correspond closely to those in our sequential widget test in Chapter 4, but have
now a di�erent interpretation. If a = b, then they consider Mr. N totally unreliable and their views
are unchanged by his testimony. If a > b, they distrust Mr. N so much that their opinions are
driven in the opposite direction from what he intended. Indeed, if b! 0, then log a=b! 1; they
consider it certain that he is lying, and so they are both driven to complete belief in the safety of
the drug: P (SjDIX) = P (SjDIY ) = 1, independently of their prior probabilities.

Exercise 5.2. From these equations, �nd the exact conditions on (x; y; a; b) for divergence
on the probability scale; that is, jP (SjDIX)� P (SjDIY )j > jP (SjIX)� P (SjIY )j.

Exercise 5.3. It is evident from (5{26) that Mr. X and Mr. Y can never experience a reversal
of viewpoint; that is, if initially Mr. X believes more strongly than Mr. Y in the safety of the
drug, this will remain true whatever the values of a; b. Therefore, a necessary condition for
reversal must be that they have di�erent opinions about Mr. N; ax 6= ay and/or bx 6= by. But
this does not prove that reversal is actually possible, so more analysis is needed. If reversal is
possible, �nd a su�cient condition on (x; y; ax; ay ; bx; by) for this to take place, and illustrate
it by a verbal scenario like the above. If it is not possible, prove this and explain the intuitive
reason why reversal cannot happen.

We see that divergence of opinions is readily explained by probability theory as logic, and
that it is to be expected when persons have widely di�erent prior information. But where was
the error in the reasoning that led us to conjecture (5{20)? We committed a subtle form of the
Mind Projection Fallacy by supposing that the relation: \D supports S" is an absolute property
of the propositions D and S. We need to recognize the relativity of it; whether D does or does
not support S depends on our prior information. The same D that supports S for one person may
refute it for another. As soon as we recognize this, then we no longer expect anything like (5{20)
to hold in general. This error is very common; we shall see another example of it in \Paradoxes of
Intuition" below.

Kahneman & Tversky claimed that we are not Bayesians, because in psychological tests people
often commit violations of Bayesian principles. However, this claim is seen di�erently in view of
what we have just noted. We suggest that people are reasoning according to a more sophisticated
version of Bayesian inference than they had in mind.

This conclusion is strengthened by noting that similar things are found even in deductive
logic. Wason & Johnson{Laird (1972) report psychological experiments in which subjects erred
systematically in simple tests which amounted to applying a single syllogism. It seems that when
asked to test the hypothesis \A implies B", they had a very strong tendency to consider it equivalent
to \B implies A" instead of \not{B implies not{A". Even professional logicians could err in this
way.?

? A possible complication of these tests { semantic confusion { readily suggests itself. We noted in Chapter 1

that the word \implication" has a di�erent meaning in formal logic than it has in ordinary language; \A
impliesB" does not have the usual colloquial meaning that B is logically deducible from A, as the subjects
may have supposed.
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Strangely enough, the nature of this error suggests a tendency toward Bayesianity, the op-
posite of the Kahneman{Tversky conclusion. For, if A supports B in the sense that for some
X , P (BjAX) > P (BjX), then Bayes' theorem states that B supports A in the same sense:
P (AjBX) > P (AjX). But it also states that P (AjBX) > P (AjX), corresponding to the syllo-
gism, and in the limit P (BjAX) ! 1, Bayes' theorem does not give P (AjBX) ! 1, but gives
P (AjBX)! 1, in agreement with the syllogism, as we noted in Chapter 2.

Errors made in staged psychological tests may indicate only that the subjects were pursuing
di�erent goals than the psychologists; they saw the tests as basically foolish, and did not think it
worth making any mental e�ort before replying to the questions { or perhaps even thought that the
psychologists would be more pleased to see them answer wrongly. Had they been faced with logically
equivalent situations where their interests were strongly involved (for example, avoiding a serious
accidental injury), they might have reasoned better. Indeed, there are stronger grounds { Natural
Selection { for expecting that we would reason in a basically Bayesian way.

Visual Perception { Evolution into Bayesianity?

Another class of psychological experiments �ts nicely into this discussion. In the early 20'th Cen-
tury, Adelbert Ames Jr. was Professor of Physiological Optics at Dartmouth College. He devised
ingenious experiments which fool one into `seeing' something very di�erent from the reality { one
misjudges the size, shape, distance of objects. Some dismissed this as idle optical illusioning, but
others who saw these demonstrations { notably including Alfred North Whitehead and Albert
Einstein { saw their true importance as revealing surprising things about the mechanism of vi-
sual perception.y His work was carried on by Professor Hadley Cantrell of Princeton University,
who discussed these phenomena in his book \The Why of Man's Experience" and produced movie
demonstrations of them.

The brain develops already in infancy certain assumptions about the world based on all the
sensory information it receives. For example, nearer objects appear larger, have greater parallax,
and occlude distant objects in the same line of sight; a straight line appears straight from whatever
direction it is viewed, etc. These assumptions are incorporated into the artist's rules of perspective
and in 3{d computer graphics programs. We hold tenaciously onto them because they have been
successful in correlating many di�erent experiences. We will not relinquish successful hypotheses as
long as they work; the only way to make one change these assumptions is to put one in a situation
where they don't work. For example, in that Ames room where perceived size and distance correlate
in the wrong way; a child in walking across the room doubles in height.

The general conclusion from all these experiments is less surprising to our relativist generation
than it was to the absolutist generation which made the discoveries. Seeing is not a direct apprehen-
sion of reality, as we often like to pretend. Quite the contrary: Seeing is Inference from Incomplete

Information, no di�erent in nature from the inference that we are studying here. The information
that reaches us through our eyes is grossly inadequate to determine what is \really there" before
us. The failures of perception revealed by the experiments of Ames and Cantrell are not mechanical
failures in the lens, retina, or optic nerve; they are the reactions of the subsequent inference process
in the brain when it receives new data that are inconsistent with its prior information. These are
just the situations where one is obliged to resurrect some alternative hypothesis; and that is what
we \see." We expect that detailed analysis of these cases would show an excellent correspondence
with Bayesian inference, in much the same way as in our ESP and diverging opinions examples.

Active study of visual perception has continued, and volumes of new knowledge have accumu-
lated, but we still have almost no conception of how this is accomplished at the level of the neurons.

y One of his most impressive demonstrations has been recreated at the Exploratorium in San Francisco,

the full{sized \Ames room" into which visitors can look to see these phenomena at �rst hand.
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Workers note the seeming absence of any organizing principle; we wonder whether the principles
of Bayesian inference might serve as a start. We would expect Natural Selection to produce such
a result; after all, any reasoning format whose results conict with Bayesian inference will place a
creature at a decided survival disadvantage. Indeed, as we noted long ago (Jaynes, 1957b), to deny
that we reason in a Bayesian way is to assert that we reason in a deliberately inconsistent way; we
�nd this very hard to believe. Presumably, a dozen other examples of human and animal perception
would be found to obey a Bayesian reasoning format as its \high level" organizing principle, for
the same reason. With this in mind, let us examine a famous case history.

The Discovery of Neptune

Another potential application for probability theory, which has been discussed vigorously by
philosophers for over a century, concerns the reasoning process of a scientist, by which he ac-
cepts or rejects his theories in the light of the observed facts. We noted in Chapter 1 that this
consists largely of the use of two forms of syllogism,

one strong :

8><
>:
If A; then B

B false

A false

9>=
>; and one weak :

8><
>:

If A; then B

B true

A more plausible

9>=
>; (5{27)

In Chapter 2 we noted that these correspond to the use of Bayes' theorem in the forms

P (AjBX) = P (AjX)
P (BjAX)

P (BjX)
; P (AjBX) = P (AjX)

P (BjAX)

P (BjX)
(5{28)

respectively and that these forms do agree qualitatively with the syllogisms.

Interest here centers on the question whether the second form of Bayes' theorem gives a
satisfactory quantitative version of the weak syllogism, as scientists use it in practice. Let us
consider a speci�c example given by P�olya (1954; Vol. II, pp. 130{132). This will give us a more
useful example of the resurrection of alternative hypotheses.

The planet Uranus was discovered by Wm. Herschel in 1781. Within a few decades (i.e., by
the time Uranus had traversed about one third of its orbit), it was clear that it was not following
exactly the path prescribed for it by the Newtonian theory (laws of mechanics and gravitation).
At this point, a na��ve application of the strong syllogism might lead one to conclude that the
Newtonian theory was demolished.

However, its many other successes had established the Newtonian theory so �rmly that in
the minds of astronomers the probability of the hypothesis: \Newton's theory is false" was already
down at perhaps �50 db. Therefore, for the French astronomer Urbain Jean Joseph Leverrier (1811{
1877) and the English scholar John Couch Adams (1819{1892) at St. John's College, Cambridge,
an alternative hypothesis down at perhaps �20 db was resurrected: there must be still another
planet beyond Uranus, whose gravitational pull is causing the discrepancy.

Working unknown to each other and backwards, Leverrier and Adams computed the mass and
orbit of a planet which could produce the observed deviation and predicted where the new planet
would be found, with nearly the same results. The Berlin observatory received Leverrier's prediction
on September 23, 1846, and on the evening of the same day, the astronomer Johann Gottfried Galle
(1812{1910) found the new planet (Neptune) within about one degree of the predicted position.
For many more details, see Smart (1947) or Grosser (1979).
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Instinctively, we feel that the plausibility of the Newtonian theory was increased by this little
drama. The question is, how much? The attempt to apply probability theory to this problem will
give us a good example of the complexity of actual situations faced by scientists, and also of the
caution one needs in reading the rather confused literature on these problems.

Following P�olya's notation, let T stand for the Newtonian theory, N for the part of Leverrier's
prediction that was veri�ed. Then probability theory gives for the posterior probability of T ,

P (T jNX) = P (T jX)
P (N jTX)

P (N jX)
: (5{29)

Suppose we try to evaluate P (N jX). This is the prior probability of N , regardless of whether T is
true or not. As usual, denote the denial of T by T . Since N = N(T + T ) = NT +NT , we have,
by applying the sum and product rules

P (N jX) = P (NT +NT jX) = P (NT jX) + P (NT jX)

= P (N jTX)P (T jX)+ P (N jTX)P (T jX)
(5{30)

and P (N jTX) has intruded itself into the problem. But in the problem as stated this quantity is
not de�ned; the statement T � \Newton's theory is false" has no de�nite implications until we
specify what alternative we have to put in place of Newton's theory.

For example, if there were only a single possible alternative according to which there could
be no planets beyond Uranus, then P (N jTX) = 0, and probability theory would again reduce to
deductive reasoning, giving P (T jNX) = 1, independently of the prior probability P (T jX).

On the other hand, if Einstein's theory were the only possible alternative, its predictions do
not di�er appreciably from those of Newton's theory for this phenomenon, and we would have
P (N jTX) = P (N jTX), whereupon P (T jNX) = P (T jX).

Thus, veri�cation of the Leverrier{Adams prediction might elevate the Newtonian theory to
certainty, or it might have no e�ect at all on its plausibility. It depends entirely on this: Against
which speci�c alternatives are we testing Newton's theory?

Now to a scientist who is judging his theories, this conclusion is the most obvious exercise of
common sense. We have seen the mathematics of this in some detail in Chapter 4, but all scientists
see the same thing intuitively without any mathematics.

For example, if you ask a scientist, \How well did the Zilch experiment support the Wilson
theory?" you may get an answer like this: \Well, if you had asked me last week I would have said
that it supports the Wilson theory very handsomely; Zilch's experimental points lie much closer to
Wilson's predictions than to Watson's. But just yesterday I learned that this fellow Wo�son has a
new theory based on more plausible assumptions, and his curve goes right through the experimental
points. So now I'm afraid I have to say that the Zilch experiment pretty well demolishes the Wilson
theory."

Digression on Alternative Hypotheses

In view of this, working scientists will note with dismay that statisticians have developed ad hoc

criteria for accepting or rejecting theories (Chi{squared test, etc.) which make no reference to
any alternatives. A practical di�culty of this was pointed out by Je�reys (1939); there is not the
slightest use in rejecting any hypothesis H0 unless we can do it in favor of some de�nite alternative
H1 which better �ts the facts.

Of course, we are concerned here with hypotheses which are not themselves statements of
observable fact. If the hypothesis H0 is merely that x < y, then a direct, error{free measurement of
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x and y which con�rms this inequality constitutes positive proof of the correctness of the hypothesis,
independently of any alternatives. We are considering hypotheses which might be called `scienti�c
theories' in that they are suppositions about what is not observable directly; only some of their
consequences { logical or causal { can be observed by us.

For such hypotheses, Bayes' theorem tells us this: Unless the observed facts are absolutely

impossible on hypothesis H0, it is meaningless to ask how much those facts tend \in themselves" to

con�rm or refute H0. Not only the mathematics, but also our innate common sense (if we think
about it for a moment) tells us that we have not asked any de�nite, well{posed question until we
specify the possible alternatives to H0. Then as we saw in Chapter 4, probability theory can tell
us how our hypothesis fares relative to the alternatives that we have speci�ed ; it does not have the
creative imagination to invent new hypotheses for us.

Of course, as the observed facts approach impossibility on hypothesis H0, we are led to worry
more and more about H0; but mere improbability, however great, cannot in itself be the reason for
doubting H0. We almost noted this after Eq. (5{7); now we are laying stress on it because it will
be essential for our later general formulation of signi�cance tests.

Early attempts to devise such tests foundered on the point we are making. John Arbuthnot
(1710) noted that in 82 years of demographic data more boys than girls were born in every year.
On the \null hypothesis" H0 that the probability of a boy is 1/2, he considered the probability of
this result to be 2�82 = 10�24:7 [in our measure, �247 db], so small as to make H0 seem to him
virtually impossible, and saw in this evidence for \Divine Providence". He was, apparently, the
�rst person to reject a statistical hypothesis on the grounds that it renders the data improbable.
However, we can criticize his reasoning on several grounds.

Firstly, the alternative hypothesis H1 � \Divine Providence" does not seem usable in a proba-
bility calculation because it is not speci�c. That is, it does not make any de�nite predictions known
to us, and so we cannot assign any probability for the data P (DjH1) conditional on H1. [For this
same reason, the mere logical denial H1 � H0 is unusable as an alternative.] In fact, it is far from
clear why Divine Providence would wish to generate more boys than girls; indeed, if the number
of boys and girls were exactly equal every year in a large population, that would seem to us much
stronger evidence that some supernatural control mechanism must be at work.

Secondly, Arbuthnot's data told him not only the number N of years with more boys than
girls, but also in which years each possibility occurred. So whatever the observed N , on the null
hypothesis (independent and equal probability for a boy or girl at each birth) the probability
P (DjH0) of �nding the observed sequence would have been just as small, so by his reasoning
the hypothesis would have been rejected whatever the data. Furthermore, had he calculated the
probability of the actual data instead of merely aggregating them into two bins labelled \more boys
than girls" and \more girls than boys", he would have found a probability very much smaller still,
whatever the actual data, so the mere smallness of the probability is not in itself the signi�cant
thing.

As a simple, but numerically stronger example illustrating this, if we toss a coin 1000 times,
then no matter what the result is, the speci�c observed sequence of heads and tails has a probability
of only 2�1000, or �3010 db, on the hypothesis that the coin is honest. If, after having tossed it
1000 times, we still believe that the coin is honest, it can be only because the observed sequence is
even more improbable on any alternative hypothesis that we are willing to consider seriously.

Without having the probability P (DjH1) of the data on the alternative hypothesis and the
prior probabilities of the hypotheses, there is no well{posed problem and just no rational basis for
passing judgment. However, it is mathematically trivial to see that those who fail to introduce prior
probabilities at all are led thereby, automatically, to the results that would follow from assigning
equal prior probabilities. Failure to mention prior probabilities is so common that we overlook it
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and suppose that the author intended equal prior probabilities (if he should later deny this, then
he can be charged with giving an arbitrary solution to an unde�ned problem).

Finally, having observed more boys than girls for ten consecutive years, rational inference
might have led Arbuthnot to anticipate it for the eleventh year. Thus his hypothesis H0 was not
only the numerical value p = 1=2; there was also an implicit assumption of logical independence
of di�erent years, of which he was probably unaware. On an hypothesis that allows for positive
correlations, for example Hex which assigns an exchangeable sampling distribution, the probability
P (DjHex) of the aggregated data could be very much greater than 2�82. Thus Arbuthnot took one
step in the right direction, but to get a usable signi�cance test required a conceptual understanding
of probability theory on a considerably higher level, as achieved by Laplace some 100 years later.

Another example occurred when Daniel Bernoulli won a French Academy prize of 1734 with
an essay on the orbits of planets, in which he represented the orientation of each orbit by its polar
point on the unit sphere and found them so close together as to make it very unlikely that the
present distribution could result by chance. Although he too failed to state a speci�c alternative,
we are inclined to accept his conclusion today because there seems to be a very clearly implied
null hypothesis H0 of \chance" according to which the points should appear spread all over the
sphere with no tendency to cluster together; and H1 of \attraction", which would make them tend
to coincide; the evidence rather clearly supported H1 over H0.

Laplace (1812) did a similar analysis on comets, found their polar points much more scattered
than those of the planets, and concluded that comets are not \regular members" of the solar system
like the planets. Here we �nally had two fairly well{de�ned hypotheses being compared by a correct
application of probability theory. (It is one of the tragedies of history that Cournot (1843), failing
to comprehend Laplace's rationale, attacked it and reinstated the errors of Arbuthnot, thereby
dealing scienti�c inference a setback from which it is not yet fully recovered).

Such tests need not be quantitative. Even when the application is only qualitative, probability
theory is still useful to us in a normative sense; it is the means by which we can detect inconsistencies
in our own qualitative reasoning. It tells us immediately what has not been intuitively obvious to all
workers: that alternatives are needed before we have any rational criterion for testing hypotheses.

This means that if any signi�cance test is to be acceptable to a scientist, we shall need to
examine its rationale to see whether it has, like Daniel Bernoulli's test, some implied if unstated
alternative hypotheses. Only when such hypotheses are identi�ed are we in a position to say
what the test accomplishes; i.e. what it is testing. But not to keep the reader in suspense: a
statisticians' formal signi�cance test can always be interpreted as a test of a speci�ed hypothesis
H0 against a speci�ed class of alternatives, and thus it is only a mathematical generalization of
our treatment of multiple hypothesis tests in Chapter 4, Equations (4{28) { (4{44). However,
the standard orthodox literature, which dealt with composite hypotheses by applying arbitrary ad

hockeries instead of probability theory, never perceived this.

Back to Newton

Now we want to get a quantitative result about Newton's theory. In P�olya's discussion of the feat of
Leverrier and Adams, once again no speci�c alternative to Newton's theory is stated; but from the
numerical values used (loc. cit , p. 131) we can infer that he had in mind a single possible alternative
H1 according to which it was known that one more planet existed beyond Uranus, but all directions
on the celestial sphere were considered equally likely. Then, since a cone of angle 1 degree �lls in
the sky a solid angle of about �=(57:3)2 = 10�3 steradians, P (N jH1X) ' 10�3=4� = 1=13; 000 is
the probability that Neptune would have been within one degree of the predicted position.

Unfortunately, in the calculation no distinction was made between P (N jX) and P (N jTX);
that is, instead of the calculation (5{18) indicated by probability theory, the likelihood ratio actually
calculated by P�olya was, in our notation,
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P (N jTX)

P (N jTX)
=

P (N jTX)

P (N jH1X)
(5{31)

Therefore, according to the analysis in Chapter 4, what P�olya obtained was not the ratio of posterior
to prior probabilities, but the ratio of posterior to prior odds:

O(N jTX)

O(N jX)
=

P (N jTX)

P (N jTX)
= 13; 000: (5{32)

The conclusions are much more satisfactory when we notice this. Whatever prior probability
P (T jX) we assign to Newton's theory, if H1 is the only alternative considered, then veri�cation of
the prediction increased the evidence for Newton's theory by 10 log10(13; 000) = 41 decibels.

Actually, if there were a new planet it would be reasonable, in view of the aforementioned
investigations of Daniel Bernoulli and Laplace, to adopt a di�erent alternative hypothesis H2,
according to which its orbit would lie in the plane of the ecliptic, as P�olya again notes by implication
rather than explicit statement. If, on hypothesis H2, all values of longitude are considered equally
likely, we might reduce this to about 10 log10(180) = 23 decibels. In view of the great uncertainty
as to just what the alternative is (i.e., in view of the fact that the problem has not been de�ned
unambiguously), any value between these extremes seems more or less reasonable.

There was a di�culty which bothered P�olya: if the probability of Newton's theory were in-
creased by a factor of 13,000, then the prior probability was necessarily lower than (1/13,000);
but this contradicts common sense, because Newton's theory was already very well established
before Leverrier was born. P�olya interprets this in his book as revealing an inconsistency in Bayes'
theorem, and the danger of trying to apply it numerically. Recognition that we are, in the above
numbers, dealing with odds rather than probabilities, removes this objection and makes Bayes'
theorem appear quite satisfactory in describing the inferences of a scientist.

This is a good example of the way in which objections to the Bayes{Laplace methods which you
�nd in the literature, disappear when you look at the problem more carefully. By an unfortunate
slip in the calculation, P�olya was led to a misunderstanding of how Bayes' theorem operates. But
I am glad to be able to close the discussion of this incident with a happier personal reminiscence.

In 1956, two years after the appearance of P�olya's work, I gave a series of lectures on these
matters at Stanford University, and George P�olya attended them, sitting in the �rst row and paying
the most strict attention to everything that was said. By then he understood this point very well {
indeed, whenever a question was raised from the audience, P�olya would turn around and give the
correct answer, before I could. It was very pleasant to have that kind of support, and I miss his
presence today (George P�olya died, at the age of 97, in September 1985).

But the example also shows clearly that in practice the situation faced by the scientist is so
complicated that there is little hope of applying Bayes' theorem to give quantitative results about
the relative status of theories. Also there is no need to do this, because the real di�culty of the
scientist is not in the reasoning process itself; his common sense is quite adequate for that. The
real di�culty is in learning how to formulate new alternatives which better �t the facts. Usually,
when one succeeds in doing this, the evidence for the new theory soon becomes so overwhelming
that nobody needs probability theory to tell him what conclusions to draw.
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Exercise 5.4. Our story has a curious sequel. In turn it was noticed that Neptune was not
following exactly its proper course, and so one naturally assumed that there is still another planet
causing this. Percival Lowell, by a similar calculation, predicted its orbit and Clyde Tombaugh
proceeded to �nd the new planet (Pluto), although not so close to the predicted position. But
now the story changes: modern data on the motion of Pluto's moon indicated that the mass
of Pluto is too small to have caused the perturbation of Neptune which motivated Lowell's
calculation. Thus the discrepancies in the motions of Neptune and Pluto were unaccounted for
(We are indebted to Dr. Brad Schaefer for this information). Try to extend our probability
analysis to take this new circumstance into account; at this point, where did Newton's theory
stand? For more background information, see Whyte (1980) or Hoyt (1980). But more recently
it appears that the mass of Pluto had been estimated wrongly and the discrepancies were after
all not real; then it seems that the status of Newton's theory should revert to its former one.
Discuss this sequence of pieces of information in terms of probability theory; do we update by
Bayes' theorem as each new fact comes in? Or we just return to the beginning when we learn
that a previous datum was false?

At present we have no formal theory at all on the process of \optimal hypothesis formulation"
and we are dependent entirely on the creative imagination of individual persons like Newton,
Mendel, Einstein, Wegener, Crick. So, we would say that in principle the application of Bayes'
theorem in the above way is perfectly legitimate; but in practice it is of very little use to a scientist.

However, we should not presume to give quick, glib answers to deep questions. The question
of exactly how scientists do, in practice, pass judgment on their theories, remains complex and not
well analyzed. Further comments on the validity of Newton's theory are o�ered at the end of this
Chapter.

Horseracing and Weather Forecasting

The above examples noted two di�erent features common in problems of inference; (a) As in the ESP
and psychological cases, the information we receive is often not a direct proposition like S in (5-21);
it is an indirect claim that S is true, from some \noisy" source that is itself not wholly reliable; and
(b) As in the example of Neptune, there is a long tradition of writers who have misapplied Bayes'
theorem and concluded that Bayes' theorem is at fault. Both features are present simultaneously in
a work of the Princeton philosopher Richard C. Je�rey (1983), hereafter denoted by RCJ to avoid
confusion with the Cambridge scholar Sir Harold Je�reys.

RCJ considers the following problem. With only prior information I , we assign a probability
P (AjI) to A. Then we get new information B, and it changes as usual via Bayes' theorem to

P (AjBI) = P (AjI)P (BjAI)=P (BjI) : (5{33)

But then he decides that Bayes' theorem is not su�ciently general, because we often receive new
information that is not certain; perhaps the probability of B is not unity but, say, q. To this we
would reply: \If you do not accept B as true, then why are you using it in Bayes' theorem this
way?" But RCJ follows that long tradition and concludes, not that it is a misapplication of Bayes'
theorem to use uncertain information as in (5{33), but that Bayes' theorem is itself faulty, and it
needs to be generalized to take the uncertainty of new information into account.

His proposed generalization (denoting the denial of B by B) is that the updated probability
of A should be taken as a weighted average:

P (A)J = q P (AjBI) + (1� q)P (AjBI) (5{34)
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But this is an adhockery that does not follow from the rules of probability theory unless we take q
to be the prior probability P (BjI), just the case that RCJ excludes [for then P (A)J = P (AjI) and
there is no updating].

Since (5{34) conicts with the rules of probability theory, we know that it necessarily violates
one of the desiderata that we discussed in Chapters 1 and 2. The source of the trouble is easy to �nd,
because those desiderata tell us where to look. The proposed `generalization' (5{34) cannot hold
generally because we could learn many di�erent things, all of which indicate the same probability
q for B; but which have di�erent implications for A. Thus (5{34) violates desideratum (1{23b);
it cannot take into account all of the new information, only the part of it that involves (i.e., is
relevant to) B.

The analysis of Chapter 2 tells us that, if we are to salvage things and recover a well{posed
problem with a defensible solution, we must not depart in any way from Bayes' theorem. Instead,
we need to recognize the same thing that we stressed in the ESP example; if B is not known with
certainty to be true, then B could not have been the new information; the actual information
received must have been some proposition C such that P (BjCI) = q. But then, of course, we
should be considering Bayes' theorem conditional on C, rather than B:

P (AjCI) = P (AjI)P (CjAI)=P (CjI) (5{35)

If we apply it properly, Bayes' theorem automatically takes the uncertainty of new information into
account. This result can be written, using the product and sum rules of probability theory, as

P (AjCI) = P (ABjCI) + P (ABjCI) = P (AjBCI)P (BjCI) + P (AjBCI)P (BjCI)

and if we de�ne q � P (BjCI) to be the updated probability of B, this can be written in the form

P (AjCI) = q P (AjBCI) + (1� q)P (AjBCI) (5{36)

which resembles (5{34) but is not in general equal to it, unless we add the restriction that the
probabilities P (AjBCI) and P (AjBCI) are to be independent of C. Intuitively, this would mean
that the logic ows thus:

(C ! B ! A) rather than (C ! A) ; (5{37)

That is, C is relevant to A only through its intermediate relevance to B (C is relevant to B and B
is relevant to A).

RCJ shows by example that this logic ow may be present in a real problem, but fails to
note that his proposed solution (5{34) is then the same as the Bayesian result. Without that logic
ow, (5{34) will be unacceptable in general because it does not take into account all of the new
information. The information which is lost is indicated by the lack of an arrow going directly
(C ! A) in the logic ow diagram; information in C which is directly relevant to A, whether or
not B is true.

If we think of the logic ow as something like the ow of light, we might visualize it thus: at
night we receive sunlight only through its intermediate reection from the moon; this corresponds
to the RCJ solution. But in the daytime we receive light directly from the sun whether or not the
moon is there; this is what the RCJ solution has missed. (In fact, when we study the maximum
entropy formalism in statistical mechanics and the phenomenon of \generalized scattering", we
shall �nd that this is more than a loose analogy; the process of conditional information ow is in
almost exact mathematical correspondence with the Huygens principle of optics.)
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Exercise 5.5. We might expect intuitively that when q ! 1 this di�erence would disappear;
i.e., P (AjBI) ! P (AjCI). Determine whether this is or is not generally true. If it is, indicate
how small 1 � q must be in order to make the di�erence practically negligible. If it is not,
illustrate by a verbal scenario the circumstances which can prevent this agreement.

We can illustrate this in a more down{to{earth way by one of RCJ's own scenarios:

A = \My horse will win the race tomorrow",

B = \The track will be muddy",

I = \Whatever I know about my horse and jockey in particular, and about horses,
jockeys, races, and life in general."

and the probability P (AjI) gets updated as a result of receiving a weather forecast. Then some
proposition C such as:

C = \The TV weather forecaster showed us today's weather map, quoted some
of the current meteorological data, and then by means unexplained assigned
probability q0 to rain tomorrow."

is clearly present, but it is not recognized and stated by RCJ. Indeed, to do so would introduce
much new detail, far beyond the ambit of propositions (A; B) of interest to horse racers.

If we recognize proposition C explicitly, then we must recall everything we know about the
process of weather forecasting, what were the particular meteorological data leading to that fore-
cast, how reliable weather forecasts are in the presence of such data, how the o�cially announced
probability q0 is related to what the forecaster really believes (i.e., what we think the forecaster
perceives his own interest to be), etc., etc.

If the above{de�ned C is the new information, then we must consider also, in the light of all
our prior information, how C might a�ect the prospects for the race A through other circumstances
than the muddiness B of the track; perhaps the jockey is blinded by bright sunlight, perhaps the
rival horse runs poorly on cloudy days, whether or not the track is wet. These would be logical
relations of the form (C ! A) that (5{34) cannot take into account.

Therefore the full solution must be vastly more complicated than (5{34); but this is, of course,
as it should be. Bayes' theorem, as always, is only telling us what common sense does; in general
the updated probability of A must depend on far more than just the updated probability q of B.

Discussion

This example illustrates what we have noted before in Chapter 1; that familiar problems of everyday
life may be more complicated than scienti�c problems, where we are often reasoning about carefully
controlled situations. The most familiar problems may be so complicated { just because the result
depends on so many unknown and uncontrolled factors { that a full Bayesian analysis, although
correct in principle, is out of the question in practice. The cost of the computation is far more than
we could hope to win on the horse.

Then we are necessarily in the realm of approximation techniques; but since we cannot apply
Bayes' theorem exactly, need we still consider it at all? Yes, because Bayes' theorem remains the
normative principle telling us what we should aim for. Without it, we have nothing to guide our
choices and no criterion for judging their success.

It also illustrates what we shall �nd repeatedly in later Chapters; generations of workers
in this �eld have not comprehended the fact that Bayes' theorem is a valid theorem, required
by elementary desiderata of rationality and consistency, and have made unbelievably persistent
attempts to replace it by all kinds of intuitive ad hockeries. Of course, we expect that any sincere
intuitive e�ort will capture bits of the truth; yet all of these dozens of attempts have proved on
analysis to be satisfactory only in those cases where they agree with Bayes' theorem after all.
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But we are at a loss to understand what motivates these anti{Bayesian e�orts, because we
can see nothing unsatisfactory about Bayes' theorem, either in its theoretical foundations, its
intuitive rationale, or its pragmatic results. The writer has devoted some 40 years to the analysis
of thousands of separate problems by Bayes' theorem, and is still being impressed by the beautiful
and important results it gives us, often in a few lines, and far beyond what those ad hockeries can
produce. We have yet to �nd a case where it yields an unsatisfactory result (although the result
is often surprising at �rst glance and it requires some meditation to educate our intuition and see
that it is correct after all).

Needless to say, the cases where we are at �rst surprised are just the ones where Bayes'
theorem is most valuable to us; because those are the cases where intuitive ad hockeries would
never have found the result. Comparing Bayesian analysis with the ad hoc methods which saturate
the literature, whenever there is any disagreement in the �nal conclusions, we have found it easy
to exhibit the defect of the ad hockery, just as the analysis of Chapter 2 led us to expect and as we
saw in the above example.

In the past, many man{years of e�ort were wasted in futile attempts to square the circle; had
Lindemann's theorem (that � is transcendental) been known and its implications recognized, all of
this might have been averted. Likewise, had Cox's theorems been known, and their implications
recognized, 100 years ago, many wasted careers might have been turned instead to constructive
activity. This is our answer to those who have suggested that Cox's theorems are unimportant,
because they only con�rm what James Bernoulli and Laplace had conjectured long before.

Today, we have �ve decades of experience con�rming what Cox's theorems tell us. It is clear
that, not only is the quantitative use of the rules of probability theory as extended logic the only
sound way to conduct inference; it is the failure to follow those rules strictly that has for many
years been leading to unnecessary errors, paradoxes, and controversies.

Paradoxes of Intuition

A famous example of this situation, known as Hempel's paradox, starts with the premise: \A case
of an hypothesis supports the hypothesis". Then it observes: \Now the hypothesis that all crows
are black is logically equivalent to the statement that all non{black things are non{crows, and this
is supported by the observation of a white shoe". An incredible amount has been written about
this seemingly innocent argument, which leads to an intolerable conclusion.

But the error in the argument is apparent at once when one examines the equations of prob-
ability theory applied to it: the premise, which was not derived from any logical analysis, is not
generally true, and he prevents himself from discovering that fact by trying to judge support of an
hypothesis without considering any alternatives.

I. J. Good (1967), in a note entitled \The White Shoe is a Red Herring", demonstrated the
error in the premise by a simple counterexample: In World 1 there are one million birds, of which
100 are crows, all black. In World 2 there are two million birds, of which 200,000 are black crows
and 1,800,000 are white crows. We observe one bird, which proves to be a black crow. Which world
are we in?

Evidently, observation of a black crow gives evidence of

10 log10

�
200; 000=2; 000; 000

100=1; 000; 000

�
= 30 db

or an odds ratio of 1000:1, against the hypothesis that all crows are black; that is, for World 2
against World 1. Whether an \instance of an hypothesis" does or does not support the hypothesis
depends on the alternatives being considered and on the prior information. We learned this in
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�nding the error in the reasoning leading to (5{20). But incredibly, Hempel (1967) proceeded to
reject Good's clear and compelling argument on the grounds that it was unfair to introduce that
background information about Worlds 1 and 2.

In the literature there are perhaps a hundred \paradoxes" and controversies which are like this,
in that they arise from faulty intuition rather than faulty mathematics. Someone asserts a general
principle that seems to him intuitively right. Then when probability analysis reveals the error,
instead of taking this opportunity to educate his intuition, he reacts by rejecting the probability
analysis. We shall see several more examples of this in later Chapters.

As a colleague of the writer once remarked, \Philosophers are free to do whatever they please,
because they don't have to do anything right". But a responsible scientist does not have that
freedom; he will not assert the truth of a general principle, and urge others to adopt it, merely on
the strength of his own intuition. Some outstanding examples of this error, which are not mere
philosophers' toys like the RCJ tampering with Bayes' theorem and the Hempel paradox, but have
been actively harmful to Science and Society, are discussed in Chapters 15 and 17.

Bayesian Jurisprudence

It is interesting to apply probability theory in various situations in which we can't always reduce it
to numbers very well, but still it shows automatically what kind of information would be relevant
to help us do plausible reasoning. Suppose someone in New York City has committed a murder,
and you don't know at �rst who it is, but you know that there are 10 million people in New York
City. On the basis of no knowledge but this, e(GuiltyjX) = �70 db is the plausibility that any
particular person is the guilty one.

How much positive evidence for guilt is necessary before we decide that some man should be
put away? Perhaps +40 db, although your reaction may be that this is not safe enough, and the
number ought to be higher. If we raise this number we give increased protection to the innocent,
but at the cost of making it more di�cult to convict the guilty; and at some point the interests of
society as a whole cannot be ignored.

For example, if a thousand guilty men are set free, we know from only too much experience
that two or three hundred of them will proceed immediately to inict still more crimes upon society,
and their escaping justice will encourage a hundred more to take up crime. So it is clear that the
damage to society as a whole caused by allowing a thousand guilty men to go free, is far greater
than that caused by falsely convicting one innocent man.

If you have an emotional reaction against this statement, I ask you to think: if you were a
judge, would you rather face one man whom you had convicted falsely; or a hundred victims of
crimes that you could have prevented? Setting the threshold at +40 db will mean, crudely, that on
the average not more than one conviction in ten thousand will be in error; a judge who required
juries to follow this rule would probably not make one false conviction in a working lifetime on the
bench.

In any event, if we took +40 db starting out from�70, this means that in order to get conviction
you would have to produce about 110 db of evidence for the guilt of this particular person. Suppose
now we learn that this person had a motive. What does that do to the plausibility of his guilt?
probability theory says

e(GuiltyjMotive) = e(GuiltyjX) + 10 log10
P (MotivejGuilty)

P (MotivejNot Guilty)

' �70� 10 log10 P (MotivejNot Guilty)

(5{38)

since P (MotivejGuilty) ' 1, i.e., we consider it quite unlikely that the crime had no motive at
all. Thus, the signi�cance of learning that the person had a motive depends almost entirely on the
probability P (MotivejNot Guilty) that an innocent person would also have a motive.
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This evidently agrees with our common sense, if we ponder it for a moment. If the deceased
were kind and loved by all, hardly anyone would have a motive to do him in. Learning that,
nevertheless, our suspect did have a motive, would then be very signi�cant information. If the
victim had been an unsavory character, who took great delight in all sorts of foul deeds, then a
great many people would have a motive, and learning that our suspect was one of them, is not
so signi�cant. The point of this is that we don't know what to make of the information that our
suspect had a motive, unless we also know something about the character of the deceased. But
how many members of juries would realize that, unless it was pointed out to them?

Suppose that a very enlightened judge, with powers not given to judges under present law, had
perceived this fact and, when testimony about the motive was introduced, he directed his assistants
to determine for the jury the number of people in New York City who had a motive. This number
was Nm. Then

P (MotivejNot Guilty) =
Nm � 1

(Number of people inNewY ork)� 1
' 10�7(Nm � 1)

and equation (5{38) reduces, for all practical purposes, to

e(GuiltyjMotive) ' �10 log(Nm � 1) (5{39)

You see that the population of New York has cancelled out of the equation; as soon as we know
the number of people who had a motive, then it doesn't matter any more how large the city was.
Note that (5{39) continues to say the right thing even when Nm is only 1 or 2.

You can go on this way for a long time, and we think you will �nd it both enlightening and
entertaining to do so. For example, we now learn that the suspect was seen near the scene of the
crime shortly before. From Bayes' theorem, the signi�cance of this depends almost entirely on how
many innocent persons were also in the vicinity. If you have ever been told not to trust Bayes'
theorem, you should follow a few examples like this a good deal further, and see how infallibly it
tells you what information would be relevant, what irrelevant, in plausible reasoning.y

Even in situations where we would be quite unable to say that numerical values should be
used, Bayes' theorem still reproduces qualitatively just what your common sense (after perhaps
some meditation) tells you. This is the fact that George P�olya demonstrated in such exhaustive
detail that the present writer was convinced that the connection must be more than qualitative.

y Note that in these cases we are trying to decide, from scraps of incomplete information, on the truth of

an Aristotelian proposition; whether the defendant did or did not commit some well{de�ned action. This

is the situation { an issue of fact { for which probability theory as logic is designed. But there are other

legal situations quite di�erent; for example, in a medical malpractice suit it may be that all parties are

agreed on the facts as to what the defendant actually did; the issue is whether he did or did not exercise

reasonable judgment. Since there is no o�cial, precise de�nition of \reasonable judgment", the issue is

not the truth of an Aristotelian proposition (however, if it were established that he wilfully violated one of

our Chapter 1 desiderata of rationality, we think that most juries would convict him). It has been claimed

that probability theory is basically inapplicable to such situations, and we are concerned with the partial

truth of a non{Aristotelian proposition. We suggest, however, that in such cases we are not concerned with

an issue of truth at all; rather, what is wanted is a value judgment. We shall return to this topic later

(Chapters 13, 18).
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COMMENTS

There has been much more discussion of the status of Newton's theory than we indicated above.
For example, it has been suggested by Charles Misner that we cannot apply a theory with full
con�dence until we know its limits of validity { where it fails.

Thus relativity theory, in showing us the limits of validity of Newtonian mechanics, also con-
�rmed its accuracy within those limits; so it should increase our con�dence in Newtonian theory
when applied within its proper domain (velocities small compared to that of light). Likewise, the
�rst law of thermodynamics, in showing us the limits of validity of the caloric theory, also con�rmed
the accuracy of the caloric theory within its proper domain (processes where heat ows but no work
is done). At �rst glance this seems an attractive idea, and perhaps this is the way scientists really
should think.

Nevertheless, Misner's principle contrasts strikingly with the way scientists actually do think.
We know of no case where anyone has avowed that his con�dence in a theory was increased by its
being, as we say, \overthrown". Furthermore, we apply the principle of conservation of momentum
with full con�dence, not because we know its limits of validity, but for just the opposite reason; we
do not know of any such limits. Yet scientists believe that the principle of momentum conservation
has real content; it is not a mere tautology.

Not knowing the answer to this riddle, we pursue it only one step further, with the observation
that if we are trying to judge the validity of Newtonian mechanics, we cannot be sure that relativity
theory showed us all its limitations. It is conceivable, for example, that it may fail not only in the
limit of high velocities, but also in that of high accelerations. Indeed, there are theoretical reasons
for expecting this; for Newton's F = ma and Einstein's E = mc2 can be combined into a perhaps
more fundamental statement:

F = (E=c2) a : (5{40)

Why should the force required to accelerate a bundle of energy E depend on the velocity of light?

We see a plausible reason at once, if we adopt the { almost surely true { hypothesis that
our allegedly \elementary" particles cannot occupy mere mathematical points in space, but are
extended structures of some kind. Then the velocity of light determines how rapidly di�erent parts
of the structure can \communicate" with each other. The more quickly all parts can learn that a
force is being applied, the more quickly they can all respond to it. We leave it as an exercise for
the reader to show that one can actually derive Eq. (5{40) from this premise (Hint: the force is
proportional to the deformation that the particle must su�er before all parts of it start to move).

But this embryonic theory makes further predictions immediately. We would expect that when
a force is applied suddenly, a short transient response time would be required for the acceleration
to reach its Newtonian value. If so, then Newton's F = ma is not an exact relation, only a �nal
steady state condition, approached after the time required for light to cross the structure. It is
conceivable that such a prediction could be tested experimentally.

Thus the issue of our con�dence in Newtonian theory is vastly more subtle and complex than
merely citing its past predictive successes and its relation to relativity theory; it depends also on
our whole theoretical outlook.

It appears to us that actual scienti�c practice is guided by instincts that have not yet been
fully recognized, much less analyzed and justi�ed. We must take into account not only the logic of
science, but also the sociology of science (perhaps also its soteriology). But this is so complicated
that we are not even sure whether the extremely skeptical conservatism with which new ideas are
invariably received, is in the long run a bene�cial stabilizing inuence, or a harmful obstacle to
progress.
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What is Queer? In this Chapter we have examined some applications of probability theory
that seem \queer" to us today, in the sense of being \o� the beaten track". Any completely new
application must presumably pass through such an exploratory phase of queerness. But in many
cases, particularly the Bayesian jurisprudence and psychological tests with a more serious purpose
than ESP, we think that queer applications of today may become respectable and useful applications
of tomorrow. Further thought and experience will make us more aware of the proper formulation of
a problem { better connected to reality { and then future generations will come to regard Bayesian
analysis as indispensable for discussing it. Now we return to the many applications that are already
advanced beyond the stage of queerness, into that of respectability and usefulness.
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CHAPTER 6

ELEMENTARY PARAMETER ESTIMATION

\A distinction without a di�erence has been introduced by certain writers who distinguish

`Point estimation', meaning some process of arriving at an estimate without regard to

its precision, from `Interval estimation' in which the precision of the estimate is to some

extent taken into account." | R. A. Fisher (1956)

Probability theory as logic agrees with Fisher in spirit; that is, it gives us automatically both
point and interval estimates from a single calculation. The distinction commonly made between

hypothesis testing and parameter estimation is considerably greater than that which concerned
Fisher; yet it too is, from our point of view, not a real di�erence. When we have only a small

number of discrete hypotheses fH1 � � �Hng to consider, we usually want to pick out a speci�c one
of them as the most likely in that set, in the light of the prior information and data. The cases n = 2

and n = 3 were examined in some detail in Chapter 4, and larger n is in principle a straightforward
and rather obvious generalization.

However, when the hypotheses become very numerous, a di�erent approach seems called for. A
set of discrete hypotheses can always be classi�ed by assigning one or more numerical indices which

identify them, as in Ht ; 1 � t � n, and if the hypotheses are very numerous one can hardly avoid
doing this. Then deciding between the hypotheses Ht and estimating the index t are practically the

same thing, and it is a small step to regard the index, rather than the hypotheses, as the quantity
of interest; then we are doing parameter estimation. We consider �rst the case where the index

remains discrete.

Inversion of the Urn Distributions

In Chapter 3 we studied a variety of sampling distributions that arise in drawing from an Urn.
There the number N of balls in the Urn, and the number R of red balls and N�R white ones, were

considered known in the statement of the problem, and we were to make \pre{data" inferences
about what kind of mix of r red, n � r white we were likely to get on drawing n of them. Now

we want to invert this problem, in the way envisaged by Bayes and Laplace, to the \post{data"
problem: the data D � (n; r) are known but the contents (N; R) of the Urn are not. From the data
and our prior information about what is in the Urn, what can we infer about its true contents? It

is probably safe to say that every worker in probability theory is surprised by the results { almost
trivial mathematically, yet deep and unexpected conceptually { that one �nds in this inversion. In

the following we note some of the surprises already well known in the literature, and add to them.

We found before [Eq. (3{18)] the sampling distribution for this problem; in our present notation
this is the hypergeometric distribution

p(DjN;R; I) = h(rjN;R; n) =

�
N

n

��1 �
R

r

��
N �R

n� r

�
(6{1)

where I now denotes the prior information, the general statement of the problem as given above.

Both N and R Unknown

In general neither N nor R is known initially, and the robot is to estimate both of them. If we

succeed in drawing n balls from the Urn, then of course we know deductively that N � n. It seems
to us intuitively that the data could tell us nothing more about N ; how could the number r of
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red balls drawn, or the order of drawing, be relevant to N? But this intuition is using a hidden
assumption that we can hardly be aware of until we see the robot's answer to the question.

The joint posterior probability distribution for N and R is

p(NRjDI) = p(N jI) p(RjNI)
p(DjNRI)

p(DjI) (6{2)

in which we have factored the joint prior probability by the product rule: p(NRjI) =
p(N jI) p(RjNI), and the normalizing denominator is a double sum:

p(DjI) =
1X
N=0

NX
R=0

p(N jI) p(RjNI) p(DjNRI) (6{3)

in which, of course, the factor p(DjNRI) is zero when N < n, or R < r, or N � R < n� r. Then
the marginal posterior probability for N alone is

p(N jDI) =

NX
R=0

p(NRjDI) = p(N jI)
P

R
p(RjNI) p(DjNRI)

p(DjI) : (6{4)

We could equally well apply Bayes' theorem directly:

p(N jDI) = p(N jI) p(DjNI)

p(DjI) (6{5)

and of course (6{4) and (6{5) must agree, by the product and sum rules.

These relations must hold whatever prior information I we may have about N;R that is to

be expressed by p(NRjI). In principle, this could be arbitrarily complicated and conversion of
verbally stated prior information into p(NRjI) is an open{ended problem; you can always analyze

your prior information more deeply. But usually our prior information is rather simple, and these
problems are not di�cult mathematically.

Intuition might lead us to expect further that, whatever prior p(N jI) we had assigned, the
data can only truncate the impossible values, leaving the relative probabilities of the possible values
unchanged:

p(N jDI) =

(
Ap(N jI); N � n

0; 0 � N < n

)
(6{6)

where A is a renormalization constant. Indeed, the rules of probability theory tell us that this must

be true if the data tell us only that N � n and nothing else about N . For, de�ne the proposition:

Z � \N � n" (6{7)

Then

p(ZjNI) =

(
1; n � N

0; n > N

)
(6{8)

and Bayes' theorem reads:
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p(N jZI) = p(N jI) p(ZjNI)

p(ZjI) =

(
Ap(N jI); N � n

0; N < n

)
(6{9)

so if the data tell us only that Z is true, then we have (6{6) and the above renormalization constant
is A = 1=p(ZjI). Bayes' theorem con�rms that if we learn only that N � n, the relative probability

of the possible values of N are not changed by this information; only the normalization must be
readjusted to compensate for the values N < n that now have zero probability. Laplace considered

this result intuitively obvious, and took it as a basic principle of his theory.

However, the robot tells us in (6{5) that this will not be the case unless p(DjNI) is independent
of N for N � n. And on second thought we see that (6{6) need not be true if we have some kind of

prior information linking N and R. For example, it is conceivable that one might know in advance
that R < 0:06N . Then necessarily, having observed the data (n; r) = (10; 6) we would know not

only that N � 10; but that N > 100. Any prior information that provides a logical link between
N and R makes the datum r relevant to estimating N after all. But usually we lack any such prior

information, and so estimation of N is uninteresting, reducing to the same result (6{6).

From (6{5), the general condition that the data can tell us nothing about N except to truncate

values less than n, is a nontrivial condition on the prior probability p(RjNI):

p(DjNI) =

NX
R=0

p(DjNRI) p(RjNI) =

(
f(n; r); N � n

0; N < n

)
(6{10)

where f(n; r) may depend on the data, but is independent of N . Since we are using the standard

hypergeometric Urn sampling distribution (6{1), this is explicitly,

NX
R=0

�
R

r

��
N � R

n � r

�
p(RjNI) = f(n; r)

�
N

n

�
; N � n (6{11)

This is that hidden assumption that our intuition could hardly have told us about. It is a kind
of discrete integral equationz which the prior p(RjNI) must satisfy as the necessary and su�cient

condition for the data to be uninformative about N . The sum on the left{hand side is necessarily
always zero when N < n, for the �rst binomial coe�cient is zero when R < r, and the second is
zero when R � r and N < n. Therefore the mathematical constraint on p(RjNI) is only, rather

sensibly, that f(n; r) in (6{11) must be independent of N when N � n.

In fact, most \reasonable" priors do satisfy this condition, and as a result estimation of N is

relatively uninteresting. Then, factoring the joint posterior distribution (6{2) in the form

p(NRjDI) = p(N jI) p(RjNDI) ; (6{12)

our main concern is with the factor p(RjN;D; I), drawing inferences about R or about the ratio
R=N with N supposed known. The posterior probability distribution for R is then, by Bayes'
theorem,

p(RjD;N; I) = p(RjN; I)
p(DjN;R; I)

p(DjN; I)
: (6{13)

Di�erent choices of the prior probability p(RjN; I) will yield many quite di�erent results, and we
now examine a few of them.

z This peculiar name anticipates what we shall �nd later, in connection with marginalization theory; very

general conditions of `uninformativeness' are expressed by similar integral equations that the prior for one

parameter must satisfy in order to make the data uninformative about another parameter.
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Uniform Prior

Consider the state of prior knowledge denoted by I0, in which we are, seemingly, as ignorant as we

could be about R while knowing N : the uniform distribution

p(RjN; I0) =

8<
:

1

N + 1
; 0 � R � N

0 ; R > N

9=
; : (6{14)

Then a few terms cancel out and (6{13) reduces to

p(RjD;N; I0) = S�1
�
R

r

��
N � R

n � r

�
; (6{15)

where S is a normalization constant. For several purposes, we need the general summation formula

S �
NX
R=0

�
R

r

��
N �R

n� r

�
=

�
N + 1

n+ 1

�
; (6{16)

whereupon the correctly normalized posterior distribution for R is

p(RjD;N; I0) =

�
N + 1

n + 1

��1 �
R

r

��
N � R

n � r

�
: (6{17)

This is not a hypergeometric distribution like (6{1) because the variable is now R instead of r.

The prior (6{14) yields, using (6{16),

NX
R=0

1

N + 1

�
R

r

��
N �R

n� r

�
=

1

N + 1

�
N + 1

n+ 1

�
=

1

n+ 1

�
N

n

�
(6{18)

so the integral equation (6{11) is satis�ed; with this prior the data can tell us nothing about N
beyond the fact that N � n.

Let us check (6{17) to see whether it satis�es some obvious common{sense requirements. We

see that it vanishes when R < r, or R > N � n + r, in agreement with what the data tell us by
deductive reasoning. If we have sampled all the balls, n = N , then (6{17) reduces to �(R; r), again

agreeing with deductive reasoning. This is another illustration of the fact that probability theory
as extended logic automatically includes deductive logic as a special case.

But if we obtain no data at all, n = r = 0, then (6{17) reduces, as it should, to the prior
distribution: p(RjD;N; I0) = p(RjN; I0) = 1=(N + 1). If we draw only one ball which proves to be

red, n = r = 1, then (6{17) reduces to

p(RjD;N; I0) =
2R

N(N + 1)
: (6{19)

The vanishing when R = 0 again agrees with deductive logic. From (6{1) the sampling probability
p(r = 1jn = 1; N;R; I0) = R=N that our one ball would be red is our original Bernoulli Urn

result, proportional to R; and with a uniform prior the posterior probability for R must also be

proportional to R. The numerical coe�cient in (6{19) gives us an inadvertent derivation of the
elementary sum rule
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NX
R=0

R =
N(N + 1)

2
: (6{20)

These results are only a few of thousands now known, indicating that probability theory as extended

logic is an exact mathematical system. That is, results derived from correct application of our rules
without approximation have the property of exact results in any other area of mathematics; you

can subject them to arbitrary extreme conditions and they continue to make sense.y

What value of R does the robot estimate in general? The most probable value of R is found

within one unit by setting p(R0) = p(R0 � 1) and solving for R0. This yields

R0 = (N + 1)
r

n
(6{21)

which is to be compared to (3{22) for the peak of the sampling distribution. If R0 is not an integer,
the most probable value is the next integer below R0. The robot anticipates that the fraction of

red balls in the original Urn should be about equal to the fraction in the observed sample, just as

you and I would from intuition.

For a more re�ned calculation let us �nd the mean value, or expectation of R over this posterior

distribution:

hRi = E(RjD;N; I0) =

NX
R=0

Rp(RjD;N; I0) : (6{22)

To do the summation, note that

(R+ 1)

�
R

r

�
= (r+ 1)

�
R+ 1

r + 1

�
(6{23)

and so, using (6{16) again,

hRi+ 1 = (r + 1)

�
N + 1

n+ 1

��1 �
N + 2

n+ 2

�
=

(N + 2) (r+ 1)

(n+ 2)
: (6{24)

When (n; r;N) are large, the expectation of R is very close to the most probable value (6{21),

indicating either a sharply peaked posterior distribution or a symmetric one. This result becomes
more signi�cant when we ask: \What is the expected fraction F of red balls left in the Urn after

this drawing?" This is

hF i = hRi � r

N � n
=

r + 1

n + 2
: (6{25)

Predictive Distributions: Instead of using probability theory to estimate the unobserved con-

tents of the Urn, we may use it as well to predict future observations. We ask a di�erent question:
after having drawn a sample of r red balls in n draws, what is the probability that the next one

drawn will be red? De�ning the propositions:

Ri � \Red on the i'th draw", 1 � i � N

this is

y By contrast, the intuitive ad hockeries of current \orthodox" statistics generally give reasonable results

within some `safe' domain for which they were invented; but invariably they are found to yield nonsense

in some extreme case. This, examined in Chapter 17, is what one expects of results which are only

approximations to an exact theory; as one varies the conditions the quality of the approximation varies.
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p(Rn+1jD;N; I0) =

NX
R=0

p(Rn+1RjD;N; I0) =
X
R

p(Rn+1jR;D;N; I0) � p(RjD; n; I0) (6{26)

or,

p(Rn+1jD;N; I0) =

NX
R=0

R� r

N � n
�
�
N + 1

n+ 1

��1 �
R

r

��
N � R

n� r

�
(6{27)

Using the summation formula (6{16) again, we �nd after some algebra,

p(Rn+1jD;N; I0) =
r+ 1

n+ 2
; (6{28)

the same as (6{25). This agreement is another example of the rule noted before: a probability is
not the same thing as a frequency; but under quite general conditions the predictive probability of

an event at a single trial is numerically equal to the expectation of its frequency in some speci�ed
class of trials.

Eq. (6{28) is a famous old result known as Laplace's Rule of Succession. It has played a major
role in the history of Bayesian inference, and in the controversies over the nature of induction and

inference. We shall �nd it reappearing many times; �nally, in Chapter 18 we examine it carefully
to see how it became controversial, but also how easily the controversies can be resolved today.

The result (6{28) has a greater generality than would appear from our derivation. Laplace

�rst obtained it, not in consideration of drawing from an Urn, but from considering a mixture of
binomial distributions, as we shall do presently in (6{70). The above derivation in terms of Urn

sampling had been found as early as 1799 (see Zabell, 1989), but became well known only through

its rediscovery in 1918 by C. D. Broad of Cambridge University, England, and its subsequent
emphasis by Wrinch and Je�reys (1919), W. E. Johnson (1924, 1932), and Je�reys (1939). It was

initially a great surprise to �nd that the Urn result (6{28) is independent of N .

But this is only the point estimate; what accuracy does the robot claim for this estimate of
R? The answer is contained in the same posterior distribution (6{17) that gave us (6{28); we may

�nd its variance hR2i � hRi2. Extending (6{23), note that

(R+ 1)(R+ 2)

�
R

r

�
= (r + 1)(r+ 2)

�
R+ 2

r+ 2

�
: (6{29)

The summation over R is again simple, yielding

h(R+ 1)(R+ 2)i = (r + 1)(r+ 2)

�
N + 1

n+ 1

��1 �
N + 3

n+ 3

�
=

(r + 1)(r+ 2)(N + 2)(N + 3)

(n+ 2)(n+ 3)
(6{30)

Then noting that var(R) = hR2i�hRi2 = h(R+1)2i�h(R+1)i2 and writing for brevity p = hF i =
(r + 1)=(n+ 2), from (6{24), (6{30) we �nd

var(R) =
p(1� p)

n+ 3
(N + 2) (N � n) : (6{31)

Therefore, our (mean) � (standard deviation) combined point and interval estimate of R is
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(R)est = r + (N � n)p�
r
p(1� p)

n + 3
(N + 2) (N � n) : (6{32)

The factor (N�n) inside the square root indicates that, as we would expect, the estimate becomes
more accurate as we sample a larger fraction of the contents of the Urn. Indeed, when n = N

the contents of the Urn are known and (6{32) reduces as it should to (r � 0), in agreement with
deductive reasoning.

But looking at (6{32) we note that R� r is the number of red balls remaining in the Urn, and
N � n is the total number of balls left in the Urn; so an analytically simpler expression is found if

we ask for the (mean) � (standard deviation) estimate of the fraction of red balls remaining in the
Urn after the sample is drawn. This is found to be

(F )est =
(R� r)est
N � n

= p�
r
p(1� p)

n+ 3

N + 2

N � n
; 0 � n < N (6{33)

and this estimate gets less accurate as we sample a larger portion of the balls. In the limit N ! 1
this goes into

(F )est = p�
r
p(1� p)

n+ 3
; (6{34)

which corresponds to the binomial distribution result.

As an application of this, while preparing this Chapter we heard a news report that a \random

poll" of 1600 voters was taken, indicating that 41% of the population favored a certain candidate in
the next election, and claiming a �3% margin of error for this result. Let us check the consistency

of these numbers against our theory. To obtain (F )est = hF i(1� :03) we require according to (6{34)
a sample size n given by

n + 3 =
1� p

p

1

(:03)2
=

1� :41

:41
� 1111 = 1598:9 (6{35)

or, n = 1596. The close agreement suggests that the pollsters are using this theory (or at least

giving implied lip service to it in their public announcements).

These results, found with a uniform prior for p(RjN; I0) over 0 � R � N , correspond very well

with our intuitive common{sense judgments. Other choices of the prior can a�ect the conclusions

in ways which often surprise us at �rst glance; then after some meditation we see that they were
correct after all. Let us put probability theory to a more severe test by considering some increasingly

surprising examples.

Truncated Uniform Priors

Suppose our prior information had been di�erent from the above I0; our new prior information I1
is that we know from the start that 0 < R < N ; there is at least one red and one white ball in the

Urn. Then the prior (6{14) must be replaced by

p(RjN; I1) =

8<
:

1

N � 1
; 1 � R � N � 1

0 ; otherwise

9=
; (6{36)

and our summation formula (6{16) must be corrected by subtracting o� the two terms R = 0; R =

N . Note that if R = 0, then �
R

r

�
=

�
R+ 1

r + 1

�
= �(r; 0)
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and if R = N , then �
N � R

n � r

�
= �(r; n) ;

so we have the summation formulas

S =

N�1X
R=1

�
R

r

��
N �R

n� r

�
=

�
N + 1

n+ 1

�
�
�
N

n

�
�(r; n)�

�
N

n

�
�(r; 0) (6{37)

N�1X
R=1

�
R+ 1

r + 1

��
N � R

n � r

�
=

�
N + 2

n + 2

�
�
�
N + 1

n+ 1

�
�(r; n)�

�
N

n

�
�(r; 0) (6{38)

What seems surprising at �rst is that as long as the observed r is in 0 < r < n the new terms
vanish, and so the previous posterior distribution (6{17) is unchanged:

p(RjD;N; I1) = p(RjD;N; I0) ; 0 < r < n : (6{39)

Why does the new prior information make no di�erence? Indeed, it would certainly make a di�er-

ence in any form of probability theory that uses only sampling distributions; for the sample space
is changed by the new information.

Yet on meditation we see that the result (6{39) is correct, for in this case the data tell us by
deductive reasoning that R cannot be 0 or N ; so whether the prior information does or does not

tell us the same thing cannot matter; our state of knowledge about R is the same and probability

theory as logic so indicates. We discuss this further under \optional stopping" below.

But suppose that our data were r = 0; now the sum S in (6{15) is di�erent:

S =

�
N + 1

n+ 1

�
�
�
N

n

�
(6{40)

and in place of (6{17) the posterior probability distribution for R is found to be, after some
calculation,

p(Rjr = 0; N; I1) =

�
N

n+ 1

��
N �R

n

�
; 1 � R � N � 1 (6{41)

and zero outside that range. But still, within that range the relative probabilities of di�erent values
of R are not changed; we readily verify that the ratio

p(Rjr = 0; N; I1)

p(Rjr = 0; N; I0)
=

N + 1

N � n
; 1 � R � N � 1 (6{42)

is independent of R. What has happened here is that the datum r = 0 gives no evidence against
the hypothesis that R = 0 and some evidence for it; so on prior information I0 which allows this,
R = 0 is the most probable value. But the prior information I1 now makes a decisive di�erence;
it excludes just that value, and thus forces all the posterior probability to be compressed into a

smaller range, with an upward adjustment of the normalization coe�cient. We learn from this

example that di�erent priors do not necessarily lead to di�erent conclusions; and whether they do
or do not can depend on which data set we happen to get { which is just as it should be.
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Exercise 6.1. Find the posterior probability distribution p(Rjr = n;N; I1) by a derivation
like the above. Then �nd the new (mean) � (standard deviation) estimates of R from this

distribution, and compare it with the above results from p(Rjr = n;N; I0). Explain the di�er-
ence so that it seems obvious intuitively. Now show how well you understand this problem by

describing in words, without doing the calculation, how the result would di�er if we had prior
information that (3 � R � N); the Urn had initially at least three red balls, but there was no

prior restriction on large values.

A Concave Prior

The rule of succession, based on the uniform prior fp(RjNI) / const: ; 0 � R � Ng, leads to a
perhaps surprising numerical result, that the expected fraction (6{25) of red balls left in the Urn

is not the fraction r=n observed in the sample drawn, but slightly di�erent, (r+ 1)=(n+ 2). What
is the reason for this small di�erence? The following argument is hardly a derivation, but only a

line of free association. Note �rst that Laplace's rule of succession can be written in the form

r + 1

n+ 2
=

n � (r=n) + 2 � (1=2)
n+ 2

(6{43)

which exhibits the result as a weighted average of the observed fraction r=n and the prior expecta-

tion 1=2, the data weighted by the number n of observations, the prior expectation by 2. It seems
that the uniform prior carries a weight corresponding to two observations. Then could that prior

be interpreted as a posterior distribution resulting from two observations (n; r) = (2; 1)? If so, it
seems that we must start from a still more uninformative prior than the uniform one. But is there

any such thing as a still more uninformative prior?

Mathematically, this suggests that we try to apply Bayes' theorem backwards, to �nd whether

there is any prior that would lead to a uniform posterior distribution. Denote this conjectured still
more primitive state of \pre{prior" information by I00. Then Bayes' theorem would read:

p(RjDI00) = p(RjI00) p(DjRI00)
p(DjI00) = const: ; 0 � R � N (6{44)

and the sampling distribution is still the hypergeometric distribution (6{1), because when R is

speci�ed it renders any vague information like I00 irrelevant: p(DjRI0) = p(DjRI00). With the

assumed sample, n = 2; r = 1 the hypergeometric distribution reduces to

h(r = 1jN;R; n= 2) =
R(N �R)

N(N � 1)
; 0 � R � N (6{45)

from which we see that there is no pre{prior that yields a constant posterior distribution over the
whole range (0 � R � N); it would be in�nite for R = 0 and R = N . But we have just seen that
the truncated prior, constant in (1 � R � N�1), yields the same results if it is known that the Urn

contains initially at least one red and one white ball. Since our presupposed data (n; r) = (2; 1)
guarantees this, we see that we have a solution after all: consider the prior that emphasizes extreme

values:

p(RjI00) � A

R(N �R)
; 1 � R � N � 1 (6{46)
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where A stands for a normalization constant, not necessarily the same in all the following equations.
Given new data D � (n; r), if 1 � r � n� 1 this yields, using (6{1), the posterior distribution

p(RjDNI00) =
A

R(N �R)

�
R

r

��
N � R

n � r

�
=

A

r(n� r)

�
R� 1

r � 1

��
N � R� 1

n� r � 1

�
: (6{47)

From (6{16) we may deduce the summation formula

N�1X
r=1

�
R� 1

r � 1

��
N � R� 1

n � r � 1

�
=

�
N � 1

n � 1

�
;

1 � R � N � 1;

1 � r � n� 1
(6{48)

so the correctly normalized posterior distribution is

p(RjDNI00) =

�
N � 1

n � 1

��1 �
R� 1

r � 1

��
N �R� 1

n� r� 1

�
1 � R � N � 1;

1 � r � n� 1
(6{49)

which is to be compared with (6{17). As a check, if n = 2; r = 1 this reduces to the desired prior
(6{36):

p(RjDNI00) = p(RjNI1) =
1

N � 1
; 1 � R � N � 1 (6{50)

At this point, we can leave it as an exercise for the reader to complete the analysis for the concave

prior with derivations analogous to (6{22) { (6{34):

Exercise 6.2. Using the general result (6{49), repeat the calculations analogous to (6{22) { (6{

34) and prove two exact results: (a) The integral equation (6{11) is satis�ed, so (6{6) still holds.
(b) For general data compatible with the prior in the sense that 0 � n � N; 1 � r � n � 1

(so that the sample drawn includes at least one red and one white ball), the posterior mean
estimated fractions R=N; (R� r)=(N � n) are both equal simply to the observed fraction in the
sample, f = r=n; the estimates now follow the data exactly and the concave prior (6{46) is given

zero weight. (c) The (mean) � (standard deviation) estimate is given by

(R)est

N
= f �

r
f(1� f)

n + 1

�
1� n

N

�
(6� 51)

also a simpler result than the analogous (6{32) found previously for the uniform prior.

Exercise 6.3. Now note that if r = 0 or r = n, the step (6{47) is not valid. Go back to the
beginning and derive the posterior distribution for these cases. Show that if we draw one ball

and �nd it not red, the estimated fraction of red in the Urn now drops from 1=2 to approximately
1= logN (whereas with the uniform prior it drops to (r + 1)=(n+ 2) = 1=3).

The exercises show that the concave prior gives many results simpler than those of the uniform
one, but has also some near instability properties that become more pronounced with large N .
Indeed, as N !1 the concave prior approaches an improper (non{normalizable) one, which must

give absurd answers to some questions, although it still gives reasonable answers to most questions

(those in which the data are so informative that they remove the singularity associated with the
prior).
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The Binomial Monkey Prior

Suppose prior information I2 is that the Urn was �lled by a team of monkeys who tossed balls in

at random, in such a way that each ball entering had independently the probability g of being red.
Then our prior for R will be the binomial distribution (3{79): in our present notation,

p(RjN; I2) =

�
N

R

�
gR (1� g)N�R ; 0 � R � N (6{52)

and our prior estimate of the fraction of red ones in the Urn will be the (mean) � (standard

deviation) over this distribution:

(R)est = Ng �
p
Ng(1� g) (6{53)

The sum (6{10) is readily evaluated for this prior, with the result that

p(DjNI) =

�
n

r

�
gr (1� g)n�r ; N � n (6{54)

Since this is independent of N , this prior also satis�es our integral equation (6{11), so

p(NRjDI2) = p(N jDI2) p(RjNDI2) (6{55)

in which the �rst factor is the relatively uninteresting standard result (6{6). We are interested

in the factor p(RjNDI2) in which N is considered known. We are interested also in the other
factorization

p(NRjDI2) = p(RjDI2) p(N jRDI2) (6{56)

in which p(RjDI) tells us what we know about R, regardless of N (here let the reader try to guess

intuitively how p(RjDNI) and p(RjDI) would di�er for any I , before seeing the calculations).
Likewise, the di�erence between p(N jRDI2) and p(N jDI2) tells us how much we would learn

about N if we were to learn the true R; and again our intuition can hardly anticipate the result of
the calculation.

We have set up quite an agenda of calculations to do. Using (6{52) and (6{1), we �nd

p(RjD;N; I2) = A

�
N

R

�
gR (1� g)N�R

�
R

r

��
N �R

n� r

�
(6{57)

where A is another normalization constant. To evaluate it, note that we can rearrange the binomial
coe�cients: �

N

R

��
R

r

��
N � R

n� r

�
=

�
N

n

��
n

r

��
N � n

R� r

�
(6{58)

Therefore we �nd the normalization by

1 =
X
R

p(RjD;N; I2) = A

�
N

n

��
n

r

�X
R

�
N � n

R� r

�
gR (1� g)N�R

= A

�
N

n

��
n

r

�
gr (1� g)n�r ; r � R � N � n+ r

(6{59)

and so our normalized posterior distribution for R is
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p(RjD;N; I2) =

�
N � n

R� r

�
gR�r (1� g)N�R�n+r (6{60)

from which we would make the (mean) � (standard deviation) estimate

(R)est = r + (N � n)g �
p
g(1� g)(N � n) (6{61)

But the resemblance to (6{32) suggests that we again look at it this way: we estimate the fraction

of red balls left in the Urn to be

(R� r)est
N � n

= g �
r
g(1� g)

N � n
: (6{62)

At �rst glance, (6{61) and (6{62) seem to be so much like (6{32) and (6{33) that it was hardly

worth the e�ort to derive them. But on second glance we notice an astonishing fact: the parameter

p in the former equations was determined entirely by the data; while g in the present ones is
determined entirely by the prior information. In fact, (6{62) is exactly the prior estimate we would

have made for the fraction of red balls in any subset of N � n balls in the Urn, without any data

at all . It seems that the binomial prior has the magical property that it nulli�es the data! More

precisely, with that prior the data can tell us nothing at all about the unsampled balls.

Such a result will hardly commend itself to a survey sampler; the basis of his profession would
be wiped out. Yet the result is correct and there is no escape from the conclusion; if your prior

information about the population is correctly described by the binomial prior, then sampling is
futile (it tells you practically nothing about the population) unless you sample practically the

whole population.

How can such a thing happen? Comparing the binomial prior with the uniform prior, one
would suppose that the binomial prior, being moderately peaked, expresses more prior information

about the proportion R=N of red balls; therefore by its use one should be able to improve his
estimates of R. Indeed, we have found this e�ect; for the uncertainties in (6{61) and (6{62) are

smaller than that those in (6{32) and (6{33) by a factor of
p
(n+ 3)=(N + 2). What is intriguing

is not the magnitude of the uncertainty; but the fact that (6{33) depends on the data; while (6{62)

does not.

It is not surprising that the binomial prior is more informative about the unsampled balls than
are the data of a small sample; but actually it is more informative about them than are any amount

of data; even after sampling 99% of the population, we are no wiser about the remaining 1%.

So what is the invisible strange property of the binomial prior? It is in some sense so \loose"
that it destroys the logical link between di�erent members of the population. But on meditation we

see that this is just what was implied by our scenario of the Urn being �lled by monkeys tossing in
balls in such a way that each ball had independently the probability g of being red. Given that �lling
mechanism, then knowing that any given ball is in fact red, gives one no information whatsoever

about any other ball. That is, P (R1R2jI) = P (R1jI)P (R2jI). This logical independence in the
prior is preserved in the posterior distribution.

Exercise 6.4. Investigate this apparent \law of conservation of logical independence". If
the propositions: \fi'th ball is red, 1 � i � Ng" are logically independent in the prior in-
formation, what is the necessary and su�cient condition on the sampling distribution and the
data, that the factorization property is retained in the posterior distribution: P (R1R2jDI) =

P (R1jDI)P (R2jDI)?

This sets o� another line of deep thought. In conventional probability theory, the binomial
distribution is derived from the premise of causal independence of di�erent tosses. In Chapter 3
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we found that consistency requires one to reinterpret this as logical independence. But now, can
we reason in the opposite direction? Does the appearance of a binomial distribution already imply

logical independence of the separate events? If so, then we could understand the weird result just
derived, and anticipate many others like it. We shall return to these questions in a later Chapter,

after acquiring some more clues.

Metamorphosis into Continuous Parameter Estimation

As noted in the Introduction, if our hypotheses become so \dense" that neighboring hypotheses (i.e.,

hypotheses with nearly the same values of the index t) are barely distinguishable in their observable
consequences, then whatever the data, their posterior probabilities cannot di�er appreciably. So

there cannot be one sharply de�ned hypothesis that is strongly favored over all others. Then it may
be appropriate and natural to think of t as a continuously variable parameter �, and to interpret

the problem as that of making an estimate of the parameter �, and a statement about the accuracy

of the estimate.

A common and useful custom is to use Greek letters to denote continuously variable parameters,

Latin letters for discrete indices or data values. We shall adhere to this except when it would conict
with a more deeply entrenched custom.z

The hypothesis testing problem has thus metamorphosed into a parameter estimation one.

But it can equally well metamorphose back; for the hypothesis that a parameter � lies in a certain
interval a < � < b is, of course, a compound hypothesis as de�ned in Chapter 4, so an interval

estimation procedure (i.e., one where we specify the accuracy by giving the probability that the
parameter lies in a given interval) is automatically a compound hypothesis testing procedure.

Indeed, we followed just this path in Chapter 4 and found ourselves, at Eq. (4{57), doing

what is really parameter estimation. It seemed to us natural to pass from testing simple discrete
hypotheses, to estimating continuous parameters, and �nally to testing compound hypotheses at

Eq. (4{64), because probability theory as logic does this automatically. As in our opening remarks,
we do not see parameter estimation and hypothesis testing as fundamentally di�erent activities {

one aspect of the greater unity of probability theory as logic.

But this unity has not seemed at all natural to some others. Indeed, in orthodox statistics
parameter estimation appears very di�erent from hypothesis testing, both mathematically and

conceptually, largely because it has no satisfactory way to deal with compound hypotheses or prior
information. We shall see some speci�c consequences of this in Chapter 17. Of course, parameters
need not be one{dimensional; but let us consider �rst some simple cases where they are.

Estimation with a Binomial Sampling Distribution

We have already seen an example of a binomial estimation problem in Chapter 4, but we did not

note its generality. There are hundreds of real situations in which each time a simple measurement

or observation is made, there are only two possible results. The coin will show either heads or tails,
the battery will or will not start the car, the baby will be a boy or a girl, the check will or will

not arrive in the mail today, the student will pass or unk the examination, etc.. As we noted in
Chapter 3, the �rst comprehensive sampling theory analysis of such an experiment was by James

Bernoulli (1713) in terms of drawing balls from an Urn, so such experiments are commonly called
Bernoulli trials .

Traditionally, for any such binary experiment we call one of the results, arbitrarily, a \success"

and the other a \failure". Generally, our data will be a record of the number of successes and

z Thus for generations the charge on the electron and the velocity of light have been denoted by e; c
respectively. No scientist or engineer could bring himself to represent them by Greek letters, even when

they are the parameters being estimated.
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the number of failures;? the order in which they occur may or may not be meaningful, and if it
is meaningful, it may or may not be known; and if it is known, it may or may not be relevant to

the question we are asking. Presumably, the conditions of the experiment will tell us whether the
order is meaningful or known; and we expect probability theory to tell us whether it is relevant.

For example, if we toss 10 coins simultaneously, then we have performed 10 Bernoulli trials,
but it is not meaningful to speak of their `order'. If we toss one coin 100 times and record each

result, then the order of the results is meaningful and known; but in trying to judge whether the
coin is `honest', common sense probably tells us that the order is not relevant. If we are observing

patient recoveries from a disease and trying to judge whether resistance to the disease was improved
by a new medicine introduced a month ago, this is much like drawing from an Urn whose contents

may have changed. Intuition then tells us that the order in which recoveries and non{recoveries
occur is not only highly relevant; it is the crucial information without which no inference about a

change is possible.y

To set up the simple general binomial sampling problem, de�ne

xi �
(
1; if the i0th trial yields success

0; otherwise

)
: (6{63)

Then our data are D � fx1; � � � ; xng. The prior information I speci�es that there is a parameter �

such that at each trial we have, independently of anything we know about other trials, the probabil-
ity � of a success, therefore probability (1��) of a failure. As discussed before, by `independent' we

mean logical independence. There may or may not be causal independence, depending on further
details of I that do not matter at the moment. The sampling distribution is then (mathematically,

this is our de�nition of the model to be studied):

p(Dj�; I) =
nY
i=1

p(xij�; I) = �r (1� �)n�r ; (6{64)

in which r is the number of successes observed, (n� r) the number of failures. Then with any prior
probability density function p(�jI) we have immediately the posterior pdf

p(�jD; I) =
p(�jI) p(Dj�; I)R
p(�jI) p(Dj�; I)d� = Ap(�jI) �r (1� �)n�r ; (6{65)

where A is a normalizing constant. With a uniform prior for �,

p(�jI) = 1 ; 0 � � � 1 (6{66)

the normalization is determined by an Eulerian integral:

A�1 =

Z 1

0

�r (1� �)n�r d� =
r! (n� r)!

(n+ 1)!
(6{67)

and the normalized pdf is

? However, there are important problems involving censored data, to be considered later, in which only the

successes can be recorded (or only the failures), and one does not know how many trials were performed.

For example, a highway safety engineer knows from the public record how many lives were lost in spite of

his e�orts; but not how many were saved because of them.
y Of course, the �nal arbiter of relevance is not our intuition, but the equations of probability theory. But

as we shall see later, judging this can be a tricky business. Whether a given piece of information is or is

not relevant depends not only on what question we are asking, but also on the totality of all of our other

information.
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p(�jD; I) =
(n+ 1)!

r! (n� r)!
�r (1� �)n�r (6{68)

identical with Bayes' original result, noted in Chapter 4, Eq. (4{57). Its moments are

h�mi = E(�mjD; I) = A

Z 1

0

�r+m (1� �)n�r d� =
(n+ 1)!

(n +m+ 1)!

(r +m)!

r!

=
(r+ 1)(r+ 2) � � �(r+m)

(n+ 2)(n+ 3) � � �(n+m+ 1)

(6{69)

leading to the predictive probability of success at the next trial of

p � h�i =
Z 1

0

� p(�jDI) d� =
r + 1

n + 2
(6{70)

in which we see Laplace's rule of succession in its original derivation. Likewise the (mean� standard

deviation) estimate of � is:

(�)est = h�i �
q
h�2i � h�i2 = p�

r
p(1� p)

n+ 3
(6{71)

Indeed, the continuous results (6{70) and (6{71) must be derivable from the discrete ones (6{28)

and (6{34) by passage to the limit N ! 1; but since the latter equations are independent of N ,
the limit has no e�ect.

In this limit the concave pre{prior distribution (6{46) would go into an improper prior for �:

A

R(N �R)
! d�

�(1 � �)
(6{72)

for which some sums or integrals would diverge; but that is not the strictly correct method of
calculation. For example, to calculate the posterior expectation of any function f(R=N) in the

limit of arbitrarily large N , we should take limit of the ratio hf(R=N)i = Num=Den, where

Num �
N�1X
R=1

f(R=N)

R(N � R)
p(DjN;R; I);

Den �
N�1X
R=1

1

R(N � R)
p(DjN;R; I)

(6{73)

and under very general conditions this limit is well{behaved, leading to useful results. The limiting
improper pre{prior (6{72) was advocated by Haldane (1932) and Je�reys (1939), in the innocent
days before the marginalization paradox, when nobody worried about such �ne points. We were
almost always lucky in that our integrals converged in the limit, so we used them directly, thus

actually calculating the ratio of the limits rather than the limit of the ratio; but nevertheless getting

the right answers. With this �ne point now clari�ed, all this and its obvious generalizations seem
perfectly straightforward; however, note the following point, important for a current controversy.
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Digression on Optional Stopping

We did not include n in the conditioning statements in p(Dj�; I) because, in the problem as de�ned,
it is from the data D that we learn both n and r. But nothing prevents us from considering a

di�erent problem in which we decide in advance how many trials we shall make; then it is proper
to add n to the prior information and write the sampling probability as p(Djn; �; I). Or, one might

decide in advance to continue the Bernoulli trials until we have achieved a certain number r of
successes, or a certain log{odds u = log[r=(n� r)]; then it would be proper to write the sampling

probability p(Djr; �; I) or p(Dju; �; I); and so on. Does this matter for our conclusions about �?

Now in deductive logic (Boolean algebra) it is a triviality that AA = A; if you say: \A is true"
twice, this is logically no di�erent from saying it once. This property is retained in probability

theory as logic, since it was one of our basic desiderata that, in the context of a given problem,

propositions with the same truth value are always assigned the same probability. In practice this
means that there is no need to ensure that the di�erent pieces of information given to the robot

are independent; our formalism has automatically the property that redundant information is not
counted twice.

Thus in our present problem the data, as de�ned, tell us n. Then, since p(njn; �; I) = 1, the

product rule may be written

p(n; r; orderjn; �; I) = p(r; orderjn; �; I) p(njn; �; I) = p(r; orderjn; �; I) : (6{74)

If something is known already from the prior information, then whether the data do or do not tell

us the same thing cannot matter; the likelihood function is the same. Likewise, write the product
rule as

p(�; njD; I) = p(�jn;D; I) p(njD; I) = p(nj�;D; I) p(�jD; I) (6{75)

or, since p(nj�;D; I) = p(njD; I) = 1,

p(�jn;D; I) = p(�jD; I) (6{76)

In this argument we could replace n by any other quantity [such as r, or (n�r), or u � log[r=(n�r)]
that was known from the data; if any part of the data happens to be included also in the prior

information, then that part is redundant and it cannot a�ect our �nal conclusions.

Yet some statisticians (for example, Armitage, 1960) who look only at sampling distributions,
claim that the stopping rule does a�ect our inference. Apparently, they believe that if a statistic

such as r is not known in advance, then parts of the sample space referring to false values of r
remain relevant to our inferences even after the true value of r becomes known from the data D,
although they would not be relevant (they would not even be in the sample space) if the true

value were known before seeing the data. Of course, that does violence to the principle AA = A of
elementary logic; it is astonishing that such a thing could be controversial in the twentieth Century.

It is evident that this same comment applies with equal force to any function f(D) of the data,

whether or not we are using it as an estimator. That is, whether f was or was not known known in
advance can have a major e�ect on our sample space and sampling distributions; but as redundant

information it cannot have any e�ect on any rational inferences from the data. Furthermore,
inference must depend on the data set that was observed, not on data sets that might have been

observed but were not { because merely noting the possibility of unobserved data sets gives us
no information that was not already in the prior information. Although this conclusion might

have seemed obvious from the start, it is not recognized in much of orthodox statistics; we shall
see in Chapter 9 not only some irrational conclusions, but some absolutely spooky consequences

(psychokinesis, black magic) this has had, and in later applictions how much real damage this has
caused. This is a cogent lesson showing the importance of deriving the rules of inference from the
requirements of logical consistency, instead of intuitive guesswork.
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But what if a part of the data set was actually generated by the phenomenon being studied,
but for whatever reason we failed to observe it? This is a major di�culty for orthodox statistics,

because then the sampling distributions for our estimators are wrong, and the problem must be
reconsidered from the start. But for us it is only a minor detail, easily taken into account. We

show next that probability theory as logic tells us uniquely how to deal with true but unobserved
data; they must be relevant in the sense that our conclusions must depend on whether they were

or were not observed; so they have a mathematical status somewhat like that of a set of nuisance
parameters.

Compound Estimation Problems

We now consider in some depth a class of problems more complicated in structure, where more

than one process is occurring but not all the results are observable. We want to make inferences
not only about parameters in the model, but about the unobserved data. The mathematics to be

developed next is applicable to a large number of quite di�erent real problems. To form an idea of
the scope of the theory, consider these scenarios:

(A) In the general population, there is a probability p that any given person will contract a certain

disease within the next year; and then a probability � that anyone with the disease will die
of it within a year. From the observed variations fc1; c2; : : :g of deaths from the disease in

successive years (which is a matter of public record), estimate how the incidence of the disease
fn1; n2; : : :g is changing in the general population (which is not a matter of public record).

(B) Each week, a large number N of mosquitos is bred in a stagnant pond near this campus, and

we set up a trap on the campus to catch some of them. Each mosquito lives less than a week,
during which it has a probability p of ying onto the campus, and once on the campus, it has

a probability � of being caught in our trap. We count the numbers fc1; c2; : : :g caught each
week. From these data and whatever prior information we have, what can we say about the

numbers fn1; n2; : : :g on the campus each week, and what can we say about N?

(C) We have a radioactive source (say Sodium 23 for example) which is emitting particles of

some sort (say the positrons from Na23). Each radioactive nucleus has the probability p of
sending a particle through our counter in one second; and each particle passing through has

the probability � of producing a count. From measuring the number fc1; c2; : : :g of counts in
di�erent seconds, what can we say about the numbers fn1; n2; : : :g actually passing through

the counter in each second, and what can we say about the strength of the source?

The common feature in these problems is that we have two \binary games" played in succession,

and we can observe only the outcome of the last one. From this, we are to make the best inferences
we can about the original cause and the intermediate conditions. This could be described also as
the problem of trying to recover, in one special case, censored data.

We want to show particularly how drastically these problems are changed by various changes
in the prior information. For example, our estimates of the variation in incidence of a disease are
greatly a�ected, not only by the data, but by our prior information about the process by which

one contracts that disease.y

In our estimates we will want to (1) state the \best" estimate possible on the data and prior
information; and (2) make a statement about the accuracy of the estimate, giving again our versions

y Of course, in this �rst venture into the following kind of analysis, we shall not take into account all the

factors that operate in the real world, so some of our conclusions may be changed in a more sophisticated

analysis. However, nobody would see how to do that unless he had �rst studied this simple introductory

example.
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of \point estimation" and \interval estimation" about which Fisher commented. We shall use the
language of the radioactive source scenario, but it will be clear enough that the same arguments

and the same calculations apply in a hundred others.

A Simple Bayesian Estimate: Quantitative Prior Information

First, we discuss the parameter �, which a scientist would call the \e�ciency" of the counter. By
this we mean that, if � is known, then each particle passing through the counter has independently

the probability � of making a count. Again we emphasize that this is not mere causal independence
(which surely always holds, as any physicist would assure us); we mean logical independence; i.e. if

� is known, then knowing anything about the number of counts produced by other particles would

tell us nothing more about the probability of the next particle making a count.z

We have already stressed the distinction between logical and causal dependence many times;
and now we have another case where failure to understand it could lead to serious errors. The

point is that causal inuences operate in the same way independently of your state of knowledge
or mine; thus if � is not known, then everybody still believes that successive counts are causally

independent. But they are no longer logically independent; for then knowing the number of counts
produced by other particles tells us something about �, and therefore modi�es our probability that

the next particle will produce a count. The situation is much like that of sampling with replacement,
discussed above, where each ball drawn tells us something more about the contents of the Urn.

From the independence, the probability that n particles will produce exactly c counts in any

speci�ed order, is �c (1 � �)n�c, and there are
�
n

c

�
possible sequences producing c counts, so the

probability of getting c counts regardless of order is the binomial distribution

p(cjn; �) =
�
n

c

�
�c (1� �)n�c ; 0 � c � n (6{78)

From the standpoint of logical presentation in the real world, however, we have to carry out a kind

of bootstrap operation with regard to the quantity �; for how could it be known? Intuitively, you
may have no di�culty in seeing the procedure you would use to determine � from measurements

with the counter. But logically, we need to have the calculation about to be given before we can
justify that procedure. So, for the time being we'll just have to suppose that � is a number given to

us by our teacher in assigning us this problem; and have faith that in the end we shall understand
how our teacher determined it.

Now let us introduce a quantity p which is the probability, in any one second, that any par-

ticular nucleus will emit a particle that passes through the counter. We assume the number of
nuclei N so large and the half { life so long, that we need not consider N as a variable for this
problem. So there are N nuclei, each of which has independently the probability p of sending a

particle through our counter in any one second. The quantity p is also, for present purposes, just
a number given to us in the statement of the problem, because we have not yet seen in terms of

probability theory, the line of reasoning by which we could convert measurements into a numerical
value of p (but again, you see intuitively without any hesitation, that p is a way of describing the
half { life of the source).

z In practice, there is a question of resolving time; if the particles come too close together we may not be

able to see the counts as separate, because the counter experiences a \dead time" after a count, during

which it is unable to respond to another particle. We have disregarded those di�culties for this problem

and imagined that we have in�nitely good resolving time (or, what amounts to the same thing, that the

counting rate is so low that there is negligible probability of missing a count). After we have developed the

theory, the reader will be asked (Exercise 6.6) to generalize it to take these factors into account.
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Suppose we were given N and p; what is the probability, on this evidence, that in any one
second exactly n particles will pass through the counter? That is the same binomial distribution

problem, so the answer is

b(njN; p) =

�
N

n

�
pn (1� p)N�n (6{79)

But in this case there's a good approximation to the binomial distribution, because the number
N is enormously large and p enormously small. In the limit N ! 1; p ! 0 in such a way that

Np ! s = const., what happens to (6{79)? To �nd this, write p = s=N , and pass to the limit
N !1. Then

N !

(N � n)!
pn = N(N � 1) : : :(N � n+ 1)

� s
N

�n
= sn

�
1� 1

N

� �
1� 2

N

�
� � �
�
1� n� 1

N

�

which goes into sn in the limit. Likewise,

(1� p)N�n =
�
1� s

N

�N�n
! e�s

and so the binomial distribution (6{79) goes over into the simpler Poisson distribution:

p(njN; p)! p(njs) = e�s
sn

n!
(6{80)

and it will be handy for us to take this limit. The number s is essentially what the experimenter

calls his \source strength," the expectation of number of particles per second.

Now we have enough \formalism" to start solving useful problems. Suppose we are not given
the number of particles n in the counter, but only the source strength s. What is the probability, on
this evidence, that we shall see exactly c counts in any one second? Using our method of resolving

the proposition c into a set of mutually exclusive alternatives, then applying the sum rule and the
product rule:

p(cjs) =
1X
n=0

p(cnjs) =
X
n

p(cjns) p(njs) =
X
n

p(cjn) p(njs) (6{81)

since p(cjns) = p(cjn); i.e. if we knew the actual number n of particles in the counter, it would
not matter what s was. This is perhaps made clearer by a diagram, Fig. 6.1 rather like the logic

ow diagrams of Fig. (4.3). In this case, we think of the diagram as indicating not only the logical
connections, but also the causal ones; s is the physical cause which partially determines n; and
then n in turn is the physical cause which partially determines c. Or, to put it another way, s can

inuence c only through its intermediate inuence on n. We saw the same logical situation in the
Chapter 5 horseracing example.
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Since we have worked out both p(cjn) and p(njs), we need only substitute them into (8{4);
after some algebra we have

p(cjs) =
1X
n=c

�
n!

c! (n� c)!
�c (1� �)n�c

� �
e�s sn

n!

�
=

e�s� (s�)c

c!
(6{82)

This is again a Poisson distribution with expectation

hci =
1X
c=0

c p(cjs) = s� (6{83)

Our result is hardly surprising. We have a Poisson distribution with a mean value which is the
product of the source strength times the e�ciency of the counter. Without going through the

analysis, that is just the estimate of c that we would make intuitively, although it is unlikely that
anyone could have guessed from intuition that the distribution still has the Poissonian form.

In practice, it is c that is known, and n that is unknown. If we knew the source strength s,

and also the number of counts c, what would be the probability, on that evidence, that there were
exactly n particles passing through the counter during that second? This is a problem which arises

all the time in physics laboratories, because we may be using the counter as a \monitor", and have
it set up so that the particles, after going through the counter, then initiate some other reaction

which is the one we're really studying. It is important to get the best possible estimates of n,
because that is one of the numbers we need in calculating the cross{section of this other reaction.

Bayes' theorem gives

p(njcs) = p(njs) p(cjns)
p(cjs) =

p(njs) p(cjn)
p(cjs) (6{84)

and all these terms have been found above, so we just have to substitute (6{80) { (6{82) into

(6{84). Some terms cancel, and we are left with:

p(njcs) = e�s(1��) [s (1� �)]n�c

(n� c)!
(6{85)

It is interesting that we still have a Poisson distribution, now with parameter s(1� �), but shifted

upward by c; because of course, n could not be less than c. The expectation over this distribution
is

hni =
X
n

n p(njcs) = c+ s(1� �) (6{86)

So, now what is the best guess the robot can make as to the number of particles responsible for

those c counts? Since this is the �rst time we have faced this issue in a serious way, let us take
time for some discussion.
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From Posterior Distribution Function to Estimate

Given its posterior pdf for some general parameter �, continuous or discrete, what \best" estimate
of � should the robot make, and what accuracy should it claim? There is no one \right" answer;

the problem is really one of decision theory which asks, \What should we do?" This involves value
judgments and therefore goes beyond the principles of inference, which ask only \What do we

know?" We shall return to this in Chapters 13 and 14, but for now we give a preliminary discussion
adequate for the simple problems being considered.

Laplace (1774) already encountered this problem. The unknown true value of a parameter

is �, and given some data D and prior information I we are to make an estimate ��(D; I) which

depends on them in some way. In the jargon of the trade, �� is called an \estimator", and nothing
prevents one from considering any function of (D; I) whatsoever as a potential estimator. But

which estimator is `best'? Our estimate will have an error e = (�� � �), and Laplace gave as a
criterion that we should make that estimate which minimizes the expected magnitude jej. He called
this the \most advantageous" method of estimation.

Laplace's criterion was generally rejected for 150 years in favor of the least squares method
of Gauss and Legendre; we seek the estimate that minimizes the expected square of the error. In

these early works it is not always clear whether this means expected over the sampling pdf for ��

or over the posterior pdf for �; the distinction was not always recognized, and the confusion was

encouraged by the fact that in some cases considerations of symmetry lead us to the same �nal

conclusion from either. Some of the bad consequences of using the former are noted in Chapter
13. It is clear today that the former ignores all prior information about � while the latter takes it

into account and is therefore what we want; taking expectations over the posterior pdf for �, the
expected squared error of the estimate is

h(� � ��)2i = h�2i � 2��h�i+ ��2

= (�� � h�i)2 + (h�2i � h�i2) (6{87)

The choice

�� = h�i =
Z

� p(�jD; I) d� (6{88)

that is, the posterior mean value, therefore always minimizes the expected square of the error, over

the posterior pdf for �, and the minimum achievable value is the variance of the posterior pdf . The
second term is the expected square of the deviation from the mean:

var(�) � h(� � h�i)2i = (h�2i � h�i2) ; (6{89)

often miscalled the variance of �; of course, it is really the variance of the probability distribution

that the robot assigns to �. In any event, the robot can do nothing to minimize it. But the �rst
term can be removed entirely by taking as the estimate just the mean value �� = h�i, which is the
optimal estimator by the mean square error criterion.

Evidently, this result holds generally whatever the form of the posterior distribution p(�jDI);
provided only that h�i and h�2i exist, the mean square error criterion always leads to taking the

mean value h�i, (i.e., the \center of gravity" of the posterior distribution) as the \best" guess. The
posterior (mean � standard deviation) then recommends itself to us as providing a more or less

reasonable statement of what we know and how accurately we know it; and it is almost always the
easiest to calculate. Furthermore, if the posterior pdf is sharp and symmetrical, this cannot be very

di�erent pragmatically from any other reasonable estimate. So in practice we use this more than
any other. In the Urn inversion problems we simply adopted this procedure without comment.

But this may not be what we really want. We should be aware that there are valid arguments
against the posterior mean, and cases where a di�erent rule would better achieve what we want.
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The squared error criterion says that an error twice as great is considered four times as serious.
Therefore, the mean value estimate in e�ect concentrates its attention most strongly on avoiding

the very large (but also very improbable) errors, at the cost of possibly not doing as well as it might
with the far more likely small errors.

Because of this, the posterior mean value estimate is quite sensitive to what happens far out

in the tails of the pdf . If the tails are very unsymmetrical, our estimate could be pulled far away

from the central region where practically all the probability lies and common sense tells us the
parameter is most likely to be. In a similar way, a single very rich man in a poor village would pull

the average wealth of the population far away from anything representative of the real wealth of
the people. If we knew this was happening, then that average would be a quite irrational estimate

of the wealth of any particular person met on the street.

This concentration on minimizing the large errors leads to another property that we might

consider undesirable. Of course, by \large errors" we mean errors that are large on the scale of

the parameter �. If we rede�ned our parameter as some nonlinear function � = �(�) (for example,

� = �3, or � = log �), an error that is large on the scale of � might seem small on the scale of �;
and vice versa. But then the posterior mean estimate

�� � h�i =
Z

� p(�jD; I) d�=

Z
�(�) p(�jD; I) d� (6{90)

would not in general satisfy �� = �(��). Minimizing the mean square error in � is not the same
thing as minimizing the mean square error in �(�).

Thus the posterior mean value estimates lack a certain consistency under parameter changes.
When we change the de�nition of a parameter, if we continue to use the mean value estimate, then

we have changed the criterion of what we mean by a \good" estimate.

Now let us examine Laplace's original criterion. If we choose an estimator �+(D; I) by the

criterion that it minimizes the expected absolute error

E � hj�+ � �ji =
Z

�
+

�1

(�+ � �)f(�) d� +

Z
1

�+

(� � �+)f(�) d� (6{91)

we require

dE

d�+
=

Z
�
+

�1

f(�) d� �
Z 1

�+

f(�) d� = 0 (6{92)

or, P (� > �+jDI) = 1=2; Laplace's \most advantageous" estimator is the median of the posterior

pdf .

But what happens now on a change of parameters � = �(�)? Suppose that � is a strict
monotonic increasing function of � (so that � is in turn a single{valued function of � and the
transformation is reversible). Then it is clear from the above equation that the consistency is

restored: �+ = �(�+).

More generally, all the percentiles have this invariance property: for example, if �35 is the 35
percentile value of �: Z

�35

�1

f(�) d� = 0:35 (6{93)

then we have at once

�35 = �(�35) (6{94)
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Thus if we choose as our point estimate and accuracy claim the median and interquartile span over
the posterior pdf , these statements will have an invariant meaning, independent of how we have

de�ned our parameters. Note that this remains true even when h�i and h�2i diverge, so the mean
square estimator does not exist.

Furthermore, it is clear from their derivation from variational arguments, that the median

estimator considers an error twice as great to be only twice as serious, so it is less sensitive to what
happens far out in the tails of the posterior pdf than is the mean value. In current technical jargon,

one says that the median is more robust with respect to tail variations. Indeed, it is obvious that
the median is entirely independent of all variations that do not move any probability from one side

of the median to the other; and an analogous property holds for any percentile. One very rich man

in a poor village has no e�ect on the median wealth of the population.

Robustness, in the general sense that the conclusions are insensitive to small changes in the
sampling distribution or other conditions, is often held to be a desirable property of an inference

procedure, and some authors criticize Bayesian methods, because they suppose that they lack
robustness. However, robustness in the usual sense of the word can always be achieved merely

by throwing away cogent information! It is hard to believe that anyone could really want this if
he were aware of it; but those with only orthodox training do not think in terms of information

content and so do not realize when they are wasting information. Evidently, the issue requires a
much more careful discussion, to which we return later in connection with Model comparison.y

In at least some problems, then, Laplace's \most advantageous" estimates have indeed two
signi�cant advantages over the more conventional (mean � standard deviation). But before the

days of computers they were prohibitively di�cult to calculate numerically, so the least squares
philosophy prevailed as a matter of practical expedience.

Today, the computation problem is relatively trivial, and we can have whatever we want. It is

easy to write computer programs which give us the option of displaying either the �rst and second
moments or the quartiles (x25; x50; x75) and only the force of long habit makes us continue to

cling to the former.z

Still another principle for estimation is to take the peak �̂; or as it is called, the \mode" of

the posterior pdf . If the prior pdf is a constant (or is at least constant in a neighborhood of this
peak and not su�ciently greater elsewhere), the result is identical with the \maximum likelihood"
estimate (MLE) �0 of orthodox statistics. It is usually attributed to R. A. Fisher, who coined
that name in the 1920's, although Laplace and Gauss used the method routinely 100 years earlier

without feeling any need to give it a special name other than \most probable value". As explained
in Chapter 16, Fisher's ideology would not permit him to call it that. The merits and demerits

of the MLE are discussed further in Chapters 13 and 17; for the present we are not concerned
with philosophical arguments, but wish only to compare the pragmatic results of MLE and other

y But to anticipate our �nal conclusion: robustness with respect to sampling distributions is desirable only

when we are not sure of the correctness of our model. But then a full Bayesian analysis will take into

account all the models considered possible and their prior probabilities. The result automatically achieves

the robustness previously sought in intuitive ad hoc devices; and some of those devices, such as the `jackknife'

and the `redescending Psi function' are derived from �rst principles, as �rst order approximations to the

Bayesian result. The Bayesian analysis of such problems gives us for the �rst time a clear statement of

the circumstances in which robustness is desirable; and then, because Bayesian analysis never throws away

information, it gives us more powerful algorithms for achieving robustness.
z But in spite of all these considerations, the neat analytical results found in our posterior moments from

Urn and binomial models, contrasted with the messy appearance of calculations with percentiles, show

that moments have some kind of theoretical signi�cance that percentiles lack. This appears more clearly

in Chapter 7.
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procedures.? This leads to some surprises, as we see next.

Back to the Problem

At this point, a statistician of the \orthodox" school of thought pays a visit to our laboratory. We

describe the properties of the counter to him, and invite him to give us his best estimate as to the
number of particles. He will, of course, use maximum likelihood because his textbooks have told

him that (Cram�er, 1946; p. 498): \From a theoretical point of view, the most important general
method of estimation so far known is the method of maximum likelihood." His likelihood function

is, in our notation, p(cjn). The value of n which maximizes it is found, within one unit, from setting

p(cjn)
p(cjn� 1)

=
n(1� �)

n� c
= 1

or

(n)MLE =
c

�
(6{95)

You may �nd the di�erence between the two estimates (6{86) and (6{95) rather startling, if we put
in some numbers. Suppose our counter has an e�ciency of 10 percent; in other words, � = 0:1, and

the source strength is s = 100 particles per second, so that the expected counting rate according
to Equation (6{83) is hci = s� = 10 counts per second. But in this particular second, we got 15

counts. What should we conclude about the number of particles?

Probably the �rst answer one would give without thinking is that, if the counter has an

e�ciency of 10 per cent, then in some sense each count must have been due to about 10 particles;

so if there were 15 counts, then there must have been about 150 particles. That is, as a matter of
fact, exactly what the maximum likelihood estimate (6{95) would be in this case. But what does

the robot tell us? Well, it says the best estimate by the mean{square error criterion is only

hni = 15+ 100(1� 0:1) = 15 + 90 = 105: (6{96)

More generally, we could write Equation (6{86) this way:

hni = s + (c� hci) ; (6{97)

so if you see k more counts than you \should have" in one second, according to the robot that is

evidence for only k more particles, not 10k.

This example turned out to be quite surprising to some experimental physicists engaged in

work along these lines. Let's see if we can reconcile it with our common sense. If we have an

average number of counts of 10 per second with this counter, then we would guess, by rules well
known, that a uctuation in counting rate of something like the square root of this, �3, would not
be at all surprising even if the number of incoming particles per second stayed strictly constant.
On the other hand, if the average rate of ow of particles is s = 100 per second, the uctuation in

this rate which would not be surprising is �p100 = �10. But this corresponds to only �1 in the
number of counts.

? One evident pragmatic result is that the MLE fails altogether when the likelihood function has a at top;

then nothing in the data can give us a reason for preferring any point in that at top over any other. But

this is just the case we have in the \generalized inverse" problems of current importance in applications;

and only prior information can resolve the ambiguity.
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This shows that you cannot use a counter to measure uctuations in the rate of arrival of
particles, unless the counter has a very high e�ciency. If the e�ciency is high, then you know

that practically every count corresponds to one particle, and you are reliably measuring those
uctuations. If the e�ciency is low and you know that there is a de�nite, �xed source strength,

then uctuations in counting rate are much more likely to be due to things happening in the counter
than to actual changes in the rate of arrival of particles.

The same mathematical result, in the disease scenario, means that if a disease is mild and
unlikely to cause death, then variations in the observed number of deaths are not reliable indicators

of variations in the incidence of the disease. If our prior information tells us that there is a constantly
operating basic cause of the disease (such as a contaminated water supply), then a large change in

the number of deaths from one year to the next is not evidence of a large change in the number of
people having the disease. But if practically everyone who contracts the disease dies immediately,

then of course the number of deaths tells us very reliably what the incidence of the disease was,
whatever the means of contracting it.

What caused the di�erence between the Bayes and maximum likelihood solutions? It's due to
the fact that we had prior information contained in this source strength s. The maximum likelihood

estimate simply maximized the probability of getting c counts, given n particles, and that gives
you 150. In Bayes' solution, we will multiply this by a prior probability p(njs) which represents

our knowledge of the antecedent situation, before maximizing, and we'll get an entirely di�erent
value for the estimate. As we saw in the inversion of Urn distributions, simple prior information

can make a big change in the conclusions that we draw from a data set.

Exercise 6.5. Generalize the above calculation to take the dead time e�ect into account; that

is, if we know that two or more particles incident on the counter within a short time interval

�t can produce at most only one count, how is our estimate of n changed? These e�ects are
important in many practical situations and there is a voluminous literature on the application

of probability theory to them (see the works of Takacs and Bortkiewicz in the References).

Now let's extend this problem a little bit. We are now going to use Bayes' theorem in four
problems where there is no quantitative prior information, but only one qualitative fact; and again

see the e�ect that prior information has on our conclusions.
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E�ects of Qualitative Prior Information.

The situation is depicted in Fig. 6.2:

Two robots, which we shall humanize by naming them Mr. A and Mr. B, have di�erent prior
information about the source of the particles. The source is hidden in another room which they

are not allowed to enter. Mr. A has no knowledge at all about the source of particles; for all he

knows, it might be an accelerating machine which is being turned on and o� in an arbitrary way,
or the other room might be full of little men who run back and forth, holding �rst one radioactive

source, then another, up to the exit window. Mr. B has one additional qualitative fact; he knows
that the source is a radioactive sample of long lifetime, in a �xed position. But he does not know

anything about its source strength (except, of course, that it is not in�nite because, after all, the
laboratory is not being vaporized by its presence. Mr. A is also given assurance that he will not

be vaporized during the experiment). They both know that the counter e�ciency is 10 per cent:
� = 0:1. Again, we want them to estimate the number of particles passing through the counter,

from knowledge of the number of counts. We denote their prior information by IA, IB respectively.

All right, we commence the experiment. During the �rst second, c1 = 10 counts are registered.
What can Mr. A and Mr. B say about the number n1 of particles? Bayes' theorem for Mr. A reads,

p(n1jc1IA) = p(n1jIA) p(c1jn1IA)
p(c1jIA)

=
p(n1jIA) p(c1jn1)

p(c1jIA)
(6{98)

The denominator is just a normalizing constant, and could also be written,

p(c1jIA) =
X
n1

p(c1jn1) p(n1jIA): (6{99)

But now we seem to be stuck, for what is p(n1jIA)? The only information about n1 contained in
IA is that n1 is not large enough to vaporize the laboratory. How can we assign prior probabilities

on this kind of evidence? This has been a point of controversy for a long time, for in any theory

which regards probability as a real physical phenomenon, Mr. A has no basis at all for determining
the `true' prior probabilities p(n1).
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Choice of a Prior. Now, of course, Mr. A is programmed to recognize that there is no such thing
as an \objectively true" probability. As the notation p(n1jIA) indicates, the purpose of assigning
a prior is to describe his own state of knowledge IA, and on this he is the �nal authority. So he
does not need to argue the philosophy of it with anyone. We consider in Chapters 11 and 12 some

of the general formal principles available to him for translating verbal prior information into prior
probability assignments, but in the present discussion we wish only to demonstrate some pragmatic

facts, by a prior that represents reasonably the information that n1 is not in�nite, and that for
small n1 there is no prior information that would justify any great variations in p(n1jIA). For

example, if as a function of n1 the prior p(n1jIA) exhibited features such as oscillations or sudden
jumps, that would imply some very detailed prior information about n1 that Mr. A does not have.

Mr. A's prior should, therefore, avoid all such structure; but this is hardly a formal principle,

and so the result is not unique. But it is one of the points to be made from this example, noted by
Je�reys (1939), that it does not need to be unique because, in a sense, \almost any" prior which is

smooth in the region of high likelihood, will lead to substantially the same �nal conclusions.y

So Mr. A assigns a uniform prior probability out to some large but �nite number N ,

p(n1jIA) =
(
1=N; 0 � n1 < N

0; N � n1

)
; (6{100)

which seems to represent his state of knowledge tolerably well. The �nite upper bound N is
an admittedly ad hoc way of representing the fact that the laboratory is not being vaporized.

How large could it be? If N were as large as 1060, then not only the laboratory, but our entire

galaxy, would be vaporized by the energy in the beam (indeed, the total number of atoms in our
galaxy is of the order of 1060). So Mr. A surely knows that N is very much less than that. Of

course, if his �nal conclusions depend strongly on N , then Mr. A will need to analyze his exact
prior information and think more carefully about the value of N and whether the abrupt drop in

p(n1jIA) at n1 = N should be smoothed out. Such careful thinking would not be wrong, but it
turns out to be unnecessary, for it will soon be evident that details of p(n1jIA) for large n1 are

irrelevant to his conclusions.

On With the Calculation! Nicely enough, the 1=N cancels out of Equations (6{98), (6{99),
and we are left with

p(n1jc1IA) =
(
Ap(c1jn1) ; 0 � n1 < N

0 ; N � n1

)
: (6{101)

where A is a normalization factor:

A�1 =

N�1X
n=0

p(cjn) : (6{102)

We have noted, in Equation (6{95), that as a function of n, p(cjn) attains its maximum at n = c=�

(=100, in this problem). For n� >> c, p(cjn) falls o� like nc(1 � �)n ' nce�n� . Therefore, the
sum (6{102) converges so rapidly that if N is as large as a few hundred, there is no appreciable

di�erence between the exact normalization factor (6{102) and the sum to in�nity.

y We have seen already that in some circumstances, a prior can make a very large di�erence in the

conclusions; but to do this it necessarily modulates the likelihood function in the region of its peak, not its

tails.
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In view of this, we may as well take advantage of a simpli�cation; after applying Bayes'
theorem, pass to the limit N ! 1. But let us be clear about the rationale of this; we pass to the

limit, not because we believe that N is in�nite; we know that it is not. We pass to the limit rather
because we know that this will simplify the calculation without a�ecting the �nal result; after this

passage to the limit, all our calculations pertaining to this model can be performed exactly with
the aid of the general summation formula

1X
m=0

�
m+ a

m

�
mnxm =

�
x
d

dx

�n
1

(1� x)a+1
; jxj < 1 (6{103)

Thus, writing m = n� c, we replace (6{102) by

A�1 '
1X
n=0

p(cjn) = �c
1X
m=0

�
m+ c

m

�
(1� �)m = �c

�
1

[1� (1� �)](c+1)

�
=

1

�
(6{104)

Exercise (6.6). To better appreciate the quality of this approximation, denote the `missing'
terms in (6{102) by

S(N) �
1X

n=N

p(cjn)

and show that the fractional discrepancy between (6{102) and (6{104) is about

� � S(N)=S(0)' e�N� (N�)c

c!
; if N� >> 1 :

From this, show that in the present case (� = 0:1; c = 10), unless the prior information can

justify an upper limit N less than about 270, the exact value of N { or indeed, all details of
p(n1jIA) for n1 > 270 { can make less than one part in 104 di�erence in his conclusions. But
it is hard to see how anyone could have any serious use for more than three �gure accuracy in

the �nal results; and so this discrepancy would have no e�ect at all on that �nal result. What
happens for n1 � 340, can a�ect the conclusions less than one part in 106, and for n1 � 400 it

is less than one part in 108.

This is typical of the way prior range matters in real problems, and it makes ferocious arguments

over this seem rather silly. It is a valid question of principle, but its pragmatic consequences are
almost always not just negligibly small; but strictly nil. Yet some writers have claimed that a

fundamental qualitative change in the character of the problem occurs between N = 1010 and
N = 1. The reader may be amused to estimate how much di�erence this makes in the �nal

numerical results; to how many �gures would we need to calculate before it made any di�erence at
all?

Of course, if the prior information should start encroaching on the region n1 < 270, it would

then make a di�erence in the conclusions; but in that case the prior information was indeed cogent

for the question being asked, and this is as it should be. Being thus reassured and using the
approximation (6{104), we get the result

p(n1jc1IA) = � p(c1jn1) =
�
n1

c1

�
�c1+1 (1� �)n1�c1 : (6{105)
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So, for Mr. A, the most probable value of n1 is the same as the maximum{likelihood estimate:

(n̂1)A =
c1

�
= 100 (6{106)

while the posterior mean value estimate is calculated as follows:

hn1iA � c1 =

1X
n1=c1

(n1 � c1) p(n1jc1; IA) = �c1+1(1� �)(c1 + 1)
X
n1

�
n1

n1 � c1 � 1

�
(1� �)n1�c1�1

From (6{103) the sum is equal to

1X
m=0

�
m+ c1 + 1

m

�
(1� �)m =

1

�c1+2
(6{107)

and, �nally, we get

hn1iA = c1 + (c1 + 1)
1� �

�
=

c1 + 1� �

�
= 109 : (6{108)

Now, how about the other robot, Mr. B? Does his extra knowledge help him here? He knows that
there is some de�nite �xed source strength s. And, because the laboratory is not being vaporized,

he knows that there is some upper limit S0. Suppose that he assigns a uniform prior probability
density for 0 � s < S0. Then he will obtain

p(n1jIB) =
Z

1

0

p(n1js)p(sjIB)ds = 1

S0

Z
S0

0

p(n1js)ds = 1

S0

Z
S0

0

sn1e�s

n1!
ds: (6{109)

Now, if n1 is appreciably less than S0, the upper limit of integration can for all practical purposes,
be taken as in�nity, and the integral is just unity. So, we have

p(n1jIB) = p(sjIB) = 1

S0
= const:; n1 < S0: (6{110)

In putting this into Bayes' theorem with c1 = 10, the signi�cant range of values of n1 will be of the
order of 100, and unless his prior information indicates a value of S0 lower than about 300, we will
have the same situation as before; Mr. B's extra knowledge didn't help him at all, and he comes

out with the same posterior distribution and the same estimates:

p(n1jc1IB) = p(n1jc1IA) = � p(c1jn1): (6{111)
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The Je�reys Prior. Harold Je�reys (1939; Chap. 3) proposed a di�erent way of handling
this problem. He suggests that the proper way to express \complete ignorance" of a continuous

variable known to be positive, is to assign uniform prior probability to its logarithm; i.e., the prior
probability density is

p(sjIJ) = 1

s
; (0 � s <1) : (6{112)

Of course, you can't normalize this, but that doesn't stop you from using it. In many cases,

including the present one, it can be used directly because all the integrals involved converge. In
almost all cases we can approach this prior as the limit of a sequence of proper (normalizable)

priors, with mathematically well{behaved results. If even that does not yield a proper posterior
distribution, then the robot is warning us that the data are too uninformative about either very

large s or very small s to justify any de�nite conclusions, and we need to get more evidence before

any useful inferences are possible.

Je�reys justi�ed (6{112) on the grounds of invariance under certain changes of parameters;
i.e. instead of using the parameter s, what prevents us from using t � s2, or u � s3? Evidently, to

assign a uniform prior probability density to s, is not at all the same thing as assigning a uniform
prior probability to t; but if we use the Je�reys prior, we are saying the same thing whether we use

s or any power sm as the parameter.

There is the germ of an important principle here; but it was only recently that the situation
has been fairly well understood. When we take up the theory of transformation groups in Chapter

12, we will see that the real justi�cation of Je�reys' rule cannot lie merely in the fact that the
parameter is positive; but that our desideratum of consistency in the sense that equivalent states

of knowledge should be represented by equivalent probability assignments, uniquely determines the
Je�reys rule in the case when s is a \scale parameter." Then marginalization theory will reinforce

this by deriving it uniquely { without appealing to any principles beyond the basic product and sum
rules of probability theory { as the only prior for a scale parameter that is completely uninformative

about other parameters that may be in the model.

These arguments and others equally cogent all lead to the same conclusion: the Je�reys prior
is the only correct way to express complete ignorance of a scale parameter. The question then
reduces to whether s can properly be regarded as a scale parameter in this problem. However, this

line of thought has taken us beyond the present topic; in the spirit of our current problem, we shall
just put (6{112) to the test and see what results it gives. The calculations are all very easy, and

we �nd these results:

p(n1jIJ) = 1

n1
; (c1jIJ) = 1

c1
; p(n1jc1IJ) = c1

n1
p(c1jn1): (6{113)

This leads to the most probable and mean value estimates:

(n̂1)J =
c1 � 1 + �

�
= 91 ; hn1iJ =

c

�
= 100: (6{114)

The amusing thing emerges that Je�reys' prior probability rule just lowers the most probable and
posterior mean value estimates by 9 each, bringing the mean value right back to the maximum
likelihood estimate!

This comparison is valuable in showing us how little di�erence there is numerically between

the consequences of di�erent prior probability assignments which are not sharply peaked, and helps
to put arguments about them into proper perspective. We made a rather drastic change in the
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prior probabilities, in a problem where there was really very little information contained in the
meager data, and it still made less than 10 per cent di�erence in the result. This is, as we shall

see, small compared to the probable error in the estimate which was inevitable in any event. In a
more realistic problem where we have more data, the di�erence would be even smaller.

A useful rule of thumb, illustrated by the comparison of (6{106), (6{108) and (6{114), is that

changing the prior probability p(�jI) for a parameter by one power of � has in general about
the same e�ect on our �nal conclusions as does having one more data point. This is because the

likelihood function generally has a relative width 1=
p
n, and one more power of � merely adds

an extra small slope in the neighborhood of the maximum, thus shifting the maximum slightly.

Generally, if we have e�ectively n independent observations, then the fractional error in an estimate
that was inevitable in any event is about 1=

p
n,y while the fractional change in estimate due to one

more power of � in the prior is about 1=n.

In the present case, with ten counts, thus ten independent observations, changing from a
uniform to Je�reys prior made just under ten percent di�erence. If we had 100 counts, the error

which is inevitable in any event would be about ten percent, while the di�erence from the two
priors would be less than one percent.

So, from a pragmatic standpoint, arguments about which prior probabilities correctly express

a state of \complete ignorance", like those over prior ranges, usually amount to quibbling over

pretty small peanuts.? From the standpoint of principle, however, they are important and need
to be thought about a great deal, as we shall do in Chapter 12 after becoming familiar with the

numerical situation. While the Je�reys prior is the theoretically correct one, it is in practice a
small re�nement that makes a di�erence only in the very small sample case. In the past these

issues were argued back and forth endlessly on a foggy philosophical level, without taking any note
of the simple facts of actual performance; that is what we are trying to correct here.

The Point of It All

Now we are ready for the interesting part of this problem. For during the next second, we see
c2 = 16 counts. What can Mr. A and Mr. B now say about the numbers n1, n2 of particles

responsible for c1, c2? Well, Mr. A has no reason to expect any relation between what happened in
the two time intervals, and so to him the increase in counting rate is evidence only of an increase in

the number of incident particles. His calculation for the second time interval is the same as before,
and he will give us the most probable value

(n̂2)A =
c2

�
= 160 (6{115)

and his mean value estimate is

hn2iA =
c2 + 1� �

�
= 169: (6{116)

Knowledge of c2 doesn't help him to get any improved estimate of n1, which stays the same as
before.

But now, Mr. B is in an entirely di�erent position than Mr. A; his extra qualitative information

suddenly becomes very important. For knowledge of c2 enables him to improve his previous estimate
of n1. Bayes' theorem now gives

y However, as we shall see later, there are two special cases where the 1=
p
n rule fails: if we are trying to

estimate the location of a discontinuity in an otherwise continuous probability distribution, and if di�erent

data values are strongly correlated.
? This is most de�nitely not true if the prior probabilities are to describe a de�nite piece of prior knowledge,

as the next example shows.
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p(n1jc2c1IB) = p(n1jc1IB) p(c2jn1c1IB)
p(c2jc1IB) = p(n1jc1IB) p(c2jn1IB)

p(c2jc1IB) (6{117)

Again, the denominator is just a normalizing constant, which we can �nd by summing the numerator

over n1. We see that the signi�cant thing is p(c2jn1; IB). Using our method of resolving c2 into
mutually exclusive alternatives, this is

p(c2jn1IB) =
Z

1

0

p(c2sjn1IB) ds =
Z

1

0

p(c2jsn1) p(sjn1) ds =
Z

1

0

p(c2js) p(sjn1) ds : (6{118)

We have already found p(cjs) in (6{82), and we need only

p(sjn1) = p(sjIB) p(n1js)
p(n1jIB) = p(n1js); if n1 � S0 (6{119)

where we have used Equation (6{110). We have found p(n1js) in Equation (6{80), so we have

p(c2jn1IB) =
Z 1

0

�
e�s�(s�)c2

c2!

��
e�ssn1

n1!

�
ds =

�
n1 + c2

c2

�
�c2

(1 + �)n1+c2+1
: (6{120)

Substituting (6{111) and (6{120) into (6{117) and carrying out an easy summation to get the
denominator, the result is (not a binomial distribution):

p(n1jc2c1IB) =
�
n1 + c2

c1 + c2

�
�
�

2�

1 + �

�c1+c2+1
�
�
1� �

1 + �

�n1�c1
: (6{121)

Note that we could have derived this equally well by direct application of the resolution method:

p(n1jc2c1IB) =
Z 1

0

p(n1sjc2c1IB)ds =
Z 1

0

p(n1jsc1) p(sjc2c1)ds: (6{122)

We have already found p(n1jsc1) in (6{85), and it is easily shown that p(sjc2c1) / p(c2js) p(c1js),
which is therefore given by the Poisson distribution (6{82). This, of course, leads to the same rather

complicated result (6{121); thus providing another { and rather severe { test of the consistency of
our rules.

To �nd Mr. B's new most probable value of n1, we set

p(n1jc2c1IB)
p(n1 � 1jc2c1IB) =

n1 + c2

n1 � c1

1� �

1 + �
= 1

or,

(n̂1)B =
c1

�
+ (c2 � c1)

1� �

2�
=

c1 + c2

2�
+
c1 � c2

2
= 127 (6{123)

His new posterior mean value is also readily calculated, and is equal to

hn1iB =
c1 + 1� �

�
+ (c2 � c1 � 1)

1� �

2�
=

c1 + c2 + 1� �

2�
+
c1 � c2

2
= 131:5 (6{124)
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Both estimates are considerably raised, and the di�erence between most probable and mean value
is only half what it was before, suggesting a narrower posterior distribution as we shall con�rm

presently. If we want Mr. B's estimates for n2, then from symmetry we just interchange the
subscripts 1 and 2 in the above equations. This gives for his most probable and mean value

estimates, respectively,

(n̂2)B = 133 ; hn2iB = 137:5 (6{125)

Now, can we understand what is happening here? Intuitively, the reason why Mr. B's extra qualita-

tive prior information makes a di�erence is that knowledge of both c1 and c2 enables him to make a
better estimate of the source strength s, which in turn is relevant for estimating n1. The situation is

indicated more clearly by the diagrams, Fig. (6.2). By hypothesis, to Mr. A each sequence of events
ni ! ci is logically independent of the others, so knowledge of one doesn't help him in reasoning

about any other. In each case he must reason from ci directly to ni, and no other route is available.
But to Mr. B, there are two routes; he can reason directly from c1 to n1 as Mr. A does, as described

by p(n1jc1IA) = p(n1jc1IB); but because of his knowledge that there is a �xed source strength s

\presiding over" both n1 and n2, he can also reason along the route c2 ! n2 ! s ! n1. If this

were the only route available to him (i.e., if he didn't know c1), he would obtain the distribution

p(n1jc2IB) =
Z

1

0

p(n1js) p(sjc2IB) ds = �c2+1

c2!(1 + �)c2+1
(n1 + c2)!

n1!(1 + �)n1
(6{126)

and, comparing the above relations, we see that Mr. B's �nal distribution (6{121) is, except for

normalization, just the product of the ones found by reasoning along his two routes:

p(n1jc1c2IB) = (const:)� p(n1jc1IB) p(n1jc2IB) (6{127)

in consequence of the fact that p(c1; c2jn1) = p(c1jn1) p(c2jn1). The information (6{126) about

n1 obtained by reasoning along the new route c2 ! n2 ! s ! n1 thus introduces a \correction
factor" in the distribution obtained from the direct route c1 ! n1, enabling Mr. B to improve his

estimates.

This suggests that, if Mr. B could obtain the number of counts in a great many di�erent seconds,
(c3; c4; : : : ; cm), he would be able to do better and better; and perhaps in the limit m ! 1 his
estimate of n1 might be as good as the one we found when source strength was considered known

exactly. We will check this surmise presently by working out the degree of reliability of these
estimates, and by generalizing these distributions to arbitrary m, from which we can obtain the

asymptotic forms.

Interval Estimation.

There is still an essential feature missing in the comparison of Mr. A and Mr. B in our particle-

counter problem. We would like to have some measure of the degree of reliability which they attach
to their estimates, especially in view of the fact that their estimates are so di�erent. Clearly, the

best way of doing this would be to draw the entire probability distributions

p(n1jc2c1IA) and p(n1jc2c1IB)
and from this make statements of the form, \90 per cent of the posterior probability is concentrated
in the interval � < n1 < �." But, for present purposes, we will be content to give the standard

deviations [i.e., square root of the variance as de�ned in Eq. (6{89)] of the various distributions we
have found. An inequality due to Tchebyche� then asserts that, if � is the standard deviation of
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any probability distribution over n1, then the amount P of probability concentrated between the
limits hn1i � t� satis�esy

P � 1� 1

t2
(6{128)

This tells us nothing when t � 1, but it tells us more and more as t increases beyond unity. For

example, in any probability distribution with �nite hni and hn2i, at least 3=4 of the probability is
contained in the interval hni � 2�, and at least 8=9 is in hni � 3�.

Calculation of Variance. The variances �2 of all the distributions we have found above are

readily calculated. In fact, calculation of any moment of these distributions is easily performed by
the general formula (6{103). For Mr. A and Mr. B, and the Je�reys prior probability distribution,

we �nd the variances

Var(n1jc1IA) = (c1 + 1) (1� �)

�2
(6{129)

Var(n1jc2c1IB) = (c1 + c2 + 1) (1� �2)

4�2
(6{130)

Var(n1jc1IJ) = c1(1� �)

�2
(6{131)

and the variances for n2 are found from symmetry.

This has been a rather long discussion, so let's summarize all our results so far in a table. We
give, for problem 1 and problem 2, the most probable values of number of particles found by Mr. A

and Mr. B, and also the (mean value) � (standard deviation) estimates.

From Table 6.1 we see that Mr. B's extra information not only has led him to change his
estimates considerably from those of Mr. A, but it has enabled him to make an appreciable decrease

in his probable error. Even purely qualitative prior information which has nothing to do with

frequencies, can greatly alter the conclusions we draw from a given data set. Now in virtually

every real problem of scienti�c inference, we do have qualitative prior information of more or less
the kind supposed here. Therefore, any method of inference which fails to take prior information

into account is capable of misleading us, in a potentially dangerous way. The fact that it yields a
reasonable result in one problem is no guarantee that it will do so in the next.

It is also of interest to ask how good Mr. B's estimate of n1 would be if he knew only c2; and

therefore had to use the distribution (6{126) representing reasoning along the route c2 ! n2 ! s!
n1 of Fig. (6.2). From (6{126) we �nd the most probable, and the (mean) � (standard deviation)

estimates

n̂1 =
c2

�
= 160 (6{132)

y Proof: Let p(x) be a probability density over (�1 < x < 1), a any real number, and y � x � hxi.
Then

a2(1� P ) = a2p(jyj > a) = a2
Z
jyj>a

p(x)dx �
Z
jyj>a

y2p(x)dx �
Z 1

�1

y2p(x)dx = �2 :

Writing a = t�, this is t2(1 � P ) � 1, the same as Eq. (6{128). This proof includes the discrete cases,

since then p(x) is a sum of delta{functions. A large collection of useful Tchebyche�{type inequalities is

given by I. R. Savage (1961).
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Problem 1 Problem 2
c1 = 10 c1 = 10

c2 = 16

n1 n1 n2

A most prob. 100 100 160
mean � s.d. 109�31 109�31 169�39

B most prob. 100 127 133
mean � s.d. 109�31 131.5�25.9 137.5�25.9

J most prob. 91 121.5 127.5
mean�s.d. 100�30 127�25.4 133�25.4

Table 6.1. The E�ect of Prior Information on Estimates of n1 and n2

mean � s.d. =
c2 + 1

�
�
p
(c2 + 1)(� + 1)

�
= 170� 43:3 (6{133)

In this case he would obtain slightly poorer estimate (i.e., a larger probable error) than Mr. A even
if the counts c1 = c2 were the same, because the variance (6{129) for the direct route contains a

factor (1� �), which gets replaced by (1 + �) if we have to reason over the indirect route. Thus, if
the counter has low e�ciency, the two routes give nearly equal reliability for equal counting rates;

but if it has high e�ciency, � ' 1, then the direct route c1 ! n1 is far more reliable. Your common
sense will tell you that this is just as it should be.

Generalization and Asymptotic Forms.

We conjectured above that Mr. B might be helped a good deal more in his estimate of n1 by

acquiring still more data fc3; c4; : : : ; cmg. Let's investigate that further. The standard deviation of
the distribution (6{85) in which the source strength was known exactly, is only

p
s(1� �) = 10:8

for s = 130; and from the table, Mr. B's standard deviation for his estimate of n1 is now about 2.5

times this value. What would happen if we gave him more and more data from other time intervals,
such that his estimate of s approached 130? To answer this, note that, if 1 � k � m, we have (now

dropping the IB except in priors because we will be concerned only with Mr. B from now on):

p(nkjc1 : : : cm) =
Z 1

0

p(nksjc1 : : : cm) ds =
Z 1

0

p(nkjsck) p(sjc1 : : : cm) ds (6{134)

in which we have put p(nk jsc1 : : : cm) = p(nk jsck) because, from Fig. (6.2), if s is known, then
all the ci with i 6= k are irrelevant for inferences about nk. The second factor in the integrand of

(6{134) can be evaluated by Bayes' theorem:

p(sjc1 : : : cm) = p(sjIB) p(c1 : : : cmjs)
p(c1 : : : cmjIB) = (const:)� p(sjIB)p(c1js)p(c2js) � � �p(cmjs)

Using (6{82) and normalizing, this reduces to

p(sjc1 : : : cm) = (m�)c+1

c!
sce�ms� (6{135)

where c � c1+ � � �+ cm is the total number of counts in the m seconds. The most probable, mean,
and variance of the distribution (6{135) are respectively



636 6: Generalization and Asymptotic Forms. 636

ŝ =
c

m�
; hsi = c+ 1

m�
; var(s) = hs2i � hsi2 = c+ 1

m2�2
=
hsi
m�

(6{136)

So it turns out, as we might have expected, that as m!1, the distribution p(sjc1 : : : cm) becomes

sharper and sharper, the most probable and mean value estimates of s get closer and closer together,

and it appears that in the limit we would have just a �-function:

p(sjc1 : : : cm)! �(s� s0) (6{137)

where

s0 � lim
m!1

c1 + c2 + � � �+ cm

m�
(6{138)

But the limiting form (6{137) was found a bit abruptly, as was James Bernoulli's �rst limit theorem.
We might like to see in more detail how the limit is approached, in analogy to the de Moivre{Laplace

limit theorem for the binomial (5{10), or the limit (4{62) of the Beta distribution.

For example, expanding the logarithm of (6{135) about its peak ŝ = c=m�, and retaining only
through the quadratic terms, we �nd for the asymptotic formula a Gaussian distribution:

p(sjc1 : : : cm)! A exp

�
� c(s� ŝ)2

2ŝ2

�
(6{139)

which is actually valid for all s, in the sense that the di�erence between the left{hand side and

right{hand side is small for all s (although their ratio is not close to unity for all s). This leads to
the estimate, as c!1,

(s)est = ŝ

�
1� 1p

c

�
(6{140)

Quite generally, posterior distributions go into a Gaussian form as the data increases, because any

function with a single rounded maximum, raised to a higher and higher power, goes into a Gaussian
function. In the next Chapter we shall explore the basis of Gaussian distributions in some depth.

So, in the limit, Mr. B does indeed approach exact knowledge of the source strength. Returning
to (6{134), both factors in the integrand are now known from (6{85) and (6{135), and so

p(nkjc1 : : : cm) =
Z 1

0

e�s(1��) [s(1� �)]nk�ck

(nk � ck)!

(m�)c+1

c!
sce�ms�ds (6{141)

or

p(nkjc1 : : : cm) = (nk � ck + c)!

(nk � ck)!c!

(m�)c+1(1� �)nk�ck

(1 +m� � �)nk�ck+c+1
(6{142)

which is the promised generalization of (6{127). In the limitm!1, c!1, (c=m�)! s0 = const.,
this goes into the Poisson distribution

p(nkjc1 : : : cm)! e�s
0(1��)

(nk � ck)!
[s0(1� �]nk�ck (6{143)

which is identical with (6{85). We therefore con�rm that, given enough additional data, Mr. B's

standard deviation can be reduced from 26 to 10.8, compared to Mr. A's value of 31. For �nite m,
the mean value estimate of nk from (6{142) is
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hnki = ck + hsi(1� �) (6{144)

where hsi = (c + 1)=m� is the mean value estimate of s from (6{136). Equation (6{144) is to be
compared to (6{86). Likewise, the most probable value of nk according to (6{142), is

n̂k = ck + ŝ(1� �) (6{145)

where ŝ is given by (6{136).

Note that Mr. B's revised estimates in problem 2 still lie within the range of reasonable error

assigned by Mr. A. It would be rather disconcerting if this were not the case, as it would then
appear that probability theory is giving Mr. A an over{optimistic picture of the reliability of his

estimates. There is, however, no theorem which guarantees this; for example, if the counting rate
had jumped to c2 = 80, then Mr. B's revised estimate of n1 would be far outside Mr. A's limits of

reasonable error. But in this case, Mr. B's common sense would lead him to doubt the reliability
of his prior information IB ; we would have another example like that in Chapter 4, of a problem

where one of those `Something Else' alternative hypotheses down at �100 db, which we don't even
bother to formulate until they are needed, is resurrected by very unexpected new evidence.

Exercise (6.7). The above results were found using the language of the particle counter
scenario. Summarize the �nal conclusions in the language of the disease incidence scenario, as

one or two paragraphs of advice for a medical researcher who is trying to judge whether public

health measures are reducing the incidence of a disease in the general population, but has data
only on the number of deaths from it. This should, of course, include something about judging

under what conditions our model corresponds well to the real world; and what to do if it does
not.

Now we turn to a di�erent kind of problem to see some new features that can appear when we use
a sampling distribution that is continuous except at isolated points of discontinuity.

Rectangular Sampling Distribution

The following \taxicab problem" has been part of the orally transmitted folklore of this �eld for
several decades, but orthodoxy has no way of dealing with it, and we have never seen it mentioned
in the orthodox literature. You are traveling on a night train; on awakening from sleep, you notice

that the train is stopped at some unknown town, and all you can see is a taxicab with the number
27 on it. What is then your guess as to the number N of taxicabs in the town, which would in

turn give a clue as to the size of the town? Almost everybody answers intuitively that there seems
to be something about the choice Nest = 2� 27 = 54 that recommends itself; but few can o�er a

convincing rationale for this. The obvious \model" that forms in our minds is that there will be N
taxicabs, numbered respectively (1; � � � ; N), and given N , the one we see is equally likely to be any
of them. Given that model, we would then know deductively that N � 27; but from that point on,

one's reasoning depends on one's statistical indoctrination.

Here we study a continuous version of the same problem, in which more than one taxi may
be in view, leaving it as an exercise for the reader to write down the parallel solution to the above
taxicab problem, and then state the exact relation between the continuous and discrete problems.

We consider a rectangular sampling distribution in [0; �] where the width � of the distribution is
the parameter to be estimated, and �nally suggest further exercises for the reader which will extend
what we learn from it.
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We have a data set D � fx1 � � �xng of n observations thought of as \drawn from" this distri-
bution, urn{wise; that is, each datum xi is assigned independently the pdf

p(xij�; I) =
(
��1 ; 0 � xi � � <1
0 ; otherwise

)
(6{146)

Then our entire sampling distribution is

p(Dj�; I) =
Y
i

p(xij�; I) = ��n ; 0 � fx1 � � �xng � � (6{147)

where for brevity we suppose, in the rest of this section, that when the inequalities following an
equation are not all satis�ed, the left{hand side is zero. It might seem at �rst glance that this

situation is too trivial to be worth analyzing; yet if one does not see in advance exactly how every

detail of the solution will work itself out, there is always something to be learned from studying it.
In probability theory, the most trivial{looking problems reveal deep and unexpected things.

The posterior pdf for � is by Bayes' theorem,

p(�jD; I) = p(�jI) p(Dj�; I)
p(DjI) (6{148)

where p(�jI) is our prior. Now it is evident that any Bayesian problem with a proper (normalizable)

prior and a bounded likelihood function must lead to a proper, well{behaved posterior distribution,
whatever the data { as long as the data do not themselves contradict any of our other information.

If any datum was found to be negative, xi < 0, the model (6{147) would be known deductively
to be wrong (put better, the data contradict the prior information I that led us to choose that

model). Then the robot crashes, both (6{147) and (6{148) vanishing identically. But any data set

for which the inequalities in (6{147) are satis�ed is a possible one according to the model . Must it
then yield a reasonable posterior pdf?

Not necessarily! The data could be compatible with the model, but still incompatible with the
other prior information. Consider a proper rectangular prior

p(�jI) = (�1 � �00)
�1 ; �00 � � � �1 (6{149)

where �00; �1 are �xed numbers satisfying 0 � �00 � �1 <1, given to us in the statement of the

problem. If any datum were found to exceed the upper prior bound: xi > �1, then the data and
the prior information would again be logically contradictory.

But this is just what we anticipated already in Chapters 1 and 2; we are trying to reason from

two pieces of information D; I , each of may be actually a logical conjunction of many di�erent
propositions. If there is a contradiction hidden anywhere in the totality of this, there can be no

solution (in a set theory context, the set of possibilities that we have prescribed is the empty set)
and the robot crashes, in one way or another. So in the following we suppose that the data are

consistent with all the prior information { including the prior information that led us to choose this
model.y Then the above rules should yield the correct and exact answer to the question we have

y Of course, in the real world we seldom have prior information that would justify such sharp bounds on x
and � and so such sharp contradictions would not arise; but that signi�es only that we are studying an ideal

limiting case. There is nothing strange about this; in elementary geometry, our attention is directed �rst

to such things as perfect triangles and circles, although no such things exist in the real world. There, also,

we are really studying ideal limiting cases of reality; but what we learn from that study enables us to deal

successfully with thousands of real situations that arise in such diverse �elds as architecture, engineering,

astronomy, godesy, stereochemistry, and the artist's rules of perspective. It is the same here.
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posed.

The denominator of (6{148) is

p(DjI) =
Z
R

(�1 � �00)
�1 ��n d� (6{150)

where the region R of integration must satisfy two conditions:

R �
�

�00 � � � �1

xmax � � � �1

�
(6{151)

and xmax � max fx1 � � �xng is the greatest datum observed. If xmax � �00, then in (6{151) we need

only the former condition; the numerical values of the data xi are entirely irrelevant (although the
number n of observations remains relevant). If �00 � xmax, then we need only the latter inequality;

the prior lower bound �00 has been superceded by the data, and is irrelevant to the problem from

this point on.

Substituting (6{147), (6{149) and (6{150) into (6{148) the factor (�1 � �00) cancels out, and

if n > 1 our general solution reduces to

p(�jD; I) =
(n� 1)��n

�1�n0 � �1�n1

; �0 � � � �1 ; n > 1 (6{152)

where �0 � max(�00; xmax).

Small samples. Small values of n often present special situations that might be overlooked in

a general derivation. In orthodox statistics, as we shall see in Chapter 17, they can lead to weird
pathological results (like an estimator for a parameter which lies outside the parameter space, and

so is known deductively to be impossible). In any other area of mathematics, when a contradiction

appears one concludes at once that an error has been made. But curiously, in the literature of
orthodox statistics such pathologies are never interpreted as revealing an error in the orthodox

reasoning. Instead they are simply passed over; one proclaims his concern only with large n. But
small n proves to be very interesting for us, just because of the fact that Bayesian analysis has no
pathological, exceptional cases. As long as we avoid outright logical contradictions in the statement
of a problem and use proper priors, the solutions do not break down but continue to make good

sense.

It is very instructive to see how Bayesian analysis always manages to accomplish this, which
also makes us aware of a subtle point in practical calculation. Thus, in the present case, if n = 1,
then (6{152) appears indeterminate, reducing to (0=0). But if we repeat the derivation from the

start for the case n = 1, the properly normalized posterior pdf for � is found to be, instead of
(6{152),

p(�jD; I) =
��1

log(�1=�0)
�0 � � � �1 ; n = 1 : (6{153)

The case n = 0 can hardly be of any use; nevertheless, Bayes' theorem still gives the obviously right

answer. For then D = \No data at all", and p(Dj�; I) = p(DjI) = 1; that is, if we take no data,

we shall have no data, whatever the value of �. Then the posterior distribution (6{148) reduces,
as common sense demands, to the prior distribution

p(�jDI) = p(�jI) �0 � � � �1 ; n = 0 : (6{154)
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Mathematical Trickery. But now we see a subtle point; the last two results are contained
already in (6{152) without any need to go back and repeat the derivation from the start. We need

to understand the distinction between the real world problem and the abstract mathematics. For
although in the real problem, n is by de�nition a non{negative integer, the mathematical expression

(6{152) is well{de�ned and meaningful when n is any complex number. Furthermore, as long as
�1 <1. it is an entire function of n (that is, bounded and analytic everywhere except the point at

in�nity). Now in a purely mathematical derivation we are free to make use of whatever analytical
properties our functions have, whether or not they would make sense in the real problem. Therefore,

since (6{152) can have no singularity at any �nite point, we may evaluate it at n = 1 by taking the
limit as n! 1. But

n � 1

�1�n0 � �1�n1

=
n � 1

exp[�(n� 1) log�0]� exp[�(n� 1) log�1]

=
n � 1

[1� (n� 1) log�0 + � � �]� [1� (n� 1) log�1 + � � �]
! 1

log(�1=�0)
:

(6{155)

leading to (6{153). Likewise, putting n = 0 into (6{152), it reduces to (6{154) because now we have

necessarily �0 = �00. Even in extreme, degenerate cases, Bayesian analysis continues to yield the
correct results.z And it is evident that all moments and percentiles of the posterior distribution are

also entire functions of n, so they may be calculated once and for all for all n, taking limiting values
whenever the general expression reduces to (0=0) or (1=1); this will always yield the same result

that we obtain by going back to the beginning and repeating the calculation for that particular
value of n.?

If �1 < 1, the posterior distribution is con�ned to a �nite interval, and so it has necessarily
moments of all orders. In fact,

h�mi = n � 1

�1�n0 � �1�n1

Z
�1

�0

�m�n d� =
n � 1

n �m� 1

�1+m�n0 � �1+m�n1

�1�n0 � �1�n1

(6{156)

and when n! 1 orm! n�1, we are to take the limit of this expression in the manner of (6{155),
yielding the more explicit forms:

z Under the inuence of early orthodox teaching, the writer became fully convinced of this only after many

years of experimentation with hundreds of such cases, and his total failure to produce any pathology as

long as the Chapter 2 rules were followed strictly.
? Recognizing this, we see that whenever a mathematical expression is an analytic function of some pa-

rameter, we can exploit that fact as a tool for calculation with it, whatever meaning it might have in the

original problem. For example, the numbers 2 and � often appear, and it is almost always in an expres-

sion Q(2) or Q(�) which is an analytic function of the symbol `2' or `�'. Then, if it is helpful, we are

free to replace `2' or `�' by `x' and evaluate quantities involving Q by such operations as di�erentiating

with respect to x, or complex integration in the x{plane, etc, setting x = 2 or x = � at the end; and

this is perfectly rigorous. Once we have distilled the real problem into one of abstract mathematics, our

symbols mean whatever we say they mean; the writer learned this trick from Professor W. W. Hansen of

Stanford University, who would throw a class into an uproar when he evaluated an integral, correctly, by

di�erentiating another integral with respect to �.
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h�mi =

8>>><
>>>:

�m1 � �m0
m log(�1=�0)

; n = 1

(n� 1) log(�1=�0)

�1�n0 � a1�n1

; m = n� 1

9>>>=
>>>;

(6{157)

In the above results, the posterior distribution is con�ned to a �nite region (a0 � � � �1) and

there can be no singular result. Finally, we leave it as an exercise for the reader to consider what
happens as �1 !1 and we pass to an in�nite domain:

Exercise (6.8). When �1 ! 1, some moments must cease to exist, so some inferences must

cease to be possible, others remain possible. Examine the above equations to �nd under what
conditions a posterior (mean � standard deviation) or (median � interquartile span) remains

possible, considering in particular the case of small n. State how the results correspond to
common sense.

COMMENTS

The calculations which we have done here with ease { in particular, (6{121) and (6{140) { cannot

be done with any version of probability theory which does not permit the use of the prior and
posterior probabilities needed, and consequently does not allow one to integrate out a nuisance

parameter with respect to a prior. It appears to us that Mr. B's results are beyond the reach of

orthodox methods. Yet at every stage probability theory as logic has followed the procedures that
are determined uniquely by the basic product and sum rules of probability theory; and it has yielded

well{behaved, reasonable, and useful results. In some cases, the prior information was absolutely
essential, even though it was only qualitative. Later we shall see even more striking examples of

this.

But it should not be supposed that this recognition of the need to use prior information is a
new discovery. It was emphasized very strongly by J. Bertrand (1889); he gave several examples,

of which we quote the last (he wrote in very short paragraphs):

\The inhabitants of St. Malo [a small French town on the English channel] are convinced;
for a century, in their village, the number of deaths at the time of high tide has been
greater than at low tide. We admit the fact.

\On the coast of the English channel there have been more shipwrecks when the wind
was from the northwest than for any other direction. The number of instances being
supposed the same and equally reliably reported, still one will not draw the same
conclusions.

\While we would be led to accept as a certainty the inuence of the wind on shipwrecks,
common sense demands more evidence before considering it even plausible that the tide
inuences the last hour of the Malouins.

\The problems, again, are identical; the impossibility of accepting the same conclusions
shows the necessity of taking into account the prior probability of the cause."

Clearly, Bertrand cannot be counted among those who advocate R. A. Fisher's maxim: \Let the

data speak for themselves!" which has so dominated statistics in this Century. The data cannot

speak for themselves; and they never have, in any real problem of inference.

For example, Fisher advocated the method of maximum likelihood for estimating a parameter;

in a sense, this is the value that is indicated most strongly by the data alone. But that takes note

of only one of the factors that probability theory (and common sense) requires. For, if we do not
supplement the maximum likelihood method with some prior information about which hypotheses
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we shall consider possible, then it will always lead us inexorably to favor the `sure thing' hypothesis
ST , according to which every tiny detail of the data was inevitable; nothing else could possibly

have happened. For the data always have a much higher probability [namely p(DjST ) = 1], on ST

than on any other hypothesis; ST is always the maximum likelihood solution over the class of all

hypotheses. Only our extremely low prior probability for ST can justify our rejecting it.y

Orthodox practice deals with this in part by the device of specifying a model, which is, of

course, a means of incorporating some prior information about the phenomenon being observed.
But this is incomplete, de�ning only the parameter space within which we shall seek that maximum;

without a prior probability over that parameter space one has no way of incorporating further prior
information about the likely values of the parameter, which we almost always have and which is

often highly cogent for any rational inference. For example, although a parameter space may
extend formally to in�nity, in virtually every real problem we know in advance that the parameter

is enormously unlikely to be outside some �nite domain. This information may or may not be

crucial, depending on what data set we happen to get.

As the writer can testify from his student days, steadfast followers of Fisher often interpret `Let

the data speak for themselves' as implying that it is somehow unethical { a violation of `scienti�c
objectivity' { to allow one's self to be inuenced at all by prior information. It required a few years

of experience to perceive, with Bertrand, what a disastrous error this is in real problems. Fisher
was able to manage without mentioning prior information only because, in the problems he chose

to work on, he had no very important prior information anyway, and plenty of data. Had he worked
on problems with cogent prior information and sparse data, we think that his ideology would have

changed rather quickly.

Scientists in all �elds see this readily enough { as long as they rely on their own common sense

instead of orthodox teaching. For example, Stephen J. Gould (1989) describes the bewildering
variety of soft{bodied animals that lived in early Cambrian times, preserved perfectly in the famous

Burgess shale of the Canadian Rockies. Two paleontologists examined the same fossil, named
Aysheaia, and arrived at opposite conclusions regarding its proper taxonomic classi�cation. One

who followed Fisher's maxim would be obliged to question the competence of one of them; but
Gould does not make this error. He concludes (p. 172), \We have a reasonably well{controlled

psychological experiment here. The data had not changed, so the reversal of opinion can only

record a revised presupposition about the most likely status of Burgess organisms."

Prior information is essential also for a di�erent reason, if we are trying to make inferences

concerning which mechanism is at work. Fisher would, presumably, insist as strongly as any other
scientist that a cause{e�ect relation requires a physical mechanism to bring it about. But as in St.

Malo, the data alone are silent on this; they do not speak for themselves.z Only prior information
can tell us whether some hypothesis provides a possible mechanism for the observed facts, consistent

with the known laws of physics. If it does not, then the fact that it accounts well for the data may
give it a high likelihood, but cannot give it any credence. A fantasy that invokes the labors of
hordes of little invisible elves and pixies to generate the data would have just as high a likelihood.

y Psychologists have noted that small children, when asked to account for some observed fact such as the

exact shape of a puddle of spilled milk, have a strong tendency to invent `sure thing' hypotheses; they

have not yet acquired the worldly experience that makes educated adults consider them too unlikely to be

considered seriously. But a scientist, who knows that the shape is determined by the laws of hydrodynamics

and has vast computing power available, is no more able than the child to predict that shape, because he

lacks the requisite prior information about the exact initial conditions.
z Statisticians, even those who profess themselves disciples of Fisher, have been obliged to develop adages

about this, such as `Correlation does not imply causation.' or `A good �t is no substitute for a reason.' to

discourage the kind of thinking that comes automatically to small children, and to adults with untrained

minds.
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It seems that it is not only orthodox statisticians who have denigrated prior information in
the twentieth Century. The fantasy writer H. P. Lovecraft once de�ned `common sense' as \merely

a stupid absence of imagination and mental exibility ." Indeed, it is just the accumulation of
unchanging prior information about the world that gives the mature person the mental stability

that rejects arbitrary fantasies (although we may enjoy diversionary reading of them).

Today, the question whether our present information does or does not provide credible evidence

for the existence of a causal e�ect is a major policy issue, arousing bitter political, commercial,
medical, and environmental contention, resounding in courtrooms and legislative halls.? Yet cogent

prior information { without which the issue cannot possibly be judged { plays little role in the

testimony of `expert witnesses' with orthodox statistical training, because their standard procedures
have no place to use it. We note that Bertrand's clear and correct insight into this appeared the

year before Fisher was born; the progress of scienti�c inference has not always been forward.

Thus this Chapter begins and ends with a glance back at Fisher, about whom the reader may

�nd more in Chapter 16.

? For some frightening examples, see Gardner (1981). Deliberate suppression of inconvenient prior infor-

mation is also the main tool of the scienti�c charlatan.
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Fig. 6.1. The Causal Inuences.
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Fig. 6.2. (A) The Structure of Mr A's Problem; Di�erent Intervals are Logically Independent.
(B) Mr. B's Logical Situation: Knowledge of the existence of s makes n2 relevant to n1.
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CHAPTER 7

THE CENTRAL GAUSSIAN, OR NORMAL, DISTRIBUTION

\My own impression � � � is that the mathematical results have outrun their in-

terpretation and that some simple explanation of the force and meaning of the
celebrated integral � � � will one day be found � � � which will at once render useless
all the works hitherto written." - - - Augustus de Morgan (1838)

Here, de Morgan was expressing his bewilderment at the \curiously ubiquitous" success of methods
of inference based on the gaussian, or normal, \error law" (sampling distribution), even in cases
where the law is not at all plausible as a statement of the actual frequencies of the errors. But the
explanation was not forthcoming as quickly as he expected.

In the middle 1950's the writer heard an after{dinner speech by Professor Willy Feller, in
which he roundly denounced the practice of using gaussian probability distributions for errors,
on the grounds that the frequency distributions of real errors are almost never gaussian. Yet in
spite of Feller's disapproval, we continued to use them, and their ubiquitous success in parameter
estimation continued. So 145 years after de Morgan's remark the situation was still unchanged, and
the same surprise was expressed by George Barnard (1983): \Why have we for so long managed
with normality assumptions?"

Today we believe that we can, at last, explain (1) the inevitably ubiquitous use, and (2) the
ubiquitous success, of the gaussian error law. Once seen, the explanation is indeed trivially obvious;
yet to the best of our knowledge it is not recognized in any of the previous literature of the �eld,
because of the universal tendency to think of probability distributions in terms of frequencies. We
cannot understand what is happening until we learn to to think of probability distributions in
terms of their demonstrable information content instead of their imagined (and as we shall see,
irrelevant) frequency connections.

A simple explanation of these properties { stripped of past irrelevancies { has been achieved
only very recently, and this development changed our plans for the present work. We decided that it
is so important that it should be inserted at this somewhat early point in the narrative, even though
we must then appeal to some results that are established only later. In the present Chapter, then,
we survey the historical basis of gaussian distributions and get a quick preliminary understanding
of their functional role in inference. This understanding will then guide us directly { without the
usual false starts and blind alleys { to the computational procedures which yield the great majority
of the useful applications of probability theory.

The Gravitating Phenomenon

We have noted an interesting phenomenon several times in previous Chapters; in probability theory
there seems to be a central, universal distribution

'(x) � 1p
2�

exp(�x2=2) (7{1)

toward which all others gravitate under a very wide variety of di�erent operations { and which,
once attained, remains stable under an even wider variety of operations. The famous Central
Limit Theorem, derived below, concerns one special case of this. In Chapter 4, we noted that a
binomial or beta sampling distribution goes asymptotically into a gaussian when the number of trials
becomes large. In Chapter 6 we noted a virtually universal property, that posterior distributions
for parameters go into gaussians when the number of data values increases.
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In physics these gravitating and stability properties have made this distribution the universal
basis of kinetic theory and statistical mechanics; in biology, it is the natural tool for discussing
population dynamics in ecology and evolution. We cannot doubt that it will become equally
fundamental in economics, where it already enjoys ubiquitous use, but somewhat apologetically, as
if there were some doubt about its justi�cation. We hope to assist this development by showing
that its range of validity for such applications is far wider than usually supposed.

This distribution is called the Gaussian, or Normal distribution for historical reasons discussed
in our closing Comments. Both names are inappropriate and misleading today; all the correct
connotations would be conveyed if we called it, simply, the Central distribution of probability
theory.y We consider �rst three derivations of it that were important historically and conceptually,
because they made us aware of three important properties of the gaussian distribution.

The Herschel{Maxwell Derivation

One of the most interesting derivations, from the standpoint of economy of assumptions, was
given by the astronomer John Herschel (1850). He considered the two{dimensional probability
distribution for errors in measuring the position of a star. Let x be the error in the longitudinal
(east{west) direction and y the error in the declination (north{south) direction, and ask for the
joint probability distribution �(x; y). Herschel made two postulates (P1, P2) that seemed required
intuitively by conditions of geometrical homogeneity:

(P1): Knowledge of x tells us nothing about y . That is, probabilities of errors in orthogonal
directions should be independent; so the undetermined distribution should have the functional
form

�(x; y) dx dy = f(x) dx � f(y) dy : (7{2)

We can write the distribution equally well in polar coordinates r; � de�ned by x = r cos �; y =
r sin � :

�(x; y) dx dy = g(r; �) rdr d� : (7{3)

(P2): This probability should be independent of the angle: g(r; �) = g(r). Then (7{2), (7{3) yield
the functional equation

f(x) f(y) = g(
p
x2 + y2) ; (7{4)

and setting y = 0, this reduces to g(x) = f(x) f(0), so (7{4) becomes the functional equation

log
f(x)

f(0)
+ log

f(y)

f(0)
= log

f(
p
x2 + y2)

f(0)
: (7{5)

But the general solution of this is obvious; a function of x plus a function of y is a function only
of x2 + y2 . The only possibility is that log [f(x)=f(0)] = ax2 . We have a normalizable probability
only if a is negative, and then normalization determines f(0); so the general solution can only have
the form

f(x) =

r
�

�
e��x

2

; � > 0 (7{6)

with one undetermined parameter. The only two{dimensional probability density satisfying Her-
schel's invariance conditions is a circular symmetric gaussian:

y However, it is general usage outside probability theory to denote any function of the general form
exp(�ax2) as a gaussian function, and we shall follow this.
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�(x; y) =
�

�
exp[��(x2 + y2)] : (7{7)

Ten years later, James Clerk Maxwell (1860) gave a three{dimensional version of this same argument
to �nd the probability distribution �(vx; vy ; vz) / exp[��(v2x+ v2y + v2z )] for velocities of molecules
in a gas, which has become well known to physicists as the `Maxwellian velocity distribution law'
fundamental to kinetic theory and statistical mechanics.

The Herschel{Maxwell argument is particularly beautiful because two qualitative conditions,
incompatible in general, become compatible for just one quantitative distribution, which they
therefore uniquely determine. Einstein (1905) used the same kind of argument to deduce the
Lorentz transformation law from his two qualitative postulates of relativity theory.z

The Herschel{Maxwell derivation is economical also in that it does not actually make any use
of probability theory; only geometrical invariance properties which could be applied equally well in
other contexts. Gaussian functions are unique objects in their own right, for purely mathematical
reasons. But now we give a famous derivation that makes explicit use of probabilistic intuition.

The Gauss Derivation

We estimate a location parameter � from (n+ 1) observations (x0 � � �xn) by maximum likelihood.
If the sampling distribution factors: p(x0 � � �xnj�) = f(x0j�) � � �f(xnj�), the likelihood equation is

nX
i=0

@

@�
log f(xij�) = 0 (7{8)

or, writing

log f(xj�) = g(� � x) = g(u) (7{9)

the maximum likelihood estimate �̂ will satisfy

X
i

g0(�̂ � xi) = 0 : (7{10)

Now intuition may suggest to us that the estimate ought to be also the arithmetic mean of the
observations:

�̂ = x =
1

n + 1

nX
i=0

xi ; (7{11)

but (7{10) and (7{11) are in general incompatible [(7{11) is not a root of (7{10)]. Nevertheless,
consider a possible sample, in which only one observation x0 is nonzero: if in (7{11) we put

x0 = (n+ 1)u ; x1 = x2 = � � �= xn = 0 ; (�1 < u <1) ; (7{12)

then �̂ = u; �̂ � x0 = �nu, whereupon (7{10) becomes g0(�nu) + n g0(u) = 0 ; n = 1; 2; 3; � � � .
The case n = 1 tells us that g0(u) must be an antisymmetric function: g0(�u) = �g0(u), so this
reduces to

z These are: (1) The laws of physics take the same form for all moving observers; and (2) The velocity of
light has the same constant numerical value for all such observers. These are also contradictory in general,
but become compatible for one particular quantitative law of transformation of space and time to a moving
coordinate system.
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g0(nu) = n g0(u) ; (�1 < u <1); n = 1; 2; 3; � � � : (7{13)

Evidently, the only possibility is a linear function:

g0(u) = au ; g(u) =
1

2
au2 + b : (7{14)

Converting back by (7{9), a normalizable distribution again requires that a be negative, and
normalization then determines the constant b. The sampling distribution must have the form

f(xj�) =
r

�

2�
e�

1

2
�(x��)2 ; (0 < � <1) (7{15)

Since (7{15) was derived assuming the special sample (7{12), we have shown thus far only that
(7{15) is a necessary condition for the equality of maximum likelihood estimate and sample mean.
Conversely, if (7{15) is satis�ed, then the likelihood equation (7{8) always has the unique solution
(7{11); and so (7{15) is the necessary and su�cient condition for this agreement. The only freedom
is the unspeci�ed scale parameter �.

Historical Importance of Gauss' Result

This derivation was given by Gauss (1809), as little more than a passing remark in a work concerned
with astronomy. It might have gone unnoticed but for the fact that Laplace saw its merit and
the following year published a large work calling attention to it and demonstrating the many
useful properties of (7{15) as a sampling distribution. Ever since, it has been called the `gaussian
distribution'.

Why was the Gauss derivation so sensational in e�ect? Because it put an end to a long {
and, it seems to us today, scandalous { psychological hangup su�ered by some of the greatest
mathematicians of the time. The distribution (7{15) had been found in a more or less accidental
way already by de Moivre (1733), who did not appreciate its signi�cance and made no use of it.
Throughout the 18'th Century it would have been of great value to astronomers faced constantly
with the problem of making the best estimates from discrepant observations; yet the greatest minds
failed to see it. Worse, even the qualitative fact underlying data analysis { cancellation of errors
by averaging of data { was not perceived by so great a mathematician as Leonhard Euler.

Euler (1749) trying to resolve the `Great Inequality of Jupiter and Saturn' found himself
with what was at the time a monstrous problem (described briey in our closing Comments).
To determine how the longitudes of Jupiter and Saturn had varied over long times he had 75
observations over a 164 year period (1582{1745), and eight orbital parameters to estimate from
them.

Today, a desk{top microcomputer could solve this problem by an algorithm to be given in
Chapter 19, and print out the best estimates of the eight parameters and their accuracies, in about
one minute [the main computational job is the inversion of an (8 � 8) matrix]. Euler failed to
solve it, but not because of the magnitude of this computation; he failed even to comprehend the
principle needed to solve it. Instead of seeing that by combining many observations their errors tend
to cancel, he thought that this would only `multiply the errors' and make things worse. In other
words, Euler concentrated his attention entirely on the worst possible thing that could happen, as
if it were certain to happen { which makes him perhaps the �rst really devout believer in Murphy's
Law.y

Yet practical people, with experience in actual data taking, had long perceived that this
worst possible thing does not happen. On the contrary, averaging our observations has the great

y \If anything can go wrong, it will go wrong."



705 Chap. 7: THE CENTRAL GAUSSIAN, OR NORMAL, DISTRIBUTION 705

advantage that the errors tend to cancel each other.z Hipparchus, in the second Century B. C.,
estimated the precession of the equinoxes by averaging measurements on several stars. In the late
sixteenth Century, taking the average of several observations was the routine procedure of Tycho
Brahe. Long before it had any formal theoretical justi�cation from mathematicians, intuition had
told observational astronomers that this averaging of data was the right thing to do.

But some thirty years after Euler's e�ort another competent mathematician, Daniel Bernoulli
(1777), still could not comprehend the procedure. Bernoulli supposes an archer is shooting at a
vertical line drawn on a target, and asks how many shots land in various vertical bands on either
side of it:

\Now is it not self{evident that the hits must be assumed to be thicker and more numerous on any given
band the nearer this is to the mark? If all the places on the vertical plane, whatever their distance from
the mark, were equally liable to be hit, the most skillful shot would have no advantage over a blind
man. That, however, is the tacit assertion of those who use the common rule [the arithmetic mean] in
estimating the value of various discrepant observations, when they treat them all indiscriminately. In
this way, therefore, the degree of probability of any given deviation could be determined to some extent
a posteriori, since there is no doubt that, for a large number of shots, the probability is proportional
to the number of shots which hit a band situated at a given distance from the mark."

We see that Daniel Bernoulli (1777), like his uncle James Bernoulli (1713), saw clearly the distinc-
tion between probability and frequency. In this respect his understanding exceeded that of John
Venn 100 years later. Yet he fails completely to understand the basis for taking the arithmetic
mean of the observations as an estimate of the true `mark'. He takes it for granted (although a
short calculation, which he was easily capable of doing, would have taught him otherwise) that if
the observations are given equal weight in calculating the average, then one must be assigning equal
probability to all errors, however great. Presumably, many others made intuitive guesses like this,
unchecked by calculation, making this part of the folklore of the time. Then one can appreciate
how astonishing it was when Gauss, 32 years later, proved that the condition

(maximum likelihood estimate) = (arithmetic mean)

uniquely determines the gaussian error law, not the uniform one.
In the meantime, Laplace (1783) had investigated this law as a limiting form of the binomial

distribution, derived its main properties, and suggested that it was so important that it ought to be
tabulated; yet lacking the above property demonstrated by Gauss, he still failed to see that it was
the natural error law (the Herschel derivation was still 77 years in the future). Laplace persisted
in trying to use the form f(x) / exp(�ajxj) which caused no end of analytical di�culties. But he
did understand the qualitative principle that combination of observations improves the accuracy of
estimates, and this was enough to enable him to solve, in 1787, the problem of Jupiter and Saturn,
on which the greatest minds had been struggling since before he was born.

Twenty{two years later, when Laplace saw the Gauss derivation, he understood it all in a
ash { doubtless mentally kicked himself for not seeing it before { and hastened (Laplace, 1810,
1812) to give the Central Limit Theorem and the full solution to the general problem of reduction
of observations, which is still how we analyze it today. Not until the time of Einstein did such a
simple mathematical argument again have such a great e�ect on scienti�c practice.

The Landon Derivation

A derivation of the gaussian distribution that gives us a very lively picture of the process by which
a gaussian frequency distribution is built up in Nature was given in 1941 by Vernon D. Landon, an
electrical engineer studying properties of noise in communication circuits. We give a generalization
of his argument, in our current terminology and notation.

z If positive and negative errors are equally likely, then the probability that ten errors all have the same
sign is (0:5)9 ' 0:002.
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The argument was suggested by the empirical observation that the variability of the electrical
noise voltage v(t) observed in a circuit at time t seems always to have the same general properties
even though it occurs at many di�erent levels (say, mean square values) corresponding to di�erent
temperatures, ampli�cations, impedance levels, and even di�erent kinds of sources { natural, as-
trophysical, or man{made by many di�erent devices such as vacuum tubes, neon signs, capacitors,
resistors made of many di�erent materials, etc. Previously, engineers had tried to characterize the
noise generated by di�erent sources in terms of some \statistic" such as the ratio of peak to RMS
(Root Mean Square) value, which it was thought might identify its origin. Landon recognized that
these attempts had failed, and that the samples of electrical noise produced by widely di�erent
sources \ � � � cannot be distinguished one from the other by any known test ." z

Landon reasoned that if this frequency distribution of noise voltage is so universal, then it
must be better determined theoretically than empirically. To account for this universality but for
magnitude, he visualized not a single distribution for the voltage at any given time, but a hierarchy
of distributions p(vj�) characterized by a single scale parameter �2 , which we shall take to be the
expected square of the noise voltage. The stability seems to imply that if the noise level �2 is
increased by adding a small increment of voltage, the probability distribution still has the same
functional form, but only moved up the hierarchy to the new value of � . He discovered that for
only one functional form of p(vj�) will this be true.

Suppose the noise voltage v is assigned the probability distribution p(vj�). Then it is incre-
mented by a small extra contribution �, becoming v0 = v + � where � is small compared to � , and
has a probability distribution q(�)d�, independent of p(vj�). Given a speci�c �, the probability for
the new noise voltage to have the value v0 would be just the previous probability that v should have
the value (v0 � �). Thus by the product and sum rules of probability theory, the new probability
distribution is the convolution

f(v0) =

Z
p(v0 � �j�) q(�) d� : (7{16)

Expanding this in powers of the small quantity � and dropping the prime, we have

f(v) = p(vj�)� @p(vj�)
@v

Z
� q(�) d�+

1

2

@2p(vj�)
@v2

Z
�2 q(�) d�+ � � � (7{17)

or, now writing for brevity p � p(vj�),

f(v) = p� h�i@p
@v

+
1

2
h�2i@

2p

@v2
+ � � � (7{18)

This shows the general form of the expansion; but now we assume that the increment is as likely to
be positive as negative; h�i = 0.? At the same time, the expectation of v2 is increased to �2+ h�2i,
so Landon's invariance property requires that f(v) should be equal also to

z This universal, stable type of noise was called \grass" because that is what it looks like on an oscilloscope.
To the ear, it sounds like a smooth hissing without any discernible pitch; today this is familiar to everyone
because it is what we hear when a television receiver is tuned to an unused channel. Then the automatic
gain control turns the gain up to the maximum, and both the hissing sound and the ickering `snow' on
the screen are the greatly ampli�ed noise generated by random thermal motion of electrons in the antenna
according to the Nyquist law noted below.
? If the small increments all had a systematic component in the same direction, one would build up a large
\D. C." noise voltage, which is manifestly not the present situation. But the resulting solution might have
other applications; see Exercise 7.1.
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f(v) = p+ h�2i @p

@�2
: (7{19)

Comparing (7{18) and (7{19), we have the condition for this invariance:

@p

@�2
=

1

2

@2p

@v2
: (7{20)

But this is a well{known di�erential equation (the \di�usion equation"), whose solution with the
obvious initial condition p(vj� = 0) = �(v) is

p(vj�) = 1p
2��2

exp

�
� v2

2�2

�
; (7{21)

the standard Gaussian distribution. By minor changes in the wording, the above mathematical
argument can be interpreted either as calculating a probability distribution, or as estimating a
frequency distribution; in 1941 nobody except Harold Je�reys and John Maynard Keynes took
note of such distinctions. As we shall see, this is, in spirit, an incremental version of the Central
Limit Theorem; instead of adding up all the small contributions at once, it takes them into account
one at a time, requiring that at each step the new probability distribution has the same functional
form (to second order in �).

This is just the process by which noise is produced in Nature { by addition of many small
increments, one at a time (for example, collisions of individual electrons with atoms, each collision
radiating another tiny pulse of electromagnetic waves, whose sum is the observed noise). Once a
gaussian form is attained, it is preserved; this process can be stopped at any point and the resulting
�nal distribution still has the Gaussian form. What is at �rst surprising is that this stable form is
independent of the distributions q(�) of the small increments; that is why the noise from di�erent
sources could not be distinguished by any test known in 1941.y

Today we can go further and recognize that the reason for this independence was that only
the second moment h�2i of the increments mattered for the updated point distribution (that is, the
probability distribution for the voltage at a given time that we were seeking). Even the magnitude
of the second moment did not matter for the functional form; it determined only how far up
the �2{hierarchy we moved. But if we ask a more detailed question, involving time{dependent
correlation functions, then noise samples from di�erent sources are no longer indistinguishable.
The second order correlations of the form h�(t)�(t0)i are related to the power spectrum of the
noise through the Wiener{Khinchin theorem, which was just in the process of being discovered in
1941; they give information about the duration in time of the small increments. But if we go to
fourth order correlations h�(t1)�(t2)�(t3)�(t4)i we obtain still more detailed information, di�erent
for di�erent sources even though they all have the same Gaussian point distribution and the same
power spectrum.z

y Landon's original derivation concerned only a special case of this, in which q(�) = [�
p
a2 � �2]�1; j�j <

a corresponding to an added sinusoid of amplitude a and unknown phase. But the important thing was his
idea of the derivation, which anyone can generalize once it is grasped. In essence he had discovered inde-
pendently, in the expansion (7{18), what is now called the Fokker{Planck equation of statistical mechanics,
a powerful method which we shall use later to show how a nonequilibrium probability distribution relaxes
into an equilibrium one. It is now known to have a deep meaning, in terms of continually remaximized
entropy.
z Recognition of this invalidates many na��ve arguments by physicists who try to prove that \Maxwell
Demons" are impossible by assuming that thermal radiation has a universal character, making it impossible
to distinguish the source of the radiation. But only the second order correlations are universal; a demon
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Exercise 7.1. The above derivation established the result to order h�2i. Now suppose that
we add n such small increments, bringing the variance up to �2+ nh�2i. Show that in the limit
n!1; h�2i ! 0; nh�2i ! const:, the gaussian distribution (7{21) becomes exact (the higher
terms in the expansion (7{17) become vanishingly small compared to the terms in h�2i).

Exercise 7.2. Repeat the above derivation without assuming that h�i = 0 in (7{18). The
resulting di�erential equation is a Fokker{Planck equation. Show that there is now a super-
imposed steady drift, the solutions having the form exp[�(v � a�2)2=2�2]. Suggest a possible
useful application of this result. Hint : �2 and v may be given other interpretations, such as
time and distance.

Why the Ubiquitous Use of Gaussian Distributions?

We started this Chapter by noting the surprise of de Morgan and Barnard at the great and ubiq-
uitous success that is achieved in inference { particularly, in parameter estimation { through the
use of gaussian sampling distributions, and the reluctance of Feller to believe that such success was
possible. It is surprising that to understand this mystery requires almost no mathematics { only a
conceptual re{orientation toward the idea of probability theory as logic.

Let us think in terms of the information that is conveyed by our equations. Whether or not
the long{run frequency distribution of errors is in fact gaussian is almost never known empirically;
what the scientist knows about them (from past experience or from theory) is almost always simply
their general magnitude. For example, today most accurate experiments in physics take data
electronically, and a physicist usually knows the mean{square error of those measurements because
it is related to the noise energy and temperature by the well{known Nyquist thermal uctuation
law.? But he seldom knows any other property of the noise. If one assigns the �rst two moments
of a noise probability distribution to agree with such information, but has no further information
and therefore imposes no further constraints, then a gaussian distribution �t to those moments
will, according to the Principle of Maximum Entropy as discussed in Chapter 11, represent most
honestly his state of knowledge about the noise.

But we must stress a point of logic concerning this. It represents most honestly his state of
knowledge about the particular samples of noise for which he had data. This never includes the
noise in the measurement which he is about to make! If we suppose that knowledge about some past
samples of noise applies also to the speci�c sample of noise that we are about to encounter, then we
are making an inductive inference that might or might not be justi�ed; and honesty requires that
we recognize this. Then past noise samples are relevant for predicting future noise only through
those aspects that we believe should be reproducible in the future.

who perceives fourth order correlations in thermal radiation is far from blind about the details of his
surroundings. Indeed, the famous Hanbury Brown{Twiss interferometer (1956), invokes just such a fourth{
order demon, in space instead of time and observing h�2(x1)�2(x2)i to measure the angular diameters of

stars. Conventional arguments against Maxwell demons are logically awed and prove nothing.
? A circuit element of resistance R(!) ohms at angular frequency ! develops across its terminals in a small
frequency band �! = 2��f a uctuating mean{square open{circuit voltage V 2 = 4kTR�f , where f
is the frequency in Hz (cycles per second), k � 1:38� 10�23 joules/degree is Boltzmann's constant, and
T is the Kelvin temperature. Thus it can deliver to another circuit element the maximum noise power
P = V 2=4R = kT�f . At room temperature, T = 300K, this is about 4 � 10�15 watts per megahertz
bandwidth. Any signal of lower intensity than this will be lost in the thermal noise and cannot be recovered,
ordinarily, by any amount of ampli�cation. But prior information about the kind of signal to be expected
will still enable a Bayesian computer program to extract weaker signals than this, as the work of Bretthorst
(1988) demonstrates. We study this in Chapter 23.
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In practice, common sense usually tells us that any observed �ne details of past noise are
irrelevant for predicting �ne details of future noise; but that coarser features, such as past mean{
square values, may be expected reasonably to persist, and thus be relevant for predicting future
mean{square values. Then our probability assignment for future noise should make use only of
those coarse features of past noise which we believe to have this persistence. That is, it should
have maximum entropy subject to the constraints of the coarse features that we retain because we
expect them to be reproducible. Probability theory becomes a much more powerful reasoning tool
when guided by a little common{sense judgment of this kind about the real world, as expressed in
our choice of a model and assignment of prior probabilities.

Thus we shall �nd in studying Maximum Entropy below that when we use a gaussian sampling
distribution for the noise, we are in e�ect telling the robot: \The only thing I know about the noise
is its �rst two moments; so please take that into account in assigning your probability distribution,
but be careful not to assume anything else about the noise." We shall see presently how well the
robot obeys this instruction.y

This does not mean that the full frequency distribution of the past noise is to be ignored if
it happens to be known. Probability theory as logic does not conict with conventional orthodox
theory if we actually have the information (that is, perfect knowledge of limiting frequencies, and no
other information) that orthodox theory presupposes; but it continues to operate using whatever
information we have. In the vast majority of real problems we lack this frequency information
but have other information (such as mean square value, digitizing interval, power spectrum of the
noise); and a correct probability analysis readily takes this into account.

Exercise 7.3. Suppose that the long{run frequency distribution of the noise has been found
empirically to be the function f(e) (never mind how one could actually obtain that information)
and we have no other information about the noise. Show, by reasoning like that leading to
(4{48) and using Laplace's Rule of Succession (6{70), that in the limit of a very large amount
of frequency data, our probability distribution for the noise becomes numerically equal to the
observed frequency distribution: p(ejI) ! f(e). This is what Daniel Bernoulli conjectured in
the above quotation. But state very carefully the exact conditions for this to be true.

In other �elds such as analysis of economic data, knowledge of the noise may be more crude,
consisting of an approximate general magnitude of the noise and nothing else. But for reasons
noted below (Central Limit Theorem) we still have good reasons to expect a gaussian functional
form; so a gaussian distribution �t to that magnitude is still a good approximation to one's state
of knowledge. If even that knowledge is lacking, we still have good reason to expect the gaussian
functional form, so a sampling distribution with � an undetermined nuisance parameter to be
estimated from the data is an appropriate and useful starting point. Indeed, as Bretthorst (1988)
demonstrates, this is often the safest procedure even in a physics experiment, because the noise
may not be the theoretically well understood Nyquist noise [No source has ever been found which
generates noise below the Nyquist value { and from the second law of thermodynamics we do not
expect to �nd such a source { but a defective apparatus may generate noise far above the Nyquist
value. One can still conduct the experiment with such an apparatus, taking into account the greater
noise magnitude; but of course, a wise experimenter who knows that this is happening, will try to
improve his apparatus before proceeding.]

We shall �nd, in the Central Limit Theorem, still another strong justi�cation for using gaussian
error distributions. But if the gaussian law is nearly always a good representation of our state of
knowledge about the errors in our speci�c data set , it follows that inferences made from it are

y If we have further pieces of information about the noise, such as a fourth moment or an upper bound,
the robot can take these into account also by assigning generalized gaussian { that is, general maximum
entropy { noise probability distributions. Examples of the use of the fourth moment in economics and
physical chemistry are given by Zellner (19XX) and Chris (19XX).
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nearly always the best ones that could have been made from the information that we actually have.
Now as we note presently, the data give us a great deal of information about the noise, not usually
recognized. But Bayes' theorem automatically takes into account whatever can be inferred about
the noise from the data. Therefore Bayesian inferences using a gaussian sampling distribution
could be improved upon only by one who had additional information about the actual errors in his
speci�c data set, beyond its �rst two moments and beyond what is known from the data.

For this reason, whether our inferences are successful or not, unless such extra information is
at hand there is no justi�cation for adopting a di�erent error law; and indeed, no principle to tell
us which di�erent one to adopt. This explains the ubiquitous use. Since the time of Gauss and
Laplace, the great majority of all inference procedures with continuous probability distributions
have been conducted { necessarily and properly { with gaussian sampling distributions. Those
who disapproved of this, whatever the grounds for their objection, have been unable to o�er any
alternative that was not subject to a worse objection; so already in the time of de Morgan, some
25 years after the work of Laplace, use of the gaussian rule had become ubiquitous by default, and
this continues today.

Recognition of this considerably simpli�es our expositions of Bayesian inference; 95% of our
analysis can be conducted with a gaussian sampling distribution, and only in special circumstances
(unusual prior information such as that the errors are pure digitizing errors or that there is an
upper bound to the possible error magnitude) is there any reason for adopting a di�erent one. But
even in those special circumstances, the gaussian analysis usually leads to �nal conclusions so near
to the exact ones that the di�erence is hardly worth the extra e�ort.

It is now clear that the most ubiquitous reason for using the gaussian sampling distribution is
not that the error frequencies are known to be { or assumed to be { gaussian; but rather because
those frequencies are unknown. One sees what a totally di�erent outlook this is than that of Feller
and Barnard; `normality' was not an assumption of physical fact at all. It was a valid description

of our state of information. In most cases, had we done anything di�erent we would be making an
unjusti�ed, gratuitous assumption (violating one of our Chapter 1 desiderata of rationality). But
this still does not explain why the procedure is so successful; so we need to explain much more.

Why the Ubiquitous Success?

By `ubiquitous success' we mean that for nearly two Centuries, the gaussian sampling distribution
has continued to be, in almost all problems, much easier to use and to yield better results (more
accurate parameter estimates) than any alternative sampling distribution that anyone has been
able to suggest. To explain this requires that analysis that de Morgan predicted would one day be
found.

As a start, note that we are going to use some function of the data as our estimate; then
whether our present inference { here and now { is or is not successful, depends entirely on what
that function is, and on the actual errors that are present in the one speci�c data set that we are

analyzing. Therefore to explain its success requires that we examine that speci�c data set. The
frequency distribution of errors in other data sets that we might have got but did not { and which
we are therefore not analyzing { is irrelevant to the question we now seek to answer, unless (a) it is
actually known, not merely imagined; and (b) it tells us something about the errors in our speci�c
data set that we would not know otherwise. But in practice, those who emphasize frequencies
most strongly merely assume them without pointing to any actual measurement. They persist in
trying to relate the gaussian distribution to assumed frequencies in imaginary data sets that have
never been observed; thus they continue to look in the wrong place, and so are unable to �nd any
explanation of the success.

In constrast, consider a typical real problem. We are trying to estimate a location parameter
�, and our data D consist of n observations: D = fy1 � � �yng. But they have errors that vary in a
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way that is uncontrolled by the experimenter and unpredictable from his state of knowledge.z In
the following we denote the unknown true value by �0 , and use � as a general running variable.
Then

yi = �0 + ei ; (1 � i � n) (7{22)

where ei is the actual error in the i'th measurement. Now if we assign an independent gaussian
sampling distribution:

p(Dj�; �; I) =
�

1

2��2

�n=2
exp

�
�
P
(yi � �)2

2�2

�
(7{23)

we have
nX
i=1

(yi � �)2 = n[(�� y)2 + s2] (7{24)

where

y � 1

n

X
yi = �0 + e

s2 � y2 � (y)2 = e2 � (e)2

(7{25)

The consequence of assigning the gaussian error distribution is that only the �rst two moments of
the data are going to be used for inferences about � (and about � , if it is unknown). They are
called su�cient statistics , and we study the general phenomenon of su�ciency in Chapter 8. From
(7{25) it follows that only the �rst two moments of the noise values fe1 � � �eng:

e =
1

n

X
i

ei ; e2 =
1

n

X
i

e2i (7{26)

can matter for the error in our estimate. We have, in a sense, the simplest possible connection
between the errors in our data and the error in our estimate, allowing the maximum possible
opportunity for that error cancellation to take place.

When we assign an independent gaussian sampling distribution to additive noise, what we achieve
is not that the error frequencies are correctly represented, but that those frequencies are made
irrelevant; all other aspects of the noise beyond e and e2 can contribute nothing to the numerical
value or the accuracy of our estimates.

Feller, thinking exclusively in terms of sampling distributions for estimators, thought that
unless our sampling distribution correctly represented the actual frequencies of errors, our estimates
would be in some way unsatisfactory. Now there is an important and closely related truth here: The
actual variability of the estimate in the long run over all possible data sets, is indeed determined by

the actual long run frequency distribution of the errors, if such a thing exists. But does it follow
that our assigned sampling distribution must be equal to that frequency distribution in order to
get satisfactory estimates? Might not the estimates of � be made still better in the long run (i.e.,
more closely concentrated about the true value �0) by a di�erent choice of sampling probability

z This does not mean that they are `not determined by anything' as is so often implied by those su�ering
from the Mind Projection Fallacy; it means only that they are not determined by any circumstances that
the experimenter is observing. Whether controlling factors could or could not be observed in principle is
irrelevant to the present problem, which is to reason as best we can in the state of knowledge that we have

speci�ed.
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distribution? To the best of our knowledge, orthodoxy has never attempted to give any such
demonstration; there is a big gap in the logic here, even from a pure sampling{theory standpoint.

But more fundamental than the logical gap is the conceptual disorientation; the scenario
envisaged by Feller is not the real problem facing a scientist. His job is not to fantasize about an
imaginary `long run' which will never be realized; but to estimate the parameters in the one real
case before him, from the one real data set that he actually has.?

In the absence of cogent prior information about � (that is, if the prior density p(�jI) is
substantially constant over the region of high likelihood), then Bayes' theorem will lead us to make
the posterior (mean) � (standard deviation) estimatey

(�)est =

8<
:
y � �=

p
n ; � known

y � s=
p
n� 3 ; � unknown

9=
; (7{27)

Thus the actual error we shall make in the estimate is the average of the individual errors in our
speci�c data set:z

� = y � �0 = e (7{28)

Note that e is not an average over any probability distribution; it is the average of the actual

errors; and this result holds however the actual errors ei are distributed. For example, whether
a histogram of the ei closely resembles the assigned gaussian (7{23) or whether all of the error
happens to be in e1 does not matter in the least; (7{28) remains correct.

The Near{Irrelevance of Sampling Frequency Distributions

Another way of looking at this is helpful. As we have seen before, in a repetitive situation the
probability of any event is usually the same as its expected frequency (using, of course, the same
basic probability distribution for both). Then given a sampling distribution f(yj�), it tells us thatR
R
f(yj�) dy is the expected frequency of the event y 2 R, before the data are known.

But if, as always supposed in elementary parameter estimation, the parameters are held �xed
throughout the taking of a data set, then the variability of the data is also, necessarily , the
variability of the actual errors in that data set. If the noise is de�ned to be additive, as in the
model (7{22), the exact distribution of the errors is known from the data to within a uniform
translation: ei�ej = yi�yj . We know from the data y that the exact error in the i'th observation

? Curiously, in that same after{dinner speech Feller also railed against those who fail to distinguish between
the long run and the individual case, yet it appears to us that it was Feller who failed to make that distinction
properly. He would judge the merit of an individual case inference by its imagined long run properties.
But it is not only possible, but common as soon as we depart from gaussian sampling distributions, that
an estimator which is proved to be as good as can be obtained, as judged by its long run success over all
data sets, may nevertheless be very poor for our particular data set and should not be used for it. This
introduces us to the phenomenon of ancillarity, pointed out by R. A. Fisher in the 1930's. It is now known
that Bayes' theorem automatically detects this situation and does the right thing here, choosing for each
data set the optimal estimator for that data set. In other words, the correct solution to the problem of
ancillarity is just to return to the original Bayesian analysis of Laplace and Je�reys that Fisher thought to
be wrong; this is discussed further in Chapter 8.
y The detailed derivation of this result is given in our discussion of Estimation with a Gaussian Distribution
in Chapter 20; however, we might regard it as an easy exercise for the reader.
z Of course, probability theory tells us that this is the best estimate we can make if, as supposed, the
only information we have about � comes from this one data set. If we have other information (previous
data sets, other prior information) we should take it into account; but then we are considering a di�erent
problem.
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has the form ei = yi � e0 , where e0 is an unknown constant. Then what use remains for the
sampling distribution, which yields only the prior expectations of the error frequencies? Whatever
frequency distribution we might have expected before seeing the data, is rendered almost irrelevant
by the information in the data! What remains signi�cant is the likelihood function { how the
probability of the observed data set varies with the parameters � .

Although all these results are mathematically trivial, we stress their nontrivial consequences
by repeating them in di�erent words. A gaussian distribution has a far deeper connection with
the arithmetic mean than that shown by Gauss: If we assign the independent gaussian error
distribution, then the error in our estimate is always the arithmetic mean of the true errors in
our data set; and whether the frequency distribution of those errors is or is not gaussian is totally
irrelevant. Any error vector fe1 � � �eng with the same �rst moment e will lead us to the same
estimate of �; and any error vector with the same �rst two moments will lead us to the same
estimates of both � and � and the same accuracy claims, whatever the frequency distributions of

the individual errors . This is the �rst part of the answer to de Morgan, Feller, and Barnard.
This makes it clear that what matters to us functionally { that is, what determines the actual

error of our estimate { is not whether the gaussian error law correctly describes the limiting fre-
quency distribution of the errors; but rather whether that error law correctly describes our prior
information about the actual errors in our data set. If it does, then the above calculations are the
best we can do with the information we have; and there is nothing more to be said.

The only case where we should { or indeed, could { do anything di�erent is when we have
additional prior information about the errors beyond their �rst two moments. For example, if we
know that they are simple digitizing errors with digitizing interval � , then we know that there
is a rigid upper bound to the magnitude of any error: jeij � �=2. Then if � < � , use of the
appropriate truncated sampling distribution instead of the gaussian (7{23) will almost surely lead
to more accurate estimates of �. This kind of prior information can be very helpful (although it
complicates the analytical solution, this is no deterrent to a computer), and we consider a problem
of this type below, under `Accuracy of Computation'.

But, closer to the present issue, in what sense and under what conditions does the gaussian
error law `correctly describe' our information about the errors?

The Remarkable E�ciency of Information Transfer

Again, we anticipate a few results from later Chapters in order to get a quick, preliminary view
of what is happening, which will improve our judgment in setting up real problems. The noise
probability distribution p(ej��) which has maximum entropy H = � R p(e) log p(e) de subject to
the constraints of prescribed expectations

hei = �; he2i = �2 + �2 (7{29)

in which the brackets h i now denote averages over the probability distribution p(ej��), is the
gaussian

p(ej�; �) = 1p
2��2

exp

�
�(e � �)2

2�2

�
(7{30)

So a state of prior information which leads us to prescribe the expected �rst and second moments of
the noise { and nothing else { uniquely determines the gaussian distribution. Then it is eminently
satisfactory that this leads to inferences that depend on the noise only through the �rst and second
moments of the actual errors. When we assign error probabilities by the principle of maximum
entropy, the only properties of the errors that are used in our Bayesian inference are the properties

about which we speci�ed some prior information. This is a very important second part of that
answer.
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In this example we have stumbled for the �rst time onto a fundamental feature of probability
theory as logic: if we assign probabilities to represent our information, then circumstances about
which we have no information, are not used in our subsequent inferences. But it is not only true
of this example; we shall �nd when we study Maximum Entropy that it is a general theorem that
any sampling distribution assigned by maximum entropy leads to Bayesian inferences that depend
only on the information that we incorporated as constraints in the entropy maximization.?

Put di�erently, our rules for extended logic automatically use all the information that we have,
and avoid assuming information that we do not have. Indeed, our Chapter 1 desiderata require this.
In spite of its extremely simple formal structure in the product and sum rules, probability theory
as logic has a remarkable sophistication in applications. It perceives instantly what generations of
statisticians and probabilists failed to see; for a probability calculation to have a useful and reliable
function in the real world, it is by no means required that the probabilities have any relation to
frequencies.y

But once this is pointed out, it seems obvious that circumstances about which we have no
information cannot be of any use to us in inference. Rules for inference which fail to recognize this
and try to introduce such quantities as error frequencies into the calculation as ad hoc assumptions,
even when we have no information about them, are claiming, in e�ect, to get something for nothing
(in fact, they are injecting arbitrary { and therefore almost certainly false { information). Such
devices may be usable in some small class of problems; but they are guaranteed to yield wrong
and/or misleading conclusions if applied outside that class.

On the other hand, probability theory as logic is always safe and conservative, in the following
sense; it always spreads the probability out over the full range of conditions allowed by the infor-
mation used. Thus it always yields the conclusions that are justi�ed by the information which was

put into it . The robot can return vague estimates if we give it vague or incomplete information;
but then it warns us of that fact by returning posterior distributions so wide that they still include

the true value of the parameter. It cannot actually mislead us { in the sense of assigning a high
probability to a false conclusion { unless we have given it false information.

For example, if we assign a sampling distribution which supposes the errors to be far smaller
than the actual errors, then we have put false information into the problem, and the consequence
will be, not necessarily bad estimates of parameters, but false claims about the accuracy of those
estimates and { often more serious { the robot can hallucinate, artifacts of the noise being misin-
terpreted as real e�ects. As de Morgan (1872, p. 113) put it, this is the error of \attributing to the
motion of the moon in her orbit all the tremors which she gets from a shaky telescope".

Conversely, if we use a sampling distribution which supposes the errors to be much larger
than the actual errors, the result is not necessarily bad estimates, but overly conservative accuracy
claims for them and { often more serious { blunt perception, failing to recognize e�ects that are
real, by dismissing them as part of the noise. This would be the opposite error of attributing to
a shaky telescope the real and highly important deviation of the moon from her expected orbit.
If we use a sampling distribution that reects the true average errors and the true mean square
errors, we have the maximum protection against both of these extremes of misperception, steering
the safest possible middle course between them. These properties are demonstrated in detail later.

Other Sampling Distributions. Once we understand the reasons for the success of Gaussian
inference, we can also see very rare special circumstances where a di�erent sampling distribution

? Technically (Chapter 8), the class of sampling distributions which have su�cient statistics is precisely
the class generated by the maximum entropy principle; and the resulting su�cient statistics are precisely
the constraints which determined that maximum entropy distribution.
y This is not to say that probabilities are forbidden to have any relation to frequencies; the point is rather
that whether they do or do not depends on the problem, and probability theory as logic works equally well
in either case. We shall see, in the work of Galton below, an example where a clear frequency connection
is present, and analysis of the general conditions for this will appear in Chapter 9.
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would better express our state of knowledge. For example, if we know that the errors are being
generated by the unavoidable and uncontrollable rotation of some small object, in such a way that
when it is at angle � , the error is e = � cos � but the actual angle is unknown, a little analysis
shows that the prior probability assignment p(ejI) = (�

p
�2 � e2)�1 ; e2 < �2 correctly describes

our state of knowledge about the error. Therefore it should be used instead of the Gaussian
distribution; since it has a sharp upper bound, it may yield appreciably better estimates than
would the Gaussian { even if � is unknown and must therefore be estimated from the data (or
perhaps it is the parameter of interest to be estimated).

Or, if the error is e = � tan � , we �nd that the prior probability is the Cauchy distribution
p(ejI) = ��1 a=(a2 + e2). Although this case is rare, we shall �nd it an instructive exercise to
analyze inference with a Cauchy sampling distribution, because qualitatively di�erent things can
happen; Orthodoxy regards the Cauchy distribution as \a pathological, exceptional case" but it
causes no di�culty in Bayesian analysis, which enables us to understand it.

Nuisance Parameters as Safety Devices

As an example of this principle, if we do not have actual knowledge about the magnitude � of
our errors, then it could be dangerous folly to assume some arbitrary value; the wisest and safest
procedure is to adopt a model which honestly acknowledges our ignorance by allowing for various
possible values of � ; we should assign a prior p(�jI) which indicates the range of values that �
might reasonably have, consistent with our prior information. Then in the Bayesian analysis we
shall �nd �rst the joint posterior pdf for both parameters:

p(�; �jD; I) = p(�; �jI) p(Dj�; �; I)
p(DjI) : (7{31)

But now notice how the product rule rearranges this:

p(�; �jD; I) = p(�jI) p(�j�; I) p(Dj�; I) p(�j�;D; I)
p(DjI) p(�j�; I) = p(�j�;D; I) p(�jD; I) (7{32)

So, if we now integrate out � as a nuisance parameter, we obtain the marginal posterior pdf for �
alone in the form:

p(�jD; I) =
Z
p(�j�;D; I) p(�jD; I) d� ; (7{33)

a weighted average of the pdf 's p(�j�;D; I) for all possible values of � , weighted according to the
marginal posterior pdf p(�jD; I) for � , which represents everything we know about � .

Thus when we integrate out a nuisance parameter, we are not throwing away any information
relevant to the parameters we keep; on the contrary, probability theory automatically estimates
the nuisance parameter for us from all the available evidence, and takes that information fully
into account in the marginal posterior pdf for the interesting parameters (but it does this in
such a slick, e�cient way that one may not realize that this is happening, and think that he is
losing something). In the limit where the data are able to determine the true value � = �0 very
accurately, p(�jD; I) ! �(� � �0) and p(�jD; I) ! p(�j�0; D; I); the theory yields, as it should,
the same conclusions that we would have if the true value were known from the start.

This is just one example illustrating that, whatever question we ask, probability theory as logic
automatically takes into account all the possibilities allowed by our model and our information.
Then, of course, the onus is on us to choose a model wisely so that the robot is given the freedom
to estimate for itself, from the totality of its information, any parameter that we do not know. If
we fail to recognize the existence of a parameter which is uninteresting but nevertheless a�ects our
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data { and so leave it out of the model { then the robot is crippled and cannot return the optimal
inferences to us. The marginalization paradox, discussed in Chapter 15, and the data pooling
paradox of Chapter 8, exhibit some of the things that can happen then; the robot's conclusions are
still the best ones that could have been made from the information we gave it , but they are not
the ones that simple common sense would make.

In practice, we �nd that recognition of a relevant, but unknown and uninteresting parameter
by including it in the model and then integrating it out again as a nuisance parameter, can greatly
improve our ability to extract the information we want from our data { often by orders of magnitude.
By this means we are forewarning the robot about a possible disturbing complication, putting it
on the lookout for it; and the rules of probability theory then lead the robot to make the optimal
allowance for it. The recent success of Bayesian Spectrum Analysis (Bretthorst, 1988) is based on
this recognition, as we shall see in detail when we take up spectrum/shape analysis.

This point is extremely important in some current problems of estimating environmental haz-
ards or the safety of new machines, drugs or food additives, where inattention to all of the relevant
prior information that scientists have about the phenomenon { and therefore failure to include that
information in the model and prior probabilities { can cause the danger to be grossly overestimated
or underestimated. For example, from knowledge of the engineering design of a machine, one knows
a great deal about its possible failure modes and their consequences, that could not be obtained
from any feasible amount of reliability testing by `random experiments'. Likewise, from knowledge
of the chemical nature of a food additive one knows a great deal about its physiological e�ects,
that could not be obtained from any feasible amount of mere toxicity tests.

Of course, this is not to say that reliability tests and toxicity tests should not be carried out;
the point is rather that random experiments are very ine�cient ways of obtaining information (we
learn, so to speak, only like the square root of the number of trials), and rational conclusions cannot
be drawn from them unless the equally cogent { often far more cogent { prior information is also
taken into account. The real function of the random experiment is to guard against completely
unexpected bad e�ects, about which our prior information gave us no warning.

More General Properties

Although the Gauss derivation was of the greatest historical importance, it does not satisfy us
today because it depends on intuition; why must the `best' estimate of a location parameter be the
sample mean? Why must it be even a linear function of the observations? Evidently, in view of
the Gauss derivation, if our assigned sampling distribution is not gaussian, the best estimate of the
location parameter will not be the sample mean. It could have a wide variety of other functional
forms; then under what circumstances is Laplace's prescription the one to use?

We have just seen the cogent pragmatic advantages of using a gaussian sampling distribution.
Today, anticipating a little from later Chapters, we would say that its unique theoretical position
derives not from the Gauss argument, but rather from four mathematical stability properties which
have fundamentally nothing to do with probability theory or inference; and a �fth which has
everything to do with them, but was not discovered until the mid{twentieth Century:

(A) Any smooth function with a single rounded maximum, if raised to higher and higher
powers, goes into a gaussian function. We saw this in Chapter 6.

(B) The product of two gaussian functions is another gaussian function
(C) The convolution of two gaussian functions is another gaussian function.
(D) The fourier transform of a gaussian function is another gaussian function.
(E) A gaussian probability distribution has higher entropy than any other with the same

variance; therefore any operation on a probability distribution which discards infor-
mation but conserves variance, leads us inexorably closer to a gaussian. The Central
Limit Theorem, derived below, is the best known example of this, in which the oper-
ation being performed is convolution.
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Properties (A) and (E) explain why a gaussian form is approached more and more closely by various
operations; properties (B) { (D) explain why that form, once attained, is preserved.

Convolution of Gaussians

The convolution property (C) is shown as follows. Expanding now the notation of (7{1)z

'(x� �j�) � 1

�
'

�
x� �

�

�
=

r
1

2��2
exp

�
� (x� �)2

2�2

�
=

r
w

2�
exp

h
�w
2
(x� �)2

i
(7{34)

in which we introduce the \weight" w � 1=�2 for convenience, the product of two such functions is

'(x� �1j�1)'(y � x� �2j�2) =
1

2� �1 �2
exp

(
�1

2

"�
x� �1

�1

�2

+

�
y � x� �2

�2

�2
#)

(7{35)

but we bring out the dependence on x by rearranging the quadratic form:�
x� �1

�1

�2

+

�
y � x� �2

�2

�2

= (w1 + w2) (x� x̂)2 +
w1 w2

w1 + w2

(y � �1 � �2)
2 (7{36)

where x̂ � (w1�1 + w2y � w2�2)=(w1 + w2). The product is still a gaussian with respect to x; so
on integrating out x we have the convolution law:Z

1

�1

'(x� �1j�1)'(y� x� �2j�2) dx = '(y � �j�) (7{37)

where � � �1+�2 ; �
2 � �21 +�22 . Two gaussians convolve to make another gaussian, the means �

and variances �2 being additive. Presently we shall see some important applications that require
only the single convolution formula (7{37). Now we turn to the famous theorem, which results
from repeated convolutions.

The Central Limit Theorem

The question whether nongaussian distributions also have parameters additive under convolution
leads us to the notion of cumulants discussed in Appendix C. The reader who has not yet studied this
should do so now. If the functions fi(x) to which we apply that theory are probability distributions,
then they are necessarily nonnegative and normalized: fi(x) � 0 ;

R
fi(x)dx = 1. Then the zero'th

moments are all Zi = 1, and the fourier transforms

Fi(�) �
Z

1

�1

fi(x) e
i�x dx (7{38)

are absolutely convergent for real �. Note that all this remains true if the fi are discontinuous, or
contain delta{functions; therefore the following derivation will apply equally well to the continuous
or discrete case or any mixture of them.z

************ MUCH MORE TO COME HERE! ************

Now we turn to some important applications of the above mathematical results.

z This notation is not quite inconsistent, since '( ) and '( j ) are di�erent functional symbols.
z At this point, the reader who has been taught to disbelieve in delta{functions must unlearn that by
reading Appendix B. In fact, without the free use of delta{functions and other generalised functions, real
applications of fourier analysis are in an almost helpless, crippled condition, as noted in Appendix F.
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Accuracy of Computations

As a useful application of the Central Limit Theorem, consider a computer programmer deciding on
the accuracy to be used in a program. This is always a matter of compromise between misleading,
inaccurate results on the one hand, and wasting computation facilities with more accuracy than
needed on the other.

Of course, it is better to err on the side of a little more accuracy than really needed. Nev-
ertheless, it is foolish (and very common) to tie up a large facility with a huge computation to
double precision (16 decimal places) or even higher, when the user has no use for anything like that
accuracy in the �nal result. The computation might have been done in less time but with the same
result on a desktop microcomputer, had it been programmed for an accuracy that is reasonable for
the problem.

Programmers can speed up and simplify their creations by heeding what the CLT tells us. In
probability calculations we seldom have any serious need for more than three{�gure accuracy in
our �nal results, so we shall be well on the safe side if we strive to get four �gure accuracy reliably
in our computations.

As a simple example, suppose we are computing the sum

S �
NX
n=1

an (7{39)

of N terms an , each one positive and of order unity. To get a given accuracy in the sum, what
accuracy do we need in the individual terms?

Our computation program or lookup table necessarily gives each an digitized to some smallest
increment �, so this will be actually the true value plus some error en . If we have an to six decimal
digits, then � = 10�6 ; if we have it to sixteen binary digits, then � = 2�16 = 1=65536. The error
in any one entry is in the range (��=2 < en � �=2), and in adding N such terms the maximum
possible error is N�=2. Then it might be thought that the programmer should ensure that this is
acceptably small.

But if N is large, this maximum error is enormously unlikely; this is just the point that Euler
failed to see. The individual errors are almost certain to be positive and negative about equally
often, giving a high degree of mutual cancellation, so that the net error should tend to grow only
as
p
N .
The CLT tells us what is essentially a simple combinatorial fact, that out of all conceivable

error vectors fe1; : : : ; eNg that could be generated, the overwhelming majority have about the same

degree of cancellation, that indicated by the
p
N rule. If we consider each individual error equally

likely to be anywhere in (��=2; �=2), this corresponds to a rectangular probability distribution on
that interval, leading to an expected square error per datum of

1

�

Z �=2

��=2

x2 dx =
�2

12
(7{40)

Then by the CLT the probability distribution for the sum S will be gaussian with a variance
N�2=12, while S is approximately N . So if N is large so that the CLT is accurate, the probability

that the magnitude of the net error will exceed �
p
N , which is

p
12 = 3:46 standard deviations, is

about

2[1� �(3:46)]' 0:0006 (7{41)

where �(x) is the cumulative normal distribution. One will almost never observe an error that
great. Since �(2:58) = 0:995, there is about a 1% chance that the net error magnitude will exceed

0:74�
p
N = 2:58 standard deviations.
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Therefore if we strive, not for certainty, but for 99% or greater probability, that our sum S is
correct to four �gures, this indicates the value of � that can be tolerated in our algorithm or lookup
table. We require 0:74�

p
N � 10�4N , or

� � 1:35� 10�4
p
N (7{42)

The perhaps surprising result is that if we are adding N = 100 roughly equal terms, to achieve a
virtual certainty of four{�gure accuracy in the sum we require only three{�gure accuracy in the
individual terms! Under favorable conditions, the mutual cancellation phenomenon can be e�ective
far beyond Euler's dreams. Thus we can get by with a considerably shorter computation for the
individual terms, or a smaller lookup table, than might be supposed.

This simple calculation can be greatly generalized, as indicated by Exercise 7.4. But we should
note an important proviso to be investigated in Exercise 7.5; this holds only when the individual
errors en are logically independent. Given � in advance, if knowing e1 then tells us anything about
any other en , then there are correlations in our probability assignment to errors, the CLT no longer
applies, and a di�erent analysis is required. Fortunately, this is almost never a serious limitation
in practice because the individual an are determined by some continuously variable algorithm and
di�er among themselves by amounts large compared to �, making it impossible to determine any
ei given any other ej .

Exercise 7.4. Suppose that we are to evaluate a fourier series S(�) =
P

an sinn� . Now
the individual terms vary in magnitude and are themselves both positive and negative. In order
to achieve four{�gure accuracy in S(�) with high probability, what accuracy do we now require
in the individual values of an and sin n�?

Exercise 7.5. Show that if there is a positive correlation in the probabilities assigned to
the ei , then the error in the sum may be much greater than indicated by the CLT. Try to make a
more sophisticated probability analysis taking correlations into account, which would be helpful
to a computer programmer who has some kind of information about mutual properties of errors
leading to such correlations, but is still striving for the greatest e�ciency for a given accuracy.

The literature of orthodox statistics contains some quite di�erent recommendations than ours
concerning accuracy of numerical calculations. For example, the textbook of McClave & Ben-
son (1988, p. 99) considers calculation of a sample standard deviation s of n = 50 observations

fx1 � � �xng from that of s2 = x2 � x2 . They state that: \You should retain twice as many decimal
places in s2 as you want in s. For example, if you want to calculate s to the nearest hundredth,
you should calculate s2 to the nearest ten{thousandth." When we studied calculus (admittedly
many years ago) it was generally thought that small increments are related by �(s2) = 2s�s, or
�s=s = (1=2) �(s2)=s2 . So if s2 is calculated to four signi�cant �gures, this determines s not to two
signi�cant �gures, but to somewhat better than four. [But in any event, their practice of inserting
a gratuitous extra factor n=(n � 1) in the symbol which they denote by `s2 ' makes a joke of any
pretense of four{�gure accuracy in either when n = 50].

Galton's Discovery

The single convolution formula (7{37) led to one of the most important applications of probability
theory in biology. Although from our present standpoint (7{37) is only a straightforward integration
formula, which we may write for present purposes in the formZ

1

�1

'(xj�1)'(y � axj�2) dx = '(yj�) (7{43)

where we have made the scale changes x! ax; �1 ! a�1 , and so now
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� =
q
a2�21 + �22 (7{44)

it became in the hands of Francis Galton (1886) a major revelation about the mechanism of bi-
ological variation and stability.? We use the conventional language of that time, which did not
distinguish between the notions of probability and frequency, using the words interchangeably. But
this is not a serious matter because his data were, in fact, frequencies and as we shall see in Chapter
9, strict application of probability theory as logic would then lead to probability distributions that
are substantially equal to the frequency distributions (exactly equal in the limit where we have an
arbitrarily large amount of frequency data and no other relevant prior information). Consider, for
example, the frequency distribution of heights h of adult males in the population of England. He
found that this could be represented fairly well by a gaussian

'(h� �j�)dh = '

�
h� �

�

�
dh

�
(7{45)

with � = 68:1 inches, � = 2:6 inches. Then he investigated whether children of tall parents tend to
be tall, etc. To keep the number of variables equal to two in spite of the fact that each person has
two parents, he determined that the average height of men was about 1.08 times that of women,
and de�ned a person's \midparent" as an imaginary being of height

hmid � 1

2
(hfather + 1:08 hmother) : (7{46)

He collected data on 928 adults born of 205 midparents and found as expected that children of
tall parents do indeed tend to be tall, etc. but that children of tall parents still show a spread in
heights, although less than the spread (��) of the entire population.

But if the children of each selected group of parents still spread in height, why does the spread
in height of the entire population not increase continually from one generation to the next? Because
of the phenomenon of \reversion"; the children of tall parents tend to be taller than the average
person, but less tall than their parents. Likewise children of short parents are generally shorter
than the average person, but taller than their parents. If the population as a whole is to be stable,
this `systematic' tendency to revert back to the mean of the entire population must exactly balance
the `random' tendency to spreading. Behind the smooth facade of a constant overall distribution
of heights, an intricate little time{dependent game of selection, drift, and spreading is taking place
constantly.

In fact, Galton (with some help from mathematicians) could predict the necessary rate of
reversion theoretically, and verify it from his data. If (x = h � �) is the deviation from the mean
height of the midparents, let the population as a whole have a height distribution '(xj�1), while
the sub{population of midparents of height (x+�) tend to produce children of height (y+�) with
a frequency distribution '[(y � ax)j�2]. Then the height distribution of the next generation will
be given by (7{43). If the population as a whole is to be stable, it is necessary that � = �1 , or the
reversion rate must be

a = �
s
1� �22

�21
; (7{47)

which shows that a need not be positive; if tall parents tended to \compensate" by producing
unusually short children, this would bring about an alternation from one generation to the next,
but there would still be equilibrium for the population as a whole.

? A photograph of Galton, with more details of his work and a short biographical sketch, may be found in
Stigler (1986). His autobiography (Galton, 1908) has additional details.
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But we see that equilibrium is not possible if jaj > 1; the population would explode. Although
(7{43) is true for all a, equilibrium would then require �22 < 0. The boundary of stability is
reached at �2 = 0; jaj = 1; then each sub{population breeds true, and whatever initial distribution
of heights happened to exist, would be maintained thereafter. An economist might call the condition
a = 1 a \unit root" situation; there is no reversion and no spreading.y

Of course, this analysis is in several obvious respects an oversimpli�ed model of what happens
in actual human societies. But that involves only touching up of details; Galton's analysis was,
historically, of the greatest importance in giving us a general understanding of the kind of processes
at work. For this, its freedom from nonessential details was a major merit.

Exercise 7.6. Galton's device of the midparent was only to reduce the computational burden,
which would otherwise have been prohibitive in the 1880's, by reducing the problem to a two{
variable one (midparent and son). But today computing power is so plentiful and cheap that one
can easily analyze the real four{variable problem, in which the heights of father, mother, son,
and daughter are all taken into account. Reformulate Galton's problem to take advantage of
this; what hypotheses about spreading and reversion might be considered and tested today? As
a class project, one might collect new data (perhaps on faster{breeding creatures like fruit{ies)
and write the computer program to analyze them and estimate the new spreading and reversion
coe�cients. Would you expect a similar program to apply to plants? Some have objected that
this problem is too biological for a physics class, and too mathematical for a biology class; we
suggest that, in a course dedicated to scienti�c inference in general, the class should include
both physicists and biologists, working together.

Twenty years later this same phenomenon of selection, drift, and spreading underlying equi-
librium was perceived independently by Einstein (1905) in physics. The steady thermal Boltzmann
distribution for molecules at temperature T to have energy E is exp(�E=kT ). Being exponential
in energies E = u+(mv2=2) where u(x) is potential energy, this is gaussian in particle velocities v .
This generates a time{dependent drift in position; a particle which is at position x at time t = 0
has at time t the conditional probability to be at y of

p(yjx; t) / exp

�
�(y � x)2

4Dt

�

from random drift alone, but this is countered by a steady drift e�ect of external forces F = �ru,
corresponding to Galton's reversion rate.

Although the details are quite di�erent, Galton's Eq. (7{47) is the logical equivalent of Ein-
stein's relation D = � kT connecting di�usion coe�cient D representing random spreading of
particles, with the temperature T and the mobility � (velocity per unit force) representing the
systematic reversion rate counteracting the di�usion. Both express the condition for equilibrium
as a balance between a \random spreading" tendency, and a systematic counter{drift that holds it
in check.

Population Dynamics and Darwinian Evolution

Galton's type of analysis can explain much more than biological equilibrium. Suppose the reversion
rate does not satisfy (7{47). Then the height distribution in the population will not be static, but
will change slowly. Or, if short people tend to have fewer children than do tall people, then the
average height of the population will drift slowly upward. Do we have here the mechanism for

y It is a currently popular theory among some economists that many economic processes, such as the stock
market, are very close to the unit root behavior, so that the e�ects of momentary external perturbations
like wars and droughts tend to persist instead of being corrected. For a discussion of this from a Bayesian
viewpoint, see Sims (1988).
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Darwinian evolution? The question could hardly go unasked, since Francis Galton was a cousin of
Charles Darwin.

A new feature of probability theory has appeared here, that is not evident in the works of
Laplace and Gauss. Being astronomers, their interests were in learning facts of astronomy and
telescopes were only a tool toward that end. The vagaries of telescopes themselves were for them
only `errors of observation' whose e�ects were to be eliminated as much as possible; and so the
sampling distribution was called by them an `error law'.

But a telescope maker might see it di�erently. For him, the errors it produces are the objects
of interest to study, and a star is only a convenient �xed object on which to focus his instrument for
the purpose of determining those errors. Thus a given data set might serve two entirely di�erent
purposes; one man's `noise' is another man's `signal'.

But then in any science the `noise' might prove to be not merely something to get rid of, but
the essential phenomenon of interest. It seems curious (at least, to a physicist) that this was �rst
seen clearly not in physics, but in biology. In the late Nineteenth Century many biologists saw it as
the major task confronting them to verify Darwin's theory of evolution by exhibiting the detailed
mechanism by which evolution takes place. For this purpose the journal Biometrika was founded
by Karl Pearson and Walter Frank Raphael Weldon, in 1901. It started (Volume 1, page 1) with
an editorial setting forth the journal's program, in which Weldon wrote:

\The starting point of Darwin's theory of evolution is precisely the existence of those di�erences between
individual members of a race or species which morphologists for the most part rightly neglect. The
�rst condition necessary, in order that a process of Natural Selection may begin among a race, or
species, is the existence of di�erences among its members; and the �rst step in an enquiry into the
possible e�ect of a selective process upon any character of a race must be an estimate of the frequency
with which individuals, exhibiting any degree of abnormality with respect to that character, occur."

He had here reached a very important level of understanding. Morphologists, thinking rather
like astronomers, considered individual variations as only `noise' whose e�ects must be eliminated
by averaging, in order to get at the signi�cant `real' properties of the species as a whole. Weldon,
learning well from the example of Galton, saw it in just the opposite light; those individual variations
are the engine that drives the process of evolutionary change, which will be reected eventually in
changes in the morphologist's averages. Indeed, without individual variations, the mechanism of
Natural Selection has nothing to operate on. So to demonstrate the mechanism of evolution at its
source, and not merely the �nal result, it is the distribution of individual variations that must be
studied.

Of course, at that time they had no conception of the physical mechanism of mutations induced
by radioactivity (much less by genetic recombination or errors in DNA replication), and they
expected that evolution would be found to take place gradually, via nearly continuous changes.y

Nevertheless, the program of studying the individual variations would be the correct one to �nd
the fundamental mechanism of evolution, whatever form it took. The scenario is somewhat like the
following:

Evolution of Humming{Birds and Flowers. Consider a population of humming{birds in
which the \noise" consists of a distribution of di�erent length beaks. The survival of birds is
largely a matter of �nding enough food; then a bird that �nds itself with the mutation of an
unusually long beak will be able to extract nectar from deeper owers. If such owers are available
it will be able to nourish itself and its babies better than others because it has a food supply not
available to other birds; so the long{beak mutation will survive and become a greater portion of
the bird population, in more or less the way Darwin imagined.

y The necessity for evolution to be particulate (by discrete steps) was perceived later by several people,
including R. A. Fisher (1930b). Evolutionary theory taking this into account and discarding the Lamarckian
notion of inheritance of acquired characteristics is often called Neo{Darwinism. However, the discrete steps
are usually small, so Darwin's notion of `gradualism' remains quite good pragmatically.
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But this inuence works in two directions; a bird is inadvertently fertilizing owers by carrying
a few grains of pollen from one to the next. A ower that happens to have the mutation of being
unusually deep will �nd itself sought out preferentially by long{beaked birds because they need
not compete with other birds for it. Therefore its pollen will be carried systematically to other
owers of the same species and mutation where it is e�ective, instead of being wasted on the
wrong species. As the number of long{beaked birds increases, deep owers thus have an increasing
survival advantage, ensuring that their mutation is present in an increasing proportion of the ower
population; and this in turn gives a still greater advantage to long{beaked birds; and so on. We
have a positive feedback situation.

Over millions of years, this back{and{forth reinforcement of mutations goes through hundreds
of cycles, resulting eventually in a symbiosis so specialized { a particular species of bird and a
particular species of ower that seem designed speci�cally for each other { that it appears to be
a miraculous proof of a guiding purpose in Nature, to one who does not think as deeply as did
Darwin and Galton.z Yet short{beaked birds do not die out, because birds patronizing deep owers
leave the shallow owers for them. By itself, the process would tend to an equilibrium distribution
of populations of short and long beaked birds, coupled to distributions of shallow and deep owers.
But if they breed independently, over long periods other mutations will take place independently
in the two types, and eventually they would be considered as belonging to two di�erent species.

Discussion. As noted, the role of \noise" as the mechanism driving a slow change in a system
was perceived independently by Einstein (of course, he knew about Darwin's theory, but we think
it highly unlikely that he would have known about the work of Galton or Weldon in Switzerland
in 1905). \Random" thermal uctuations caused by motion of individual atoms are not merely
`noise' to be averaged out in our predictions of mass behavior; they are the engine that drives

irreversible processes in physics , and eventually brings about thermal equilibrium. Today this is
expressed very speci�cally in the many \uctuation{dissipation theorems" of statistical mechanics,
which we derive in generality from the maximum entropy principle in Chapter 11. They generalize
the results of Galton and Einstein. The aforementioned Nyquist uctuation law was, historically,
the �rst such theorem to be discovered in physics.

The visions of Weldon and Einstein represented such a major advance in thinking that today,
some 100 years later, many have not yet comprehended them or appreciated their signi�cance in
either biology or physics. We still have biologists? who try to account for evolution by a quite

z The unquestioned belief in such a purpose pervades even producers of biological research products who
might be expected to know better. In 1993 there appeared in biological trade journals a full{page ad with a
large color photograph of a feeding hummingbird and the text: \Speci�c purpose. The sharply curved
bill of the white{tipped sickle{billed hummingbird is speci�cally adapted to probe the delicate tubular
owers of heliconia plants for the nectar on which the creature survives." Then this is twisted somehow
into a plug for a particular brand of DNA polymerase { said to be produced for an equally speci�c purpose.
This seems to us a dangerous line of argument; since the bird bills do not, in fact, have a speci�c purpose,
what becomes of the alleged purpose of the polymerase?
? For example, see Weber, et al , (1988). Here the trouble is that it goes in the wrong direction; if the
second law were the driving principle, evolution would proceed inexorably back to the primordial soup,
which has a much higher entropy than would any collection of living creatures that might be made from
the same atoms. This is easily seen as follows: What is the di�erence between a gram of living matter
and a gram of primordial soup made of the same atoms? Evidently, it is that the living matter is far
from thermal equilibrium, and it is obeying thousands of additional constraints on the possible reactions
and spatial distribution of atoms (from cell walls, osmotic pressures, etc.) that the primordial soup is not
obeying. But removing a constraint always has the e�ect of making a larger phase space available, thus
increasing the entropy. The primordial soup represents the thermal equilibrium, resulting from removal of
all the biological constraints; indeed, our present chemical thermodynamics is based on (derivable from)
the Gibbs principle that thermal equilibrium is the macrostate of maximum entropy subject to only the
physical constraints (energy, volume, mole numbers).
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unnecessary appeal to the second law of thermodynamics; and physicistsy who try to account for
the second law by appealing to quite unnecessary modi�cations in the equations of motion. The
operative mechanism of evolution is surely Darwin's original principle of natural selection and any
e�ects of the second law can only hinder it.z

Natural Selection is a process entirely di�erent from the second law of thermodynamics. The
purposeful intervention of man can suspend or reverse natural selection { as we observe in wars,
medical practice, and dog breeding { but it can hardly a�ect the second law. Furthermore, as
Professor Stephen J. Gould has emphasized, the second law always follows the same course, but
evolution in Nature does not. Whether a given mutation makes a creature more adaptable or less
adaptable to its environment depends on the environment; a mutation that is bene�cial in Brazil
might be fatal in Finland, and so the same actual sequence of mutations can result in entirely
di�erent creatures in di�erent enviromnents.

The remarkable { almost exact { analogy between the processes that bring about equilib-
rium in physics and in biology surely has other important implications, particularly for theories of
equilibrium in economics, not yet exploited. It seems likely, for example, that the `turbulence' of
individual variations in economic behavior is the engine that drives macroeconomic change toward
the equilibrium envisaged by Adam Smith. The existence of this turbulence was recognized by John
Maynard Keynes (1936), who called it `animal spirits' which cause people to behave erratically;
but he did not see in this the actual cause that prevents stagnation and moves the economy toward
equilibrium.

In the next level of understanding we see that Adam Smith's equilibrium is never actually
attained in the real world because of what a physicist would call `external perturbations', or an
economist `exogenous variables' which vary on the same time scale. That is, wars, droughts, taxes,
tari�s, bank reserve requirements, discount rates and other disturbances come and go on about the
same time scale as would the approach to equilibrium in a perfectly `calm' society. As we see it, this
is the basic reason why economic data are very di�cult to interpret; even if relevant and believable
data were easy to gather, the rules of the game and the conditions of play are changing constantly.
But we think that important progress can still be made by exploiting what is now known about
entropy and probability theory as logic.

Resolution of Distributions into Gaussians

The tendency of probability distributions to gravitate to the gaussian form suggests that we might
view the appearance of a gaussian, or `normal' frequency distribution as loose evidence (but far from
proof) that some kind of equilibrium has been reached. This view is also consistent with (but by no
means required by) the results of Galton and Einstein. In the �rst attempts to apply probability
theory in the biological and social sciences (for example, Quetelet, 1835, 1869) serious errors were
made through supposing �rstly that the appearance of a normal distribution in data indicates that
one is sampling from a homogeneous population, and secondly that any departure from normality
indicates an inhomogeneity in need of explanation. By resolving a non{normal distribution into
gaussians, Quetelet thought that one would be discovering the di�erent sub{species, or varieties,

y Several writers have thought that Liouville's theorem (conservation of phase volume in classicalmechanics
or untarity of time development in quantum theory) is in conict with the second law. On the contrary,
in Jaynes (1963b, 1965) we demonstrated that, far from being in conict, the second law is an immediate
elementary consequence of Liouville's theorem and in Jaynes (1989) we gave a simple application of this to
biology; calculation of the maximum theoretical e�ciency of a muscle.
z This is not to say that natural selection is the only process at work; random drift is still an operative cause
of evolution with or without subsequent selection. For an extensive discussion of the evidence and later
research e�orts by many experts, see the massive three{volume work Evolution After Darwin (Tax, 1960)
produced to mark the Centenary of the publication of Darwin's Origin of Species, or the more informal
work of Dawkins (1987).
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that were present in the population. If this were true reliably, we would indeed have a powerful tool
for research in many di�erent �elds. But later study showed that the situation is not that simple.

We have just seen how one aspect of it was corrected �nally by Galton (1886), in showing
that a normal frequency distribution by no means proves homogeneity; from (7{43) a gaussian
of width � can arise inhomogeneously { and in many di�erent ways { from the overlapping of
narrower gaussian distributions of various widths �1; �2 . But those sub{populations are in general
merely mathematical artifacts like the sine waves in a Fourier transform; they have no individual
signi�cance for the phenomenon unless one can show that a particular set of sub{populations has
a real existence and plays a real part in the mechanism underlying stability and change. Galton
was able to show this from his data by measuring those widths.

The second assumption, that non{normal distributions can be resolved into gaussian subdis-
tributions, turns out to be not actually wrong (except in a nit{picking mathematical sense); but
without extra prior information it is ambiguous in what it tells us about the phenomenon.

We have here an interesting problem, with many useful applications: is a nongaussian distribu-
tion explainable as a mixture of gaussian ones? Put mathematically, if an observed data histogram
is well described by a distribution g(y), can we �nd a mixing function f(x) � 0 such that g(y) is
seen as a mixture of gaussians:Z

'(y � xj�) f(x) dx= g(y) ; �1 � y � 1 (7{48)

Neither Quetelet nor Galton was able to solve this problem, and today we understand why. Math-
ematically, does this integral equation have solutions, or unique solutions? It appears from (7{46)
that we cannot expect unique solutions in general, for in the case of gaussian g(y), many di�erent
mixtures [many di�erent choices of a; �1; �2 ] will all lead to the same g(y). But perhaps if we
specify the width � of the gaussian kernel in (7{48) there is a unique solution for f(x).

Solution of such integral equations is rather subtle mathematically. We give two arguments;
the �rst depends on the properties of hermite polynomials and yields a class of exact solutions, the
second appeals to fourier transforms and yields an understanding of the more general situation.

Hermite Polynomial Solutions. The rescaled hermite polynomials Rn(x) may be de�ned by
the displacement of a gaussian distribution '(x), which gives the generating function:

'(x� a)
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or, solving for Rn , we have the Rodriguez form
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The �rst few of these polynomials are: R0 = 1; R1 = x; R2 = x2�1; R3 = x3�3x; R4 = x4�6x2+
3. The conventional hermite polynomials Hn(x) di�er only in scaling: Hn(x) = 2n=2Rn(x

p
2).

Multiplying (7{49) by '(x) exp(xb� b2=2) and integrating out x, we have the orthogonality
relation Z

1

�1

Rm(x)Rn(x)'(x) dx= n! �mn (7{51)

and in consequence these polynomials have the remarkable property that convolution with a gaus-
sian function reduces simply to Z

1

�1

'(y � x)Rn(x) dx = yn : (7{52)
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Therefore if g(y) is represented by a power series

g(y) =
X
n

an y
n (7{53)

we have immediately a formal solution of (7{48):

f(x) =
X
n

an�
nRn

�x
�

�
: (7{54)

Since the coe�cient of xn in Rn(x) is unity, the expansions (7{53) and (7{54) converge equally
well. So if g(y) is any polynomial or entire function (i.e. one representable by a power series (7{53)
with in�nite radius of convergence), the integral equation has the unique solution (7{54).

We can see the solution (7{54) a little more explicitly if we invoke the expansion of Rn ,
deducible from (7{49) by expanding exp(xa� a2=2) in a power series in x:
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where M = (n� 1)=2 if n is odd, M = n=2 if n is even. Then noting that
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we have the formal expansion
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An analytic function is di�erentiable any number of times, and if g(x) is an entire function this
will converge to the unique solution. If g(x) is a very smooth function, it converges very rapidly, so
the �rst two or three terms of (7{57) are already a good approximation to the solution. This gives
us some insight into the workings of the integral equation; as � ! 0, the solution (7{57) relaxes
into f(x) ! g(x), as it should. The �rst two terms of (7{57) are what would be called, in image
reconstruction, `edge detection'; for small � the solution goes into this. The larger � , the more the
higher order derivatives matter; that is, the more �ne details of the structure of g(y) contribute to
the solution. Intuitively, the broader the gaussian kernel, the more di�cult it is to represent �ne
structure of g(y) in terms of that kernel.

Evidently, we could continue this line of thought with much more analytical work, and it might
seem that the problem is all but solved; but now the subtlety starts. Solutions like (7{54) and (7{
57), although formally correct in a mathematical sense, ignore some facts of the real world; is f(x)
non{negative when g(y) is? Is the solution stable, a small change in g(y) inducing only a small
change in f(x)? What if g(x) is not an entire function but is piecewise continuous; for example,
rectangular?

Fourier Transform Relations. For some insight into these questions, let us look at the integral
equation from the fourier transform viewpoint. Taking the transform of (7{48) according to

F (k) �
Z

1

�1

f(x) eikx dx (7{58)
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(7{48) reduces to

exp

�
� k2�2

2

�
F (k) = G(k) (7{59)

which illustrates that the fourier transform of a gaussian function is another gaussian function, and
shows us at once the di�culty of �nding more general solutions than (7{54). If g(y) is piecewise
continuous, then as k ! 1, from the Riemann{Lebesgue lemma G(k) will fall o� only as 1=k .
Then F (k) must blow up violently, like exp(+k2�2=2)=k , and one shudders to think what the
function f(x) must look like (in�nitely violent oscillations of in�nitely high frequency?) If g(y)
is continuous, but has discontinuous �rst derivatives like a triangular distribution, then G(k) falls
o� as k�2 , and we are in a situation about as bad. Evidently, if g(y) has a discontinuity in any
derivative, there is no solution f(x) that would be acceptable in the physical problem. This is
evident also from (7{57); the formal solution would degenerate into in�nitely high derivatives of a
delta{function.

In order that we can interpret g(y) as a mixture of possible gaussians, f(x) must be non{
negative. But we must allow the possibility that the f(x) sought is a sum of delta-functions;
indeed, to resolve g(y) into a discrete mixture of gaussians g(y) =

P
aj '(x�xj) was the real goal

of Quetelet and Galton. If this could be achieved uniquely, their interpretation might be valid.
Then F (k) does not fall o� at all as k ! �1, so G(k) must fall o� as exp(� k2�2=2). In short, in
order to be resolvable into gaussians of width � with positive mixture function f(x), the function
g(y) must itself be at least as smooth as a gaussian of width � . This is a formal di�culty.

There is a more serious practical di�culty. If g(y) is a function determined only empirically,
we do not have it in the form of an analytic function; we have only a �nite number of approximate
values gi at discrete points yi . We can �nd many analytic functions which appear to be good
approximations to the empirical one. But because of the instability evident in (7{57) and (7{59)
they will lead to greatly di�erent �nal results f(x). Without a stability property and a criterion
for choosing that smooth function, we really have no de�nite solution in the sense of inversion of
an integral equation.?

In other words, �nding the appropriate mixture f(x) to account for an empirically determined
distribution g(y) is not a conventional mathematical problem of inversion; it is itself a problem

of inference, requiring the apparatus of probability theory . In this way, a problem in probability
theory can generate a hierarchy of sub{problems, each involving probability theory again but on a
di�erent level.

There is Hope After All. But following up this idea, the original goal of Quetelet has now been
very nearly realized by analysis of the integral equation as a problem of Bayesian inference instead
of mathematical inversion; and useful examples of analysis of real data by this have now been found.
Sivia and Carlile (1992) report the successful resolution of noisy data into as many as nine di�erent
gaussian components, representing molecular excitation lines, by a Bayesian computer program.y

? For other discussions of the problem, see Andrews & Mallows (1974); Titterington, et al , (1985).
y We noted already in Chapter 1 that most of the computer programs used in this �eld are only intuitive ad
hoc devices that make no use of the principles of probability theory; therefore in general they are usable in
some restricted domain, but they fail to extract all the relevant information from the data and are subject to
both the errors of hallucination and blunt perception. One commercial program for resolution into gaussians
or other functions simply reverts to empirical curve{�tting. It is advertised [Scienti�c Computing , July
1993, p. 15] with a provocative message, which depicts two scientists with the same data curve showing
two peaks; by hand drawing one could resolve it very crudely into two gaussians. The ad proclaims: \Dr.
Smith found two peaks � � � . Using [our program] Dr. Jones found three peaks � � � . Guess who got the
grant? We are encouraged to think that we can extract money from the Government by �rst allowing
the software company to extract $500 from us for this program, whose output would indeed be tolerable
for noiseless data. But it would surely degenerate quickly into dangerous, unstable nonsense as the noise
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We consider the theory of this in connection with the general spectrum/shape problem in Chapter
23.

It is hardly surprising that Quetelet and Galton could not solve this problem in the last
Century; but it is very surprising that today many scientists, engineers, and mathematicians still
fail to see the distinction between inversion and inference, and struggle with problems like this
that have no deductive solutions, only inferential ones. The problem is, however, very common in
current applications; it is known as a \generalized inverse" problem, and today we can give unique
and useful inferential solutions to many such problems by specifying the (essential, but hitherto
unmentioned) prior information to be used.

This suggests another interesting mathematical problem; for a given entire function g(y), over
what range of � is the solution (7{54) nonnegative? There are some evident clues; when � ! 0,
we have '(x�yj�)! �(x�y) and so as noted above, f(x)! g(x), so for � su�ciently small f(x)
will be nonnegative if g(y) is. But when � ! 1 the gaussians in (7{48) become very broad and
smooth; and so if f(x) is nonnegative, the integral in (7{48) must be at least as broad. Thus when
g(y) has detailed structure on a scale smaller than � , there can be no solution with nonnegative
f(x); and it is not obvious whether there can be any solution at all.

Exercise 7.7. From the above arguments one would conjecture that there will be some upper
bound �max such that the solution f(x) is nonnegative when and only when 0 � � < �max . It
will be some functional �max[g(y)] of g(y). Prove or disprove this conjecture; if it is true, give
a verbal argument by which we could have seen this without calculation; if it is false, give a
speci�c counter{example showing why. It appears that (7{57) might be useful in this endeavor.

But this suggests that the original goal of Quetelet and Galton was ambiguous; any su�ciently
smooth nongaussian distribution may be generated by many di�erent superpositions of di�erent
gaussians of di�erent widths. Therefore a given set of sub{populations, even if found mathemati-
cally, would have little biological signi�cance unless there were additional prior information pointing
to gaussians of that particular width � as having a \real" existence and playing some active role
in the phenomena. Of course, this caveat applies equally to the aforementioned Bayesian solution;
but Sivia and Carlile did have that prior information.

COMMENTS

Terminology Again. As we are obliged to point out so often, this �eld seems to be cursed more
than any other with bad and misleading terminology which seems impossible to eradicate. The
Electrical Engineers have solved this problem very e�ectively; every few years an O�cial Committee
issues a Revised Standard Terminology, which is then enforced by editors of their journals (witness
the meek acceptance of the change from `megacycles' to `megahertz' which was accomplished almost
overnight a few years ago).

In probability theory there is no Central Authority with the power to bring about dozens of
needed reforms, and it would be self{defeating for any one author to try to do this by himself; he
would only turn away readers. But we can o�er tentative suggestions in the hope that others may
see merit in them.

The literature gives conicting evidence about the origin of the term \Normal distribution".
Karl Pearson (1920) claimed to have introduced it \many years ago", in order to avoid an old
dispute over priority between Gauss and Legendre; but he gave no reference. Hilary Seal (1967)
attributes it instead to Galton; but again fails to give a reference, so it would require a new historical
study to decide this. However, the term had long been associated with the general topic: given a

level increases. The problem is not, basically, one of inversion or curve �tting; it is a problem of inference.
A Bayesian inference program like those of Bretthorst (1988) will continue to return the best resolution
possible from the data and the model, without instability, whatever the noise level.
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linear model y = X�+e where the vector y and the matrix X are known, the vector of parameters
� and the noise vector e unknown, Gauss (1823) called the system of equations X 0X�̂ = X 0y ,

which give the least squares parameter estimates �̂ , the \normal equations" and the ellipsoid of
constant probability density was called the \normal surface." It appears that somehow the name
got transferred from the equations to the sampling distribution that leads to those equations.

Presumably, Gauss meant \normal" in its mathematical sense of \perpendicular" expressing
the geometric meaning of those equations. The minimum distance from a point (the estimate) to a
plane (the constraint) is the length of the perpendicular. But, as Pearson himself observes, the term
\normal distribution" is a bad one because the common colloquial meaning of `normal' is standard
or sane, implying a value judgment. This leads many to think { consciously or subconsciously { that
all other distributions are in some way abnormal.

Actually, it is quite the other way; it is the so{called `normal' distribution that is abnormal
in the sense that it has many unique properties not possessed by any other. Almost all of our
experience in inference has been with this abnormal distribution, and much of the folklore that we
must counter here was acquired as a result. For decades, workers in statistical inference have been
misled, by that abnormal experience, into thinking that methods such as con�dence intervals, that
happen to work satisfactorily with this distribution, should work as well with others.

The alternative name \gaussian distribution" is equally bad for a di�erent reason, although
there is no mystery about its origin. Stigler (1980) sees it as a general law of eponymy that no
discovery is named for its original discoverer . Our terminology is in excellent compliance with
this law, since the fundamental nature of this distribution and its main properties were noted by
Laplace when Gauss was six years old; and the distribution itself had been found by de Moivre
before Laplace was born. But as we noted, the distribution became popularized by the work of
Gauss (1809) who gave a derivation of it that was simpler than previous ones and seemed very
compelling intuitively at the time. This is the derivation that we gave above, Eq. (7{15), and
which resulted in his name becoming attached to it.

The term \Central distribution" would avoid both of these objections while conveying a correct
impression; it is the �nal `stable' or `equilibrium' distribution toward which all others gravitate
under a wide variety of operations (large number limit, convolution, stochastic transformation,
etc.) and which, once attained, is maintained through an even greater variety of transformations,
some of which are still unknown to statisticians because they have not yet come up in their problems.

For example, in the 1870's Ludwig Boltzmann gave a compelling, although heuristic, argument
indicating that collisions in a gas tend to bring about a \Maxwellian" or Gaussian, frequency
distribution for velocities. Then Kennard (1936, Chap. 3) showed that this distribution, once
attained, is maintained automatically, without any help from collisions, as the molecules move
about, constantly changing their velocities, in any conservative force �eld [that is, forces f(x)
derivable from a potential �(x) by gradients: f(x) = �r�(x)]. Thus this distribution has stability
properties considerably beyond anything yet utilized by statisticians, or yet demonstrated in the
present work.

While venturing to use the term `Central Distribution' in a cautious, tentative way, we continue
to use also the bad but traditional terms, preferring \gaussian" for two reasons. Ancient questions
of priority are no longer of interest; far more important today, \gaussian" does not imply any
value judgment. Use of emotionally loaded terms appears to us a major cause of the confusion
in this �eld, causing workers to adhere to principles with noble{sounding names like `unbiased' or
`admissible' or `uniformly most powerful', in spite of the nonsensical results they can lead us to in
practice. But also, we are writing for an audience that includes both statisticians and scientists.
Everybody understands what \Gaussian distribution" means; but only statisticians are familiar
with the term \Normal distribution".

The fundamental Boltzmann distribution of statistical mechanics, exponential in energies, is
of course Gaussian or Maxwellian in particle velocities. The general central tendency of probabil-
ity distributions toward this �nal form is now seen as a consequence of their maximum entropy
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properties (Chapter 11). If a probability distribution is subjected to some transformation that
discards information but leaves certain quantities invariant, then under very general conditions, if
the transformation is repeated, the distribution tends to the one with maximum entropy subject
to the constraints of those conserved quantities.

This brings us to the term \Central Limit Theorem" which we have derived as a special case of
the phenomenon just noted { the behavior of probability distributions under repeated convolutions,
which conserve �rst and second moments. This name was introduced by George P�olya (1920),
with the intention that the adjective `central' was to modify the noun `theorem'; i.e. it is the
limit theorem which is central to probability theory. Almost universally, students today think that
`central' modi�es `limit', so that it is instead a theorem about a `central limit ', whatever that
means.y

But in view of the equilibrium phenomenon, it appears that P�olya's choice of words was after
all fortunate in a way that he did not foresee. Our suggested terminology takes advantage of this;
looked at in this way, the terms `Central distribution' and `Central limit theorem' both convey the
right connotations to one hearing them for the �rst time. One can read `Central limit' as meaning
a limit toward a central distribution, and will be invoking just the right intuitive picture.

The Great Inequality of Jupiter and Saturn

An outstanding problem for 18'th Century science was noted by Edmund Halley in 1676. Observa-
tion showed that the mean motion of Jupiter (30.35 degrees per year) was slowly accelerating, that
of Saturn (12.22 deg/yr) decelerating. But this was not just a curiosity for astronomers; it meant
that Jupiter was drifting closer to the sun, Saturn farther away. If this trend were to continue
inde�nitely, then eventually Jupiter would fall into the sun, carrying with it the earth and all the
other inner planets. This seemed to prophesy the end of the world { and in a manner strikingly
like the prophesies of the Bible.

Understandably, this situation was of more than ordinary interest, and to more people than
astronomers. Its resolution called forth some of the greatest mathematical e�orts of 18'th Century
savants, either to con�rm the coming end; or preferably to show how the Newtonian laws would
eventually put a stop to the drift of Jupiter and save us.

Euler, Lagrange, and Lambert made heroic attacks on the problem without solving it. We
noted above how Euler was stopped by a mass of overdetermined equations; 75 simultaneous but
inconsistent equations for 8 unknown orbital parameters. If the equations were all consistent, he
could choose any eight of them and solve (this would still involve inversion of an 8 � 8 matrix),
and the result would be the same whatever eight he chose. But the observations all had unknown
errors of measurement, and so there were�

75

8

�
' 1:69� 1010

possible choices. There are over sixteen billion di�erent sets of estimates for the parameters, with
apparently nothing to choose between them.? At this point, Euler managed to extract reasonably
good estimates of two of the unknowns (already an advance over previous knowledge); and simply
gave up on the others. For this work (Euler, 1749) he won the French Academy of Sciences prize.

y The confusion does not occur in the original German, where P�olya's words were: �Uber den zentralen

Grenzwertsatz der Wahrscheinlichkeitsrechnung , an interesting example where the German habit of invent-
ing compound words removes an ambiguity in the literal English rendering.
? Our algorithm for this in Chapter 19 [Eq's (19{24), (19{37)] actually calculates a weighted average over
all these billions of estimates; but in a manner so e�cient that one is unaware of this. What probability
theory determines for us { and what Euler and Daniel Bernoulli never comprehended { is the optimal
weighting coe�cients in this average, leading to the greatest possible reliability for the estimate and the
accuracy claims.
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The problem was �nally solved in 1787 by one who was born that same year. Laplace (1749{
1827) \saved the world" by using probability theory to estimate the parameters accurately enough
to show that the drift of Jupiter was not secular after all; the observations at hand had covered
only a fraction of a cycle of an oscillation with a period of about 880 years. This is caused by an
\accidental" near resonance in their orbital periods:

2� (period of Saturn) ' 5� (period of Jupiter)

Indeed, from the above mean motion data we have

2� 360

12:22
= 58:92 yr ; 5� 360

30:35
= 59:32 yr :

In the time of Halley their di�erence was only about 0:66 percent and decreasing.
So long before it became a danger to us, Jupiter indeed reversed its drift as predicted, and

is returning to its old orbit. Presumably, Jupiter and Saturn have repeated this seesaw game
several million times since the solar system was formed. The �rst half{cycle of this oscillation to
be observed by man will be completed in about the year 2012.



cc08m, 7/27/95

CHAPTER 8

SUFFICIENCY, ANCILLARITY, AND ALL THAT

In the last �ve Chapters we have examined the use of probability theory in problems that, although
elementary technically, illustrated a fairly good sample of typical current applications. Now we are
in a position to look back over these examples and note some interesting features that they have
brought to light. It is useful to understand these features, for tactical reasons. Many times in the
past when one tried to conduct inference by applying intuitive ad hoc devices instead of probability
theory, they would not work acceptably unless some of these special circumstances were present,
and others absent. Thus they were of major theoretical importance in orthodox statistics, although
that theory was never developed far enough to give a real understanding.

However, none of the material of the present Chapter is really needed in our applications; for
us, these are incidental details that take care of themselves as long as we obey the rules. That is,
if we merely apply the rules derived in Chapter 2, strictly and consistently in every problem, they
lead us to do the right thing and arrive at the optimal inferences for that problem automatically,
without our having to take any special note of these things. For us, they have rather a \general
cultural value" in helping us to understand better the inner workings of probability theory, and the
predictable consequences of failure to obey the Chapter 2 rules.

Su�ciency

In our examples of parameter estimation, probability theory sometimes does not seem to use all the
data that we o�er it. In Chapter 6 when we estimated the parameter � of a binomial distribution
from data on n trials, the posterior pdf for � depended on the data only through the number n of
trials and the number r of successes; all information about the order in which success and failure
occurred was ignored. With a rectangular sampling distribution in � � x � �, the joint posterior
pdf for �; � used only the extreme data values (xmin; xmax) and ignored the intermediate data.

Likewise, in Chapter 7, with a Gaussian sampling distribution and a data set D � fx1 � � �xng,
the posterior pdf for the parameters �; � depended on the data only through n and their �rst two
moments (�x; x2; n). The (n � 2) other properties of the data convey a great deal of additional
information of some kind; yet probability theory ignored them.

Is probability theory failing to do all it could here? No, the proofs of Chapter 2 have precluded
that possibility; the rules being used are the only ones that can yield unique answers while agreeing
with the qualitative desiderata. It seems, then, that the unused parts of the data must be irrelevant
to the question we are asking.y But can probability theory itself con�rm this conjecture for us in
a more direct way?

This introduces us to a quite subtle theoretical point about inference. Special cases of the
phenomenon were noted by Laplace [Theorie analytique, 1824 edition, Supp. V]. It was general-
ized and given its present name 100 years later by R. A. Fisher (1922), and its signi�cance for
Bayesian inference was noted by Je�reys (1939). Additional understanding of its role in inference
was achieved only recently, in the resolution of the `Marginalization Paradox' discussed in Chapter
15.

y Of course, when we say that some information is `irrelevant' we mean only that we don't need it for our

present purpose; it might be crucially important for some other purpose what we shall have tomorrow.
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If certain aspects of the data are not used when they are known, then presumably it would not
matter (we should come to the same �nal conclusion) if they were unknown. Thus if the posterior
pdf for a parameter � is found to depend on the data D = fx1 � � �xng only through a function
s(x1 � � �xn) (call it `property S'), then it seems plausible that given s alone we should be able to
draw the same inferences about �. If we could demonstrate this, it would con�rm that the unused
parts of the data were indeed irrelevant in the sense just conjectured.

With a sampling density function p(x1 � � �xnj�) and prior p(�jI) = f(�), the posterior pdf using
all the data is

p(�jD; I) = h(�jD) =
f(�) p(x1 � � �xnj�)R

d�0 f(�0) p(x1 � � �xnj�0)
(8{1)

Note that we are not assuming independent or exchangeable sampling here; the sampling pdf need
not factor in the form p(x1 � � �xnj�) = �i p(xij�) and the marginal probabilities p(xij�) = ki(xi; �)
and p(xj j�) = kj(xj ; �) need not be the same function. Now carry out a change of variables
(x1 � � �xn)! (y1 � � �yn) in the sample space Sx, such that y1 = s(x1 � � �xn), and choose (y2 � � �yn)
so that the jacobian

J =
@(y1 � � �yn)
@(x1 � � �xn)

(8{2)

is bounded and nonvanishing everywhere on Sx. Then the change of variables is a 1:1 mapping of
Sx onto Sy , and the sampling density

g(y1 � � �ynj�) = J�1 p(x1 � � �xnj�) (8{3)

may be used just as well as p(x1 � � �xnj�) in the posterior pdf :

h(�jD) =
f(�) g(y1 � � �ynj�)R

d�0 f(�0) g(y1 � � �ynj�0)
(8{4)

since the jacobian, being independent of �, cancels out.

Then property S is the statement that for all � 2 S� , (8{4) is independent of (y2 � � �yn). Writing
this condition out as derivatives set to zero, we �nd that it de�nes a set of n�1 simultaneous integral
equations (actually, only orthogonality conditions) that the prior f(�) must satisfy:

Z
S�

Ki(�; �
0) f(�0) d�0 = 0 ;

(
� 2 S�

2 � i � n

)
(8{5)

where the ith kernel is

Ki(�; �
0) � g(yj�) @g(yj�

0)

@yi
� g(yj�0) @g(yj�)

@yi
(8{6)

and we used the abbreviation y � (y1 � � �yn), etc. It is antisymmetric: Ki(�; �0) = �Ki(�0; �).
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Fisher Su�ciency

If (8{5) holds only for some particular prior f(�), then Ki(�; �
0) need not vanish; in its dependence

on �0 it needs only to be orthogonal to that particular function. But if, as Fisher required, (8{5)
is to hold for all f(�), then Ki(�; �

0) must be orthogonal to a complete set of functions f(�0); thus
zero almost everywhere for (2 � i � n). Noting that the Kernel may be written in the form

Ki(�; �
0) = g(yj�) g(yj�0) @

@yi
log

�
g(yj�0)
g(yj�)

�
; (8{7)

this condition may be stated as: given any (�; �0), then for all possible samples [that is, all values of
fy1 � � �yn; �; �0g for which g(yj�) g(yj�0) 6= 0], the ratio [g(yj�0)=g(yj�)] must be independent of the
components (y2 � � �yn). Thus to achieve property S independently of the prior, g(yj�) must have
the functional form

g(y1 � � �ynj�) = q(y1j�)m(y2 � � �yn) : (8{8)

Integrating (y2 � � �yn) out of (8{8), we see that the function denoted by q(y1j�) is, to within a
normalization constant, the marginal sampling pdf for y1.

Transforming back to the original variables, Fisher su�ciency requires that the sampling pdf

has the form

p(x1 � � �xnj�) = p(sj�) b(x1 � � �xn) (8{9)

where p(sj�) is the marginal sampling density for s(x1 � � �xn).
Eq. (8{9) was given by Fisher (1922). If a sampling distribution factors in the manner (8{

8), (8{9), then the sampling pdf for (y2 � � �yn) is independent of �. This being the case, he felt
intuitively that the values of (y2 � � �yn) can convey no information about �; full information should
be conveyed by the single quantity s, which he then termed a su�cient statistic. But Fisher's
reasoning was only a conjecture referring to a sampling theory context. We do not see how it
could be proved in that limited context, which made no use of the concepts of prior and posterior
probabilities.

Probability theory as logic can demonstrate this property directly without any need for con-
jecture. Indeed, using (8{9) in (8{1), the function b(x) cancels out and we �nd immediately the
relation

h(�jD) / f(�) p(sj�) : (8{10)

Thus if (8{10) holds, then s(x1 � � �xn) is a su�cient statistic in the sense of Fisher, and in Bayesian
inference with the assumed model (8{1), knowledge of the single quantity s does indeed tell us
everything about � that is contained in the full data set (x1 � � �xn); and this will be true for all
priors f(�).

The idea generalizes at once to more variables. Thus, if the sampling distribution factors in
the form g(y1 � � �ynj�) = h(y1; y2j�)m(y3 � � �yn), we would say that y1(x1 � � �xn) and y2(x1 � � �xn)
are jointly su�cient statistics for � and in this, � could be multidimensional. If there are two
parameters �1; �2 such that there is a coordinate system fyig in which

g(y1 � � �ynj�1; �2) = h(y1j�1) k(y2j�2)m(y3 � � �yn) (8{11)

then y1(x1 � � �xn) is a su�cient statistic for �1, and y2 is a su�cient statistic for �2; and so on.
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Fisher su�ciency was of major importance in orthodox (non{Bayesian) statistics, because it
had so few criteria for choosing an estimator. It had, moreover, a fundamental status lacking in
other criteria because for the �rst time, the notion of information appeared in orthodox thinking.
If a su�cient statistic for � exists, it is hard to justify using any other for inference about �. From
a Bayesian standpoint one would be, deliberately, throwing away some of the information in the
data, that is relevant to the problem.z

The Blackwell { Rao Theorem: Arguments in terms of information content had almost no
currency in orthodox theory, but a theorem given by D. Blackwell and C. R. Rao lackwell, Davidin
the 1940's did establish a kind of theoretical justi�cation for the use of su�cient statistics in
orthodox terms. Let s(x1 � � �xn) be a Fisher su�cient statistic for �, and �(x1 � � �xn) any proposed
estimator for �. By (8{9) the joint pdf for the data conditional on s:

p(x1 � � �xnjs; �) = b(x)p(sjx; �) = b(x)�(s� s(x)) (8{12)

is independent of �. Then the conditional expectation

�0(s) � h�js; �i = E(�js; �) (8{13)

is also independent of �, so �0 is a function only of the xi, and so is itself a conceivable estimator
for �, which depends on the observations only through the su�cient statistic: �0 = E(�js). The
theorem is then that the `quadratic risk' R(�; �) � E[(�� �)2j�] satis�es the inequality

R(�; �0) � R(�; �) ; (8{14)

for all �. If R(�; �) is bounded, there is equality if and only if �0 = �; that is, if � itself depends
on the data only through the su�cient statistic s.

In other words, given any estimator � for �, if a su�cient statistic s exists, then we can �nd
another estimator �0 that achieves a lower or equal risk and depends only on s. Thus the best
estimator we can �nd by the criterion of quadratic risk will always depend on the data only through
s. A proof is given by M. H. deGroot (1986, p. 373); the orthodox notion of risk is discussed further
in Chapters 13, 14. But if a su�cient statistic does not exist, orthodox estimation theory is in real
trouble as we shall see.eGroot, M. H.

This argument is not compelling to a Bayesian, because the criterion of risk is a purely
sampling{theory notion that ignores prior information. But Bayesians have a far better justi�-
cation for using su�cient statistics; it is straightforward mathematics, evident from (8{9), (8{10)
that if a su�cient statistic exists, Bayes' theorem will lead us to it automatically, without our
having to take any particular note of the idea. Indeed, far more is true: from the proofs of Chapter
2, Bayes' theorem will lead us to the optimal inferences? whether or not a su�cient statistic exists.
So for us, su�ciency is not a fundamental or essential theoretical consideration; only a pleasant
convenience, a�ecting the amount of computation but not the quality of the inference.

z This rather vague statement becomes a de�nite theorem when where we learn that if we measure infor-

mation in terms of entropy, then zero information loss in going from the full data set D to a statistic s is

equivalent to su�ciency of s. The beginnings of this appeared long ago, in the Pitman{Koopman theorem

(1936); we give a modern version in Chapter 11.
? That is, optimal in the aforementioned sense that no other procedure can yield unique results while

agreeing with our desiderata.
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Generalized Su�ciency

However, what Fisher could not have realized because of his failure to use priors, is that the proviso
for all priors is essential here. Fisher su�ciency, Eq. (8{9), is the strong condition, necessary to
achieve property S independently of the prior. But what was realized only recently is that property
S may hold under weaker conditions, that depend on which prior we assign. Thus the notion of
su�ciency, which originated in Bayesian considerations, actually has a wider meaning in Bayesian
inference than in sampling theory.

To see this, note that since the integral equations (8{5) are linear, we may think in terms of
linear vector spaces. Let the class of all priors span a function space (Hilbert space) H of functions
on the parameter space S� . If property S holds only for some subclass of priors f(�) 2 H 0 that
span a subspace H 0 � H , then in (8{5) it is required only that the projection of Ki(�; �

0) onto that
subspace vanishes. Then Ki(�; �

0) may be an arbitrary function on the complementary function
space (H �H 0) of functions orthogonal to H 0.

This new understanding is that, for some priors, it is possible to have `e�ective su�cient
statistics' even though a su�cient statistic in the sense of Fisher does not exist. Given any speci�ed
function s(x1 : : : xn) and sampling density p(x1 : : : xnj�), this determines a kernel Ki(�; �

0) which
we may construct by the above relations. If this kernel is incomplete [i.e. as (�; i) vary over
their range, it does not span the entire function space S�0 ], then the set of simultaneous integral
equations (8{46) has nonvanishing solutions. If there are nonnegative solutions, they will determine
a subclass of priors for which s would play the role of a su�cient statistic.

Then the possibility seems open that for di�erent priors, di�erent functions s(x1 : : :xn) of the
data may take on the role of su�cient statistics. This means that use of a particular prior may

make certain particular aspects of the data irrelevant. Then a di�erent prior may make di�erent

aspects of the data irrelevant . One who is not prepared for this may think that a contradiction or
paradox has been found.

Therefore, in Bayesian inference it is important to understand these integral equations: are
they expressing trivialities, dangerous pitfalls that need to be understood; or useful new capa-
bilities for Bayesian inference, which Fisher and Je�reys never suspected? To show that we are
not just speculating about an empty case, note that we have already seen an extreme example
of this phenomenon, in the strange properties that use of the binomial monkey prior had in Urn
sampling (Chapter 6); it made all of the data irrelevant, although with other priors all of the data
were relevant. Let us seek a better understanding through a few more speci�c examples of this
phenomenon.

First, let us transform the above relations back into the x� coordinates. Substituting (8{3) into
(8{7), the Jacobian cancels out of the logarithm term. Then the derivative transforms according
to

@

@yi
=

nX
j=1

@xj

@yi

@

@xj
(8{a)

and we note for later purposes that the derivatives appearing in J and J�1 are reciprocal matrices:

nX
j=1

@xj

@yi

@yk

@xj
= �ik : (8{z )

Now we have

Ki(�; �
0) = J�2 p(xj�) p(xj�0)

X
j

@xj

@yi

@

@xj
log

p(xj�)
p(xj�0) (8{b)
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and in the integral equation (8{5) any common factor independent of �0 and nonzero may be
dropped; so the necessary and su�cient condition for y1 to be an e�ective su�cient statistic for �
with the prior f(�), is the system of integral equations

Z
p(xj�0)

X
j

@xj

@yi

@

@xj
log

p(xj�0)
p(xj�) f(�

0) d�0 = 0 ; 2 � i � n (8{c )

******************* MORE HERE! *********************

We have seen that Fisherian su�cient statistics exist for the binomial, rectangular, and Gaus-
sian sampling distributions. But consider the Cauchy distribution

p(x1 � � �xnj�; I) =
nY
i=1

1

�

1

1 + (xi � �)2
(8{19)

This does not factor in the manner (8{9), and so there is no Fisher su�cient statistic. With a
Cauchy sampling distribution, it appears that no part of the data is irrelevant; every scrap of it is
used in Bayesian inference, and it makes a di�erence in our inferences about � (that is, in details
of the posterior pdf for �).

*************************** MORE HERE! ****************************

Su�ciency Plus Nuisance Parameters

In the above the parameter � might have been multidimensional, and the same general arguments
would go through in the same way. The question becomes much deeper if we now suppose that
there are two parameters �; � in the problem, but we are not interested in �, so for us the question of
su�ciency concerns only the marginal posterior pdf for �. Factoring the prior p(�; �jI) = f(�) g(�j�),
we may write the desired posterior pdf as

h(�jD) =

R
d� p(�; �) f(x1 � � �xnj�; �)R R
d�d� p(�; �) f(x1 � � �xnj�; �)

=
f(�)F (x1 � � �xnj�)R
d�f(�)F (x1 � � �xnj�)

(8{20)

where

F (x1 � � �xnj�) �
Z
d� p(�j�; I) f(x1 � � �xnj�; �) (8{21)

Since this has the same mathematical form as (8{1), the steps (8{5) { (8{9) may be repeated and the
same result must follow; given any speci�ed p(�j�; I) for which the integral (8{21) converges, if we
then �nd that the marginal distribution for � has property S for all priors f(�), then F (x1 � � �xnj�)
must factorize in the form

F (x1 � � �xnj�) = F �(rj�)B(x1 � � �xn) (8{22)

But the situation is entirely di�erent because F (x1 � � �xnj�) no longer has the meaning of a sampling
density, being a di�erent function for di�erent priors p(�j�; I). Now fF; F �; Bg are all functionals
of p(�j�; I).y

**************** MORE HERE! TO DO: ******************

y In orthodox statistics F �(rj�)would be interpreted as the sampling density to be expected in a compound

experiment in which � is held �xed but � is varied at random from one trial to the next, according to the

distribution p(�j�; I).
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A Cauchy distribution has no Fisherian su�cient statistic. Is there a class of priors for which
it has a conditional su�cient statistic after all?

What is the most general prior for which
P

x2i is a su�cient statistic?

What is the most general prior for which x21 � x22 is a su�cient statistic?

What is the most general sampling distribution for which
P

x2i is a su�cient statistic?

What is the most general sampling distribution for which xmax; xmin, the maximum and
minimum observed values, are jointly su�cient statistics?

What is the most general sampling distribution for which x2 � n�1
P

x2i and �x � n�1
P

xi
are jointly su�cient statistics?

The Likelihood Principle

In applying Bayes' theorem the posterior pdf for a parameter � is always a product of a prior p(�jI)
and a likelihood function L(�) / p(Dj�; I); the only place where the data appear is in the latter.
Therefore it is manifest that

Within the context of the assumed model, the likelihood function L(�) from dataD contains
all the information about � that is contained in D.

For us, this is an immediate and mathematically trivial consequence of the product rule of prob-
ability theory, and is no more to be questioned than the multiplication table. But for those who
think of probability as a physical phenomenon arising from `randomness' rather than a carrier of
incomplete information, the above statement { since it involves only the sampling distribution {
has a meaning independent of the product rule and Bayes' theorem. They call it the \Likelihood
Principle", and its status as a valid principle of inference has been the subject of long controversy,
still continuing today.

An elementary argument for the principle, given by George Barnard (1947), is that irrelevant
data ought to cancel out of our inferences. He stated it thus: Suppose that in addition to obtaining
the data D we ip a coin and record the result Z = H or T . Then the sampling probability for all
our data becomes, as Barnard would have written it,

p(DZj�) = p(Dj�) p(Z) (8{23)

Then he reasoned that, obviously, the result of a coin ip can tell us nothing more about the
parameter � beyond what the data D have to say; and so inference about � based on DZ ought to
be exactly the same as inference based on D alone. From this he drew the conclusion that constant
factors in the likelihood must be irrelevant to inferences; that is, inferences about � may depend
only on the ratios of likelihoods for di�erent values:

L1

L2
=

p(DZj�1I)
p(DZj�2I)

=
p(Dj�1I)
p(Dj�2I)

(8{24)

which are the same whether Z is or is not included. This is commonly held to be the �rst statement
of the likelihood principle by an orthodox statistician, but not all found it convincing.

Alan Birnbaum (1962) gave the �rst attempted \proof" of the likelihood principle to be gener-
ally accepted by orthodox statisticians. From the discussion following his paper we see that many
regarded this as a major historical event in statistics. He again appeals to coin tossing, but in
a di�erent way, through the principle of Fisher su�ciency plus a \conditionality principle" which
appeared to him more primitive:

Conditionality Principle: Suppose we can estimate � from either of two experiments, E1

and E2. If we ip a coin to decide which to do, then the information we get about �
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should depend only on the experiment that was actually performed. That is, recognition
of an experiment that might have been performed but was not, cannot tell us anything
about �.

But Birnbaum's argument was not accepted by all orthodox statisticians, and even Birnbaum
himself seems to have had later doubts. Kempthorne & Folks (1974) and Fraser (1980) continued
to attack the likelihood principle and deny its validity. R. A. Fisher had accepted the likelihood
principle long before, but he continued to denounce the use of Bayes' theorem on the ideological
grounds that we, like Harold Je�reys, do not require all our probabilities (or indeed, any of them)
to be frequencies in any `random experiment'. For much further discussion, see Edwards (1974),
or Berger & Wolpert (1988). The issue becomes even more complex and confusing in connection
with the notion of ancillarity, discussed below.

Indeed, coin ip arguments cannot be accepted unconditionally if they are to be taken literally;
particularly by a physicist who is aware of all the complicated things that happen in real coin ips,
as described in Chapter 10. If there is any logical connection between � and the coin so that
knowing � would tell us anything about the coin ip, then knowing the result of the coin ip must
tell us something about �. For example, if we are measuring the gravitational �eld by the period of
a pendulum, but the coin is tossed in that same gravitational �eld there is a clear, if rather loose,
logical connection. Both Barnard's argument and Birnbaum's conditionality principle contain an
implicit hidden assumption that this is not the case. Presumably, they would reply that without
saying so explicitly, they really meant \coin ip" in a more abstract sense of some binary experiment
totally detached from � and the means of measuring it; but then, the onus was on them to de�ne
exactly what that binary experiment was, and they never did this.

In our view this line of thought takes us o� into an in�nite regress of irrelevancies; in our
system the likelihood principle is already proved directly from the product rule of probability
theory, independently of all considerations of coin ips or any other logically independent auxiliary
experiment.

But it is important to note that the likelihood principle, like the likelihood function, refers
only to the context of a speci�ed model which is not being questioned ; seen in a wider context,
this function may or may not contain all the information in the data that we need to make the
best estimate of �, or to decide whether to take more data or stop the experiment now. Is there
additional external evidence that the apparatus is deteriorating? Or, is there reason to suspect
that our model may not be correct? Perhaps a new parameter � is needed. But to claim that the
need for additional information like this is a refutation of the likelihood principle, is only to display
a misunderstanding of what the likelihood principle is.

****************** MORE TO COME HERE! *************

E�ect of Nuisance Parameters

So now we need to investigate what probability theory has to say about the complication of extra
parameters. Let there be a nuisance parameter � (possibly multidimensional) which is common to
both experiments, but which could have di�erent values in them. Then our conclusion from the
�rst experiment would become

p(H jAI) =
Z

d�p(H�jAI) =
Z
d�p(H j�AI) p(�jAI) = a???

************************* MORE COMING! *********************
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Use of Ancillary Information

The idea of auxiliary coin ips can, however, be generalized to a constructive and useful principle.
If we have a record of any quantity z that is known to be correlated with, or otherwise logically
related to, either the noise or the parameters, we can use this extra information to improve our
estimates of both the noise and the parameters. A special case was noted by R. A. Fisher (1934),
who coined the term \ancillary statistic" for z. Let

� = parameters (interesting or uninteresting)

E = e1; � � � ; en; noise

D = d1; � � � ; dn; data

di = f(ti; �) + ei; model

(8{25)

But now we add

Z = z1; � � � ; zm ancillary data : (8{26)

We want to estimate � from the posterior pdf , p(�jD;Z; I), and direct application of Bayes' theorem
gives

p(�jDZI) = p(�jI) p(DZj�I)
p(DZjI) (8{27)

in which Z appears as part of the data. But now we suppose that Z has, by itself, no direct
relevance to �:

p(�jZ; I) = p(�jI) (8{28)

This is the essence of what Fisher meant by the term \ancillary", although his ideology did not
permit him to state it this way (since he admitted only sampling distributions, he was obliged to
de�ne all properties in terms of sampling distributions). He would say instead that ancillary data
have a sampling distribution independent of �:

p(Zj�; I) = p(ZjI) (8{29)

which he would interpret as: � exerts no physical inuence on Z. But from the product rule

p(�; ZjI) = p(�jZI) p(ZjI) = p(Zj�I) p(�jI) (8{30)

we see that from the standpoint of probability theory as logic, (8{28) and (8{29) are equivalent;
either implies the other. Expanding the likelihood ratio by the product rule and using (8{29),

p(DZj�I)
p(DZjI) =

p(Dj�ZI)
p(DjZI) (8{31)

Then in view of (8{28) we can rewrite (8{27) equally well as

p(�jDZI) = p(�jZI)p(Dj�ZI)
p(DjZI) (8{32)

and now the ancillary information appears to be part of the prior information.

A peculiar property of ancillary information is that whether we consider it part of the data
or part of the prior information, we are led to the same conclusions about �. Another is that the
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relation between � and Z is a reciprocal one; had we been interested in estimating Z but knew �,
then � would appear as an \ancillary statistic". To see this most clearly, note that the de�nitions
(8{28) and (8{29) of an ancillary statistic are equivalent to the factorization:

p(�ZjI) = p(�jI) p(ZjI) : (8{33)

Now recall how we handled this before, when our likelihood was only

L0(�) / p(Dj�I) (8{34)

Because of the model equation (8{25), if � is known, then the probability of getting any datum di
is just the probability that the noise would have made up the di�erence:

ei = di � f(ti; �) (8{35)

So if the prior pdf for the noise is a function

p(Ej�I) = u(e1 � � �en; �) = u(feig; �) (8{36)

we had

p(Dj�I) = u(fdi � f(ti; �)g; �); (8{37)

the same function of fdi � f(ti; �g. In the special case of a white gaussian noise pdf independent
of �, this led to Eq. (X.YZ).

Our new likelihood function (8{31) can be dealt with in the same way, only in place of (8{37)
we shall have a di�erent noise pdf , conditional on Z. Thus the e�ect of ancillary data is simply to
update the original noise pdf :

p(Ej�I)! p(Ej�ZI) (8{38)

and in general ancillary data that have any relevance to the noise will a�ect our estimates of all
parameters through this changed estimate of the noise.

In Equations (8{36) { (8{38) we have included � in the conditioning statement to the right of
the vertical stroke to indicate the most general case. But in all the cases examined in the orthodox
literature, knowledge of � would not be relevant to estimating the noise, so what they actually did
was the replacement

p(EjI)! p(EjZI) (8{39)

instead of (8{38).

Also, in the cases we have analyzed this updating is naturally regarded as arising from a joint
sampling distribution which is a function

p(DZjI) = w(e1 � � �en; z1 � � �zm) (8{40)

The previous noise pdf (8{36) is then a marginal distribution of (8{40):

p(DjI) = u(e1 � � �en) =
Z
dz1 � � �dzm w(e1 � � �en; z1 � � �zm); (8{41)

the prior pdf for the ancillary data is another marginal distribution:
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p(ZjI) =
Z
de1 � � �denw(e1 � � �en; z1 � � �zm); (8{42)

and the conditional distribution is

p(DjZI) = p(DZjI)
p(ZjI) =

w(ei; zj)

v(zj)
: (8{43)

Fisher's original application, and the ironic lesson it had for the relation of Bayesian and sampling
theory methods, is explained in the Comments at the end of this Chapter.

Relation to the Likelihood Principle

The close connection of this to Barnard's form of the likelihood principle does not seem to have
been noted before; but we shall have a contradiction unless we restate Barnard's principle more
carefully. In accordance with universal custom in orthodox statistics, Barnard did not make any
explicit use of, or mention of, any prior information I , so if we try to rewrite his independence
condition in our notation it becomes

p(DZj�I) = p(Dj�I) p(ZjI) : (8{44)

But this is the same as our de�nition of an ancillary statistic; so it appears by Barnard's reasoning
that ancillary statistics should be irrelevant to inference!

******************************************************************

Ki(�; �
0) �

�
g(yj�) @g(yj�

0)

@yi
� g(yj�0) @g(yj�)

@yi

�
; (8{45)

Asymptotic Likelihood: Fisher Information

Given a data set D � fx1 � � �xng, the log likelihood is

1

n
logL(�) =

1

n

nX
i=1

log p(xij�) (8{46)

What happens to this function as we accumulate more and more data? The usual assumption is
that as n!1, the sampling distribution p(xj�) is actually equal to the limiting relative frequencies
of the various data values xi. We know of no case where one could actually know this to be true in
the real world; so the following heuristic argument is all that is justi�ed. If this assumption were
true, then we would have asymptotically as n!1,

1

n
logL(�)!

Z
p(xj�0) log p(xj�) dx (8{47)

where �0 is the true value, presumed unknown. Denoting the entropy of the true density by

H0 = �
Z
p(xj�0) log p(xj�0)dx

we have for the asymptotic likelihood function
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1

n
logL(�) +H0 =

Z
p(xj�0) log

p(xj�)
p(xj�0)

dx � 0 (8{48)

where we used the fact that for positive real q, we have log q � q � 1; with equality if and only if
q = 1. Thus we have equality in (8{48) if and only if p(xj�) = p(xj�0) for all x for which p(xj�0) > 0.
But if two di�erent values �; �0 of the parameter lead to identical sampling distributions, then they
are confounded: the data cannot distinguish between them. If the parameter is always `identi�ed'
in the sense that di�erent values of � always lead to di�erent sampling distributions for the data,
then we have equality in (8{48) if and only if � = �0, so the asymptotic likelihood function L(�)
reaches its maximum at the unique point � = �0.

Supposing the parameter multidimensional: � � f�1 � � ��mg and expanding about this
maximum, we have

log p(xj�) = log p(xj�0)�
1

2

mX
i;j=1

@2 log p(xj�)
@�i@�j

��i ��j (8{49)

or,

1

n
log

�
L(�)

L(�0

�
= �1

2

X
ij

Iij��i ��j (8{50)

where

Iij �
Z
dnx p(xj�0)

@2 log p(xj�)
@�i@�j

(8{51)

is called the Fisher Information Matrix.

***************************************************************

Combining Evidence from Di�erent Sources

\We all know that there are good and bad experiments. The latter accumulate in vain.

Whether there are a hundred or a thousand, one single piece of work by a real master{+by

a Pasteur, for example{+will be su�cient to sweep them into oblivion." - - - Henri
Poincar�e (1904, p. 141)

We all feel intuitively that the totality of evidence from a number of experiments ought to enable
better inferences about a parameter than does the evidence of any one experiment. Probability
theory as logic shows clearly how and under what circumstances it is safe to combine this evidence.
One might think na��vely that if we have 25 experiments, each yielding conclusions with an accuracy
of �10%, then by averaging them we get an accuracy of �10=

p
25 = �2%. This seems to be

supposed by a method currently in use in psychology and sociology, called meta{analysis (Hedges
& Olkin, 1985); but it is notorious that there are logical pitfalls in carrying this out.

The classical example showing the error of this kind of reasoning is the old fable about the
height of the Emperor of China. Supposing that each person in China surely knows the height of
the Emperor to an accuracy of at least � 1 meter, if there are N = 1; 000; 000; 000 inhabitants,
then it seems that we could determine his height to an accuracy at least as good as

1p
1; 000; 000; 000

m = 3� 10�5m = 0:03 millimeters (8{52)

merely by asking each person's opinion and averaging the results.
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The absurdity of the conclusion tells us rather forcefully that the
p
N rule is not always valid,

even when the separate data values are causally independent; it is essential that they be logically
independent. In this case, we know that the vast majority of the inhabitants of China have never
seen the Emperor; yet they have been discussing the Emperor among themselves and some kind
of mental image of him has evolved as folklore. Then knowledge of the answer given by one
does tell us something about the answer likely to be given by another, so they are not logically
independent. Indeed, folklore has almost surely generated a systematic error, which survives the
averaging; thus the above estimate would tell us something about the folklore, but almost nothing
about the Emperor.

We could put it roughly as follows:

error in estimate = S � Rp
N

(8{53)

where S is the common systematic error in each datum, R is the RMS `random' error in the
individual data values. Uninformed opinions, even though they may agree well among themselves,
are nearly worthless as evidence. Therefore sound scienti�c inference demands that, when this is a
possibility, we use a form of probability theory (i.e., a probabilistic model) which is sophisticated
enough to detect this situation and make allowances for it.

As a start on this, (8{53) gives us a crude but useful rule of thumb; it shows that, unless
we know that the systematic error is less than about 1/3 of the random error, we cannot be sure
that the average of a million data values is any more accurate or reliable than the average of ten.
As Henri Poincar�e put it: \The physicist is persuaded that one good measurement is worth many
bad ones." Indeed, this has been well recognized by experimental physicists for generations; but
warnings about it are conspicuously missing from textbooks written by statisticians, and so it is not
su�ciently recognized in the \soft" sciences whose practitioners are educated from those textbooks.

Let us investigate this more carefully using probability theory as logic. First we recall the chain
consistency property of Bayes' theorem. Suppose we seek to judge the truth of some hypothesis H ,
and we have two experiments which yield data sets A, B respectively. With prior information I ,
from the �rst we would conclude

p(H jAI) = p(H jI) p(AjHI)

p(AjI) : (8{54)

Then this serves as the prior probability when we obtain the new data B:

p(H jABI) = p(H jAI) p(BjAHI)

p(BjAI) = p(H jI) p(AjHI) p(BjAHI)

p(AjI) p(BjAI) : (8{55)

But

p(AjHI) p(BjAHI) = p(ABjHI)

p(AjI) p(BjAI) = p(ABjI)
(8{56)

so (8{55) reduces to

p(H jABI) = p(H jI) p(ABjHI)

p(ABjI) (8{57)

which is just what we would have found had we used the total evidence C = AB in a single
application of Bayes' theorem. This is the chain consistency property. We see from this that it is
valid to combine the evidence from several experiments if:

(1) the prior information I is the same in all;
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(2) the prior for each experiment includes also the results of the earlier ones.

To study one condition a time, let us leave it as an exercise for the reader to examine the e�ect
of violating (1), and suppose for now that we obey (1) but not (2), but we have from the second
experiment alone the conclusion

p(H jBI) = p(H jI) p(BjHI)

p(BjI) : (8{58)

Is it possible to combine the conclusions (8{54) and (8{58) of the two experiments into a single
more reliable conclusion? It is evident from (8{55) that this cannot be done in general; it is not
possible to obtain p(H jABI) as a function of the form

p(H jABI) = f [p(H jAI); p(H jBI)] (8{59)

because this requires information not contained in either of the arguments of that function. But if
it is true that p(BjAHI) = p(BjHI), then from the product rule written in the form

p(ABjI) = p(AjBHI) p(BjHI) = p(BjAHI) p(AjHI) ; (8{60)

it follows that p(AjBHI) = p(AjHI) and this will work. For this, the data sets A, B must be
logically independent in the sense that, given H and I , knowing either data set would tell us

nothing about the other.

But if we do have this logical independence, then it is valid to combine the results of the
experiments in the above na��ve way and we will in general improve our inferences by so doing. Thus
meta{analysis, applied without regard to these necessary conditions can be utterly misleading.

But the situation is still more subtle and dangerous; suppose one tried to circumvent this by
pooling all the data before analyzing them; that is, using (8{57). Let us see what could happen to
us.

Pooling the Data

The following data are real but the circumstances were more complicated than supposed in the
following scenario. Patients were given either of two treatments, the old one and a new one and the
number of successes (recoveries) and failures (deaths) recorded. In experiment A the data were:

Experiment A :

Failures Successes Percent Success

Old 16519 4343 20:8� 0:28
New 742 122 14:1� 1:10

in which the entries in the last column are of the form 100 � [p �
p
p(1� p)=n] indicating the

standard deviation to be expected from binomial sampling. Experiment B, conducted two years
later, yielded the data:

Experiment B :
3876 14488 78:9� 0:30
1233 3907 76:0� 0:60

In each experiment, the old treatment appeared slightly but signi�cantly better (that is, the di�er-
ences in p were greater than the standard deviations). The results were very discouraging to the
researchers.

But then one of them had a brilliant idea: let us pool the data, simply adding up in the manner
4343 + 14488 = 18831, etc. Then we have the contingency table
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Pooled Data :
20395 18831 48:0� 0:25
1975 4029 67:1� 0:61

and now the new treatment appears much better with overwhelmingly high signi�cance (the dif-
ference is over 20 times the sum of the standard deviations)! They eagerly publish this gratifying
conclusion, presenting only the pooled data; and become (for a short time) famous as great discov-
erers.

How is such an anomaly possible with such innocent{looking data? How can two data sets,
each supporting the same conclusion, support the opposite conclusion when pooled? Let the reader,
before proceeding, ponder these tables and form your own opinion of what is happening.

* * * * * * *

The point is that an extra parameter is clearly present. Both treatments yielded much better results
two years later. This unexpected fact is, evidently, far more important than the relatively small
di�erences in the treatments. Nothing in the data per se tells us the reason for this (better control
over procedures, selection of promising patients for testing, etc.) and only prior information about
further circumstances of the tests can suggest a reason.

Pooling the data under these conditions introduces a very misleading bias; the new treatment
appears better simply because in the second experiment six times as many patients were given the
new treatment, while fewer were given the old one. The correct conclusion from these data is that
the old treatment remains noticeably better than the new one; but another factor is present, that
is vastly more important than the treatment.

We conclude from this example that pooling the data is not permissible if the separate ex-
periments involve other parameters which can be di�erent in di�erent experiments. In equations
(8{58) { (8{60) we supposed no such parameters to be present, but real experiments almost always
have nuisance parameters which are eliminated separately in drawing conclusions.

In summary, the meta{analysis procedure is not necessarily wrong; but when applied without
regard to these necessary quali�cations it can lead to disaster. But we do not see how anybody could
have seen all these quali�cations by intuition alone; without the Bayesian analysis there is almost
no chance that one could apply meta{analysis safely; but whenever meta{analysis is appropriate,
the Bayesian procedure automatically reduces to the meta{analysis procedure. So the only safe
procedure is strict application of our Chapter 2 rules.

******************* MORE! ******************

Fine-grained Propositions. One objection that has been raised to probability theory as logic
notes a supposed technical di�culty in setting up problems. In fact, many seem to be perplexed
by it, so let us examine the problem and its resolution.

The Venn diagram mentality, noted at the end of Chapter 2, supposes that every probability
must be expressed as an additive measure on some set; or equivalently, that every proposition to
which we assign a probability must be resolved into a disjunction of elementary `atomic' propo-
sitions. Carrying this supposition over into the Bayesian �eld has led some to reject Bayesian
methods on the grounds that in order to assign a meaningful prior probability to some proposition
such asW � \the dog walks" we would be obliged to resolve it into a disjunction W = W1+W2+� � �
of every conceivable sub{proposition about how the dog does this, such as

W1 � \�rst it moves the right forepaw, then the left hindleg, then : : :"

W2 � \�rst it moves the right forepaw, then the right hindleg, then : : :"

: : :

But this can be done in any number of di�erent ways, and there is no principle that tells us
which resolution is \right". Having de�ned these sub{propositions somehow, there is no evident
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element of symmetry that could tell us which ones should be assigned equal prior probabilities.
Even the professed Bayesian L. J. Savage (1954) raised this objection, and thought that it made it
impossible to assign priors by the principle of indi�erence. Curiously, those who reasoned this way
seem never to have been concerned about how the orthodox probabilist is to de�ne his \universal
set" of atomic propositions, which performs for him the same function as would that in�nitely
�ne{grained resolution of the dog's movements.

So the ippant answer to: \Where did you get your prior hypothesis space?" is \The same
place where you got your universal set!" But let us be more constructive and analyze the supposed
di�culty.

Sam's Broken Thermometer. If Sam, in analyzing his data to test his pet theory, wants to en-
tertain the possibility that his thermometer is broken, does he need to enumerate every conceivable
way in which it could be broken? The answer is not intuitively obvious at �rst glance, so let

A � Sam's pet theory

H0 � The thermometer is working properly.

Hi � The thermometer is broken in the i'th way, 1 � i � n.

where, perhaps, n = 109. Then, although

p(AjDH0I) = p(AjH0I)
p(DjAH0I)

p(DjH0I)
(8{61)

is the Bayesian calculation he would like to do, it seems that honesty compels him to note a billion
other possibilities fH1 : : :Hng, and so he must do the calculation

p(AjDI) =
nX
i=0

p(AHijDI) = p(AjH0DI) p(H0jI) +
nX
i=1

p(AjHiDI) p(HijDI) : (8{62)

Now expand the last term by Bayes' theorem:

p(AjDHiI) = p(AjHiI)
p(DjAHiI)

p(DjHiI)
(8{63)

p(HijDI) = p(HijI)
p(DjHiI)

p(DjI) (8{64)

Presumably, knowing the condition of his thermometer does not in itself tell him anything about
the status of his pet theory, so

p(AjHiI) = p(AjI) ; 0 � i � n (8{65)

But if he knew the thermometer was broken, then the data would tell him nothing about his pet
theory (all this is supposed to be contained in the prior information I):

p(AjHiDI) = p(AjHiI) = p(AjI) ; 1 � i � n (8{66)

Then from (8{63), (8{65), (8{66) we have
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p(DjAHiI) = p(DjHiI) ; 1 � i � n (8{67)

That is, if he knows the thermometer is broken, and as a result the data can tell him nothing about
his pet theory, then his probability of getting those data cannot depend on whether his pet theory
is true. Then (8{62) reduces to

p(AjDI) = p(AjI)
p(DjI)

"
p(DjAH0I) p(H0I) +

nX
i=1

p(DjHiI) p(HijI)
#
: (8{68)

From this we see that if the di�erent ways of being broken do not in themselves tell him di�erent
things about the data:

p(DjHiI) = p(DjH1I) ; 1 � i � n (8{69)

then enumeration of the n di�erent ways of being broken is unnecessary; the calculation reduces to
�nding the likelihood

L � p(DjAH0I) p(H0jI) + p(DjH1I) [1� p(H0jI)] (8{70)

and only the total probability of being broken:

p(H0jI) =
nX
i=1

p(HijI) = 1� p(H0jI) (8{71)

is relevant. He does not need to enumerate a billion possibilities. But if p(DjHiI) can depend
on i, then the sum in (8{68) should be over those Hi that lead to di�erent p(DjHiI). That is,
information contained in the variations of p(DjHiI) would be relevant to his inference and so they
should be taken into account in a full calculation.

Contemplating this argument, common sense now tells us that this conclusion should have
been `obvious' from the start. Quite generally, enumeration of a large number of `�ne{grained'
propositions and assigning prior probabilities to all of them is necessary only if the breakdown into
those �ne details contains information relevant to the question being asked. If they do not, then
only the disjunction of all of the propositions is relevant to our problem, and we need only assign
a prior probability directly to it.

In practice, this means that in a real problem there will be some natural end to the process
of introducing �ner and �ner sub{propositions; not because it is wrong to introduce them, but
because it is unnecessary and irrelevant to the problem. The di�culty feared by Savage does not
exist in real problems; and this is one of the many reasons why our policy of assigning probabilities
on �nite sets, succeeds in the real world.

COMMENTS

There are still a number of interesting special circumstances, less important technically but calling
for short discussions.

Trying to conduct inference by inventing intuitive ad hoc devices instead of applying probability
theory has become a deeply ingrained habit among those with conventional training. Even after
seeing the Cox theorems and the applications of probability theory as logic, many fail to appreciate
what has been shown, and persist in trying to improve the results still more { without acquiring
any more information { by adding further ad hoc devices to the rules of probability theory. We
o�er here three observations intended to discourage such e�orts, by noting what information is and
is not contained in our equations.
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The Fallacy of Sample Re{use. Richard Cox's theorems show that, given certain data and
prior information D; I , any procedure which leads to a di�erent conclusion than that of Bayes'
theorem, will necessarily violate some very elementary desiderata of consistency and rationality.
This implies that a single application of Bayes' theorem with given D; I , will extract all the
information that is in D; I , relevant to the question being asked. Furthermore, we have already
stressed that, if we apply probability theory correctly there is no need to check whether the di�erent
pieces of information used are logically independent; any redundant information will cancel out and
will not be used twice.y

Yet the feeling persists that, somehow, using the same data again in some other procedure,
might extract still more information from D that Bayes' theorem has missed the �rst time; and
thus improve our ultimate inferences from D. Since there is no end to the conceivable arbitrary
devices that might be invented, we see no way to prove once and for all that no such attempt will
succeed, other than pointing to Cox's theorems. But for any particular device we can always �nd
a direct proof that it will not work; that is, the device cannot change our conclusions unless it also
violates one of our Chapter 2 desiderata. We consider one commonly encountered example.

Having applied Bayes' theorem with given D; I to �nd the posterior probability

p(�jD; I) = p(�jI)p(dj�I)
p(DjI) (8{72)

for some parameter �, suppose we decide to introduce some additional evidence E. Then another
application of Bayes' theorem updates that conclusion to

p(�jE;D; I) = p(�jD; I) p(Ej�;D; I)
p(EjD; I) (8{73)

so the necessary and su�cient condition that the new information will change our conclusions is
that, on some region of the parameter space of positive measure the likelihood ratio in (8{73) di�ers
from unity:

p(Ej�;D; I) 6= p(EjD; I) : (8{74)

But if the evidence E was something already implied by the data and prior information, then

p(Ej�;D; I) = p(EjD; I) = 1 (8{75)

and Bayes' theorem con�rms that re{using redundant information cannot change the results. This
is really only the principle of elementary logic: AA = A.

Yet there is a famous case in which it appeared at �rst glance that one actually did get impor-
tant improvement in this way; this leads us to recognize that the meaning of \logical independence"
is subtle and crucial. Suppose we take E = D; we simply use the same data set twice. But we act
as if the second D yere logically independent of the �rst D; that is, although they are the same
data, let us call them D� the second time we use them. Then we simply ignore the fact that D and
D� are actually one and the same data sets, and instead of (8{73) { (8{75) we take, in violation of
the rules of probability theory,

p(D�jD; I) = p(D�jI) ; p(D�j�;D; I) = p(D�j�; I) (8{76)

y Indeed, this is a property of any algorithm, in or out of probability theory, which can be derived from

a variational principle because in that case adding a new constraint cannot change the solution if the old

solution already satis�ed that constraint.
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Then the likelihood ratio in (8{73) is the same as in the �rst application of Bayes' theorem, (8{
72). We have squared the likelihood function, thus achieving a sharper posterior distribution with
apparently more accurate estimate of �!

It is evident that a fraud is being perpetrated here; by the same argument we could re{use the
same data any number of times, thus raising the likelihood function to an arbitrarily high power,
and seemingly getting arbitrarily accurate estimates of � { all from the same original data set D
which might consist of only one or two observations.

However, if we actually had two di�erent data sets D;D� which were logically independent in
the sense that knowing one would tell us nothing about the other { but which happened to be
numerically identical { then indeed (8{77) would be valid, and the correct likelihood function from
the two data sets would be the square of the likelihood from one of them. Therefore the fraudulent
procedure is, in e�ect, claiming to have twice as many observations as we really have. One can
�nd this procedure actually used and advocated in the literature, in the guise of a \data dependent
prior" (Akaike, 1980). This is also close to the topic of \meta{analysis" discussed above, where
ludicrous errors can result from failure to perceive the logical dependence of di�erent data sets
which are causally independent.

A Folk{Theorem. In ordinary algebra, suppose that we have a number of unknowns fx1 : : : xng
in some domain X to be determined, and are given the values of m functions of them:

y1 = f1(x1 : : : xn)

y2 = f2(x1 : : : xn)

: : :

ym = fm(x1 : : : xn)

If m = n and the jacobian @(y1 : : :yn)=@(x1 : : : xn) is not zero, then we can in principle solve for
the xi uniquely. But if m < n the system is underdetermined; one cannot �nd all the xi because
the information is insu�cient.

It appears that this well{known theorem of algebra has metamorphosed into a popular folk{
theorem of probability theory. Many authors state, as if it were an evident truth, that from m

observations one cannot estimate more than m parameters. Authors with the widest divergence of
viewpoints in other matters seem to be agreed on this. Therefore we almost hesitate to point out the
obvious; that nothing in probability theory places any such limitation on us. In probability theory,
as our data tend to zero, the e�ect is not that fewer and fewer parameters can be estimated; given
a single observation, nothing prevents us from estimating a million di�erent parameters. What
happens as our data tend to zero is that those estimates just relax back to the prior estimates, as
common sense tells us they must.

However, there may still be a grain of truth in this if we consider a slightly di�erent scenario;
instead of varying the amount of data for a �xed number of parameters, suppose we vary the
number of parameters for a �xed amount of data. Then does the accuracy of our estimate of one
parameter depend on how many other parameters we are estimating? We note verbally what one
�nds, leaving it as an exercise for the reader to write down the detailed equations. The answer
depends on how the sampling distributions change as we add new parameters; are the posterior
pdf 's for the parameters independent? If so, then our estimate of one parameter cannot depend on
how many others are present.

But if in adding new parameters they all get correlated in the posterior pdf , then the estimate
of one parameter � might be greatly degraded by the presence of others (uncertainty in the values
of the other parameters could then \leak over" and contribute to the uncertainty in �). In that
case, it may be that some function of the parameters can be estimated more accurately than can
any one of them. For example, if two parameters have a high negative correlation in the posterior
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pdf , then their sum can be estimated much more accurately than can their di�erence. We shall
see this below, in the theory of seasonal adjustment in economics. All these subtleties are lost on
conventional statistics, which does not recognize even the concept of correlations in a posterior pdf .

E�ect of Prior Information. It is obvious, from the general principle of non{use of redundant
information AA = A, that our data make a di�erence only when they tell us something that
our prior information does not. It should be (but apparently is not) equally obvious that prior
information makes a di�erence only when it tells us something that the data do not. Therefore,
whether our prior information is or is not important can depend on which data set we get. For
example, suppose we are estimating a general parameter �, and we know in advance that � < 6.
If the data lead to a negligible likelihood in the region � > 6, then that prior information has no
e�ect on our conclusions. Only if the data alone would have indicated appreciable likelihood in
� > 6 does the prior information matter.

But consider the opposite extreme: if the data placed practically all the likelihood in the region
� > 6, then the prior information would have overwhelming importance and the robot would be
led to an estimate very nearly �� = 6, determined almost entirely by the prior information. But in
that case the evidence of the data strongly contradicts the prior information, and you and I would
become skeptical about the correctness of the prior information, the model, or the data. This is
another case where astonishing new information may cause resurrection of alternative hypotheses
that you and I always have lurking somewhere in our minds.

But the robot, by design, has no creative imagination and always believes what we tell it; and
so if we fail to tell it about any alternative hypotheses, it will continue to give us the best estimates
based on unquestioning acceptance of what we do tell it { right up to the point where the data
and the prior information become logically contradictory { at which point, as noted at the end of
Chapter 2, the robot crashes.

But, in principle, a single data point could determine accurate values of a million parameters.
For example, if a function f(x1; x2; : : :) of a million variables takes on the value

p
2 only at a single

point, and we learn that f =
p
2 exactly, then we have determined a million variables exactly. Or,

if a single parameter is determined to an accuracy of twelve decimal digits, a simple mapping can
convert this into estimates of six parameters to two digits each. But this gets us into the subject
of `algorithmic complexity', which is not our present topic.

Clever Tricks and Gamesmanship. Two very di�erent attitudes toward the technical workings
of mathematics are found in the literature. Already in 1761, Leonhard Euler complained about
isolated results which \are not based on a systematic method" and therefore whose \inner grounds
seem to be hidden." Yet in the 20'th Century, writers as diverse in viewpoint as Feller and de Finetti
are agreed in considering computation of a result by direct application of the systematic rules of
probability theory as dull and unimaginative, and revel in the �nding of some isolated clever trick
by which one can see the answer to a problem without any calculation.

For example, Peter and Paul toss a coin alternately starting with Peter, and the one who
�rst tosses \heads" wins. What are the probabilities p; p0 for Peter or Paul to win? The direct,
systematic computation would sum (1=2)n over the odd and even integers:

p =
1X
n=0

1

22n+1
=

2

3
; p0 =

1X
n=1

1

22n
=

1

3

The clever trick notes instead that Paul will �nd himself in Peter's shoes if Peter fails to win on
the �rst toss: ergo, p0 = p=2, so p = 2=3; p0 = 1=3.

Feller's perception was so keen that in virtually every problem he was able to see a clever trick;
and then gave only the clever trick. So his readers get the impression that:
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(1) Probability theory has no systematic methods; it is a collection of isolated, unrelated
clever tricks, each of which works on one problem but not on the next one.

(2) Feller was possessed of superhuman cleverness.

(3) Only a person with such cleverness can hope to �nd new useful results in probability
theory.

Indeed, clever tricks do have an aesthetic quality that we all appreciate at once. But we doubt
whether Feller, or anyone else, was able to see those tricks on �rst looking at the problem.

We solve a problem for the �rst time by that (perhaps dull to some) direct calculation applying
our systematic rules. After seeing the solution, we may contemplate it and see a clever trick that
would have led us to the answer much more quickly. Then, of course, we have the opportunity
for gamesmanship by showing others only the clever trick, scorning to mention the base means by
which we �rst found the answer. But while this may give a boost to our ego, it does not help
anyone else.

Therefore we shall continue expounding the systematic calculation methods, because they
are the only ones which are guaranteed to �nd the solution. Also, we try to emphasize general

mathematical techniques which will work not only on our present problem, but on hundreds of
others. We do this even if the current problem is so simple that it does not require those general
techniques. Thus we develop the very powerful algorithms involving group invariance, partition
functions, entropy, and Bayes' theorem, that do not appear at all in Feller's work. For us, as for
Euler, these are the solid meat of the subject, which make it unnecessary to discover a di�erent
new clever trick for each new problem.

We learned this policy from the example of George P�olya. For a Century, mathematicians
had been, seemingly, doing their best to conceal the fact that they were �nding their theorems
�rst by the base methods of plausible conjecture, and only afterward �nding the \clever trick"
of an e�ortless, rigorous proof. P�olya gave away the secret in his \Mathematics and Plausible
Reasoning," which was a major stimulus for the present work.

Clever tricks are always pleasant diversions, and useful in a temporary way, when we want
only to convince someone as quickly as possible. Also, they can be valuable in understanding a
result; having found a solution by tedious calculation, if we can then see a simple way of looking
at it that would have led to the same result in a few lines, this is almost sure to give us a greater
con�dence in the correctness of the result, and an intuitive understanding of how to generalize it.
We point this out many times in the present work.

But the road to success in probability theory is through mastery of the general, systematic
methods of permanent value. For a teacher, therefore, maturity is largely a matter of overcoming
the urge to gamesmanship.
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CHAPTER 9

REPETITIVE EXPERIMENTS { PROBABILITY AND FREQUENCY

\The essence of the present theory is that no probability,

direct, prior, or posterior, is simply a frequency." | H. Je�reys (1939)

We have developed probability theory as a generalized logic of plausible inference which should
apply, in principle, to any situation where we do not have enough information to permit deduc-
tive reasoning. We have seen it applied successfully in simple prototype examples of nearly all
the current problems of inference, including sampling theory, hypothesis testing, and parameter
estimation.

However, most of probability theory as treated in the past 100 years has con�ned attention
to a special case of this, in which one tries to predict the results of, or draw inferences from,
some experiment that can be repeated inde�nitely under what appear to be identical conditions;
but which nevertheless persists in giving di�erent results on di�erent trials. Indeed, virtually all
application{oriented expositions de�ne probability as meaning `limiting frequency in independent
repetitions of a random experiment' rather than as an element of logic. The mathematically oriented
often de�ne it more abstractly, merely as an additive measure without any speci�c connection to the
real world. However, when they turn to applications, they too tend to think of probability in terms
of frequency. It is important that we understand the exact relation between these conventional
treatments and the theory being developed here.

Some of these relations have been seen already; in the last �ve Chapters we have shown
that probability theory as logic can be applied consistently in many problems of inference that
do not �t into the frequentist preconceptions, and so would be considered beyond the scope of
probability theory. Evidently, the problems that can be solved by frequentist probability theory
form a subclass of those that are amenable to logical probability theory, but it is not yet clear just
what that subclass is. In the present Chapter we seek to clarify this with some surprising results,
including a new understanding of the role of induction in science.

There are also many problems where the attempt to use frequentist probability theory in infer-
ence leads to nonsense or disaster. We postpone examination of this pathology to later Chapters,
particularly Chapter 17.

Physical Experiments

Our �rst example of such a repetitive experiment appeared in Chapter 3, where we considered
sampling with replacement from an urn, and noted that even there great complications arise.
But we managed to muddle our way through them by the conceptual device of \randomization"
which, although ill{de�ned, had enough intuitive force to overcome the fundamental lack of logical
justi�cation.

Now we want to consider general repetitive experiments where there need not be any resem-
blance to drawing from an urn, and for which those complications may be far greater and more
diverse than they were for the urn. But at least we know that any such experiment is subject to
physical law. If it consists of tossing a coin or die, it will surely conform to the laws of Newtonian
mechanics, well known for 300 years. If it consists of giving a new medicine to a variety of pa-
tients, the principles of biochemistry and physiology, only partially understood at present, surely
determine the possible e�ects that can be observed. An experiment in high{energy elementary
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particle physics is subject to physical laws about which we are about equally ignorant; but even
here well{established general principles (conservation of charge, angular momentum, etc.) restrict
the possibilities.

Clearly, competent inferences about any such experiment must take into account whatever is
presently known concerning the physical laws that apply to the situation. Generally, this knowledge
will determine the \model" that we prescribe in the statement of the problem. If one fails to take
account of real physical situation and the known physical laws that apply, then the most impeccably
rigorous mathematics from that point on will not guard against producing nonsense or worse. The
literature gives much testimony to this.

In any repeatable experiment or measurement, some relevant factors are the same at each
trial (whether or not the experimenter is consciously trying to hold them constant { or is even
consciously aware of them), and some vary in a way not under the control of the experimenter.
Those that are the same (whether from the experimenter's good control of conditions or from his
failure to inuence them at all) are called systematic. Those which vary in an uncontrolled way are
often called random, a term which we shall avoid for the present, because in current English usage
it carries some very wrong connotations.y

In this Chapter we examine in detail how our robot reasons about a repetitive experiment.
Our aim is to �nd the logical relations between the information it has and the kind of predictions
it is able to make. Let our experiment consist of n trials, with m possible results at each trial; if
it consists of tossing a coin, then m = 2; for a die, m = 6. If we are administering a vaccine to a
sequence of patients, then m is the number of distinguishable reactions to the treatment, n is the
number of patients, etc.

At this point one would say, conventionally, something like: \Each trial is capable of giving
any one of m possible results, so in n trials there are N = mn di�erent conceivable outcomes."
However, the exact meaning of this is not clear: is it a statement or assumption of physical fact,
or only a description of the robot's information? The content and range of validity of what we are
doing depends on the answer.

The number m may be regarded, always, as a description of the state of knowledge in which
we conduct a probability analysis; but this may or may not correspond to the number of real
possibilities actually existing in Nature. On examining a cubical die, we feel rather con�dent in
taking m = 6; but in general we cannot know in advance, with certainty, how many di�erent results
are possible. Some of the most important problems of inference are of the \Charles Darwin" type:

Exercise 9.1: When Charles Darwin �rst landed on the Galapagos Islands in September 1835,
he had no idea how many di�erent species of plants he would �nd there. Having examined
n = 122 specimens and �nding that they can be classi�ed into m = 19 di�erent species, what
is the probability that there are still more species, as yet unobserved? At what point does one
decide to stop collecting specimens because it is unlikely that anything more will be learned?
This problem is much like that of the sequential test of Chapter 4, although we are now asking
a di�erent question. It requires judgment about the real world in setting up the mathematical
model (that is, in the prior information used in choosing the appropriate hypothesis space), but
the �nal conclusions are quite insensitive to the exact choice made, so persons with reasonable
judgment will be led to substantially the same conclusions.

y To many, the term \random" signi�es on the one hand lack of physical determination of the individual
results, but at the same time, operation of a physically real `propensity' rigidly �xing long{run frequencies.
Naturally, such a self{contradictory view of things gives rise to endless conceptual di�culties and confusion,
throughout the literature of every �eld that uses probability theory. We note some typical examples in
Chapter 10, where we confront this idea of `randomness' with the laws of physics.
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In general, then, far from being a known physical fact, the number m should be understood to
be simply the number of known results per trial that we shall take into account in the present

calculation. But the very purpose of the calculation may be to learn how m is related to the true
number of possibilities existing in Nature. Then it is perhaps being stated most defensibly if we
say that when we specify m we are de�ning a tentative working hypothesis , whose consequences we
want to learn.

For clarity, we use the word \result" for a single trial, while \outcome" refers to the experiment
as a whole. Thus one outcome consists of the enumeration of n results (including their order if the
experiment is conducted in such a way that an ordering is de�ned and known). Then we may say
that the number of outcomes being considered in the present calculation is N = mn.

Denote the result of the k'th trial by rk; (1 � rk � m; 1 � k � n). Then any outcome of the
experiment can be indicated by specifying the numbers fr1; : : : ; rng, which constitute a conceivable
data set D. Since the di�erent outcomes are mutually exclusive and exhaustive, if our robot is given
any information I about the experiment, the most general probability assignment it can make is a
set of non{negative real numbers

P (DjI) = f(r1 : : : rn) (9{1)
satisfying

mX
r1=1

mX
r2=1

� � �

mX
rn=1

f(r1 : : :rn) = 1 : (9{2)

Note, as a convenience, that we may regard the numbers rk as digits (modulo m) in a number R
expressed in the base m number system; 0 � R � N �1. Since our robot, however poorly informed
it may be about the real world, is an accomplished manipulator of numbers, we may instruct it
to communicate with us in the base m number system instead in the decimal (base 10) number
system that you and I have been trained to use because of an anatomical peculiarity of humans.

For example, suppose that our experiment consists of tossing a die four times; there are m = 6
possible results at each trial, and N = 64 = 1296 possible outcomes for the experiment. Then to
indicate the outcome that is designated number 836 in the decimal system, the robot notes that

836 = (3� 63) + (5� 62) + (1� 61) + (2� 60)

and so, in the base 6 system the robot displays this as outcome number 3512.

But unknown to the robot, this has a deeper meaning to you and me; for us, this represents
the outcome in which the �rst toss gave three spots up, the second gave �ve spots, the third gave
one spot, and the fourth toss gave two spots (since in the base 6 system the individual digits rk
have meaning only modulo 6, the display 5024 = 5624 represents an outcome in which the second
toss yielded six spots up).

More generally, for an experiment with m possible results at each trial, repeated n times, we
communicate in the base m number system, whereupon each number displayed will have exactly n
digits, and for us the k'th digit will represent, mod m, the result of the k'th trial. By this device
we trick our robot into taking instructions and giving its conclusions in a format which has for us
an entirely di�erent meaning. We can now ask the robot for its predictions on any question we
care to ask about the digits in the display number, and this will never betray to the robot that it
is really making predictions about a repetitive physical experiment (for the robot, by construction
as discussed in Chapter 4, always accepts what we tell it as the literal truth).

With the conceptual problem de�ned as carefully as we know how to do, we may turn �nally
to the actual calculations. We noted in the discussion following Eq. (2{65) that, depending on
details of the information I , many di�erent probability assignments (9{1) might be appropriate;
consider �rst the obvious simplest case of all.
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The Poorly Informed Robot

Suppose we tell the robot only that there are N possibilities, and give no other information. That
is, the robot is not only ignorant about the relevant physical laws; it is not even told that the full
experiment consists of n repetitions of a simpler one. For it, the situation is as if there were only
a single trial, with N possible results, the \mechanism" being completely unknown.

At this point, you might object that we have withheld from the robot some very important
information, that must be of crucial importance for any rational inferences about the experiment;
and so we have. Nevertheless, it is important that we understand the surprising consequences of
neglecting that information.

But what meaningful predictions about the experiment could the robot possibly make, when
it is in such a primitive state of ignorance that it does not even know that there is any repetitive
experiment involved? Actually, the poorly informed robot is far from helpless; although it is
hopelessly na��ve in some respects, nevertheless it is already able to make a surprisingly large
number of correct predictions for purely combinatorial reasons (this should give us some respect
for the cogency of multiplicity factors, which can mask a lot of ignorance).

Let us see �rst just what those poorly informed predictions are; then we can give the robot
additional pertinent pieces of information and see how its predictions are revised as it comes to
know more and more about the real physical experiment. In this way we can follow the robot's
education step by step, until it reaches a level of sophistication comparable to (in many cases,
exceeding) that displayed by real scientists and statisticians discussing real experiments.

Denote this initial state of ignorance (the robot knows only the number N of possible outcomes
and nothing else) by I0. The principle of indi�erence (2{74) then applies; the robot's \sample space"
or \hypothesis space" consists of N = mn discrete points, and to each it assigns probability N�1.
Any proposition A that is de�ned to be true on a subset containing M(A) points and false on the
rest will, by the rule (2{76), then be assigned the probability

P (AjI0) =
M(A)

N
; (9{3)

just the frequency with which A is true on the full set. This trivial{looking result summarizes
everything the robot can say on the prior information I0, and it illustrates again that connec-
tions between probability and frequency appear automatically in probability theory as logic, as
mathematical consequences of the rules, whenever they are relevant to the problem.

Consider n tosses of a die, m = 6; the probability (9{1) of any completely speci�ed outcome is

f(r1 : : : rnjI0) =
1

6n
; 1 � rk � 6; 1 � k � n : (9{4)

What is the probability that the �rst toss gives three spots, regardless of what happens later? We
ask the robot for the probability that the �rst digit r1 = 3. Then the 6n�1 propositions

A(r2 : : :rn) � \r1 = 3 and the remaining digits are r2 : : : rn"

are mutually exclusive, and so (2{64) applies:

P (r1 = 3jI0) =
6X

r2=1

: : :

6X
rn=1

f(3; r2 : : :rnjI0) = 6n�1 f(r1 : : :rnjI0) =
1

6
(9{5)

[Note that the statement \r1 = 3" is a proposition, so by our notational rules in Appendix B we
are allowed to put it in a formal probability symbol.]
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But by symmetry, if we had asked for the probability that any speci�ed (k'th) toss gives any
speci�ed (i'th) result, the calculation would have been the same:

P (rk = ijI0) =
1

6
; 1 � i � 6; 1 � k � n : (9{6)

Now, what is the probability that the �rst toss gives i spots, and the second gives j spots? The
robot's calculation is just like the above; the results of the remaining tosses comprise 6n�2 mutually
exclusive possibilities, and so

P (r1 = i; r2 = jjI0) =
6X

r3=1

: : :

6X
rn=1

f(i; j; r3 : : :rnjI0) = 6n�2 f(r1 : : : rnjI0) =
1

62

=
1

36

(9{7)

and by symmetry the answer would have been the same for any two di�erent tosses. Similarly, the
robot will tell us that the probability of any speci�ed outcomes at any three di�erent tosses is

f(ri rj rkjI0) =
1

63
=

1

216
(9{8)

and so on!

Let us now try to educate the robot. Suppose we give it the additional information that, to
you and me, means that the �rst toss gave 3 spots. But we tell this to the robot in the form: out of
the originally possible N outcomes, the correct one belongs to the subclass for which the �rst digit
is r1 = 3. With this additional information, what probability will it now assign to the proposition
r2 = j? This conditional probability is determined by the product rule (2{46):

f(r2jr1I0) =
f(r1r2jI0)

f(r1jI0)
(9{9)

or, using (9{6), (9{7),

f(r2jr1I0) =
1=36

1=6
=

1

6
= f(r2jI0) : (9{10)

The robot's prediction is unchanged. If we tell it the result of the �rst two tosses and ask for its
predictions about the third, we have from (9{8) the same result:

f(r3jr1r2I0) =
f(r3r1r2jI0)

f(r1r2jI0)
=

1=216

1=36
=

1

6
= f(r3jI0) : (9{11)

We can continue in this way, and will �nd that if we tell the robot the results of any number of
tosses, this will have no e�ect at all on its predictions for the remaining ones.

It appears that the robot is in such a profound state of ignorance I0 that it cannot be educated.
However, if it does not respond to one kind of instruction, perhaps it will respond to another. But
�rst we need to understand the cause of the di�culty.
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Induction

In what way does the robot's behavior surprise us? Its reasoning here is di�erent from the way you
and I would reason, in that the robot does not seem to learn from the past. If we were told that
the �rst dozen digits were all 3, you and I would take the hint and start placing our bets on 3 for
the next digit. But the poorly informed robot does not take the hint, no matter how many times
it is given.

More generally, if you or I could perceive any regular pattern in the previous results, we would
more or less expect it to continue; this is the reasoning process called \induction". The robot does
not yet see how to reason inductively. However, the robot must do all things quantitatively, and
you and I would have to admit that we are not certain whether the regularity will continue. It only
seems somewhat likely, but our intuition does not tell us how likely. So our intuition, again, gives
us only a qualitative \sense of direction" in which we feel the robot's quantitative reasoning ought
to go.

Note that what we are calling \induction" is a very di�erent process from what is called,
confusingly, \mathematical induction". The latter is a rigorous deductive process, and we are not
concerned with it here.

The problem of \justifying induction" has been a di�cult one for the conventional formulations
of probability theory usually taught to scientists, and the nemesis of some philosophers. For
example, the philosopher Karl Popper (1974) has gone so far as to atly deny the possibility of
induction. He asked the rhetorical question: \Are we rationally justi�ed in reasoning from repeated

instances of which we have experience to instances of which we have no experience?" This is, quite
literally, the poorly informed robot speaking to us, and wanting us to answer \No!". But we want
to show that a better informed robot will answer: \Yes, if we have prior information connecting

the di�erent trials" and give speci�c circumstances that enable induction to be made.

The di�culty has seemed particularly acute in the theory of survey sampling, which corre-
sponds closely to our equations above. Having questioned 1000 people and found that 672 of them
favor proposition A in the next election, by what right do the pollsters jump to the conclusion that
about 67�3 percent of the millions not surveyed also favor proposition A? For the poorly informed
robot (and, apparently, for Popper too), learning the opinions of any number of persons tells it
nothing about the opinions of anyone else.

The same logical problem appears in many other situations. In physics, suppose we measured
the energies of 1000 atoms, and found that 672 of them were in excited states, the rest in the
ground state. Do we have any right to conclude that about 67 percent of the 1023 other atoms not
measured are also in excited states? Or, 1000 cancer patients were given a new treatment and 672
of them recovered; then in what sense is one justi�ed in predicting that this treatment will also
lead to recovery in about 67% of future patients? On prior information I0 there is no justi�cation
at all for such inferences.

As these examples show, the problem of logical justi�cation of induction (i.e., of clarifying the
exact meaning of the statements, and the exact sense in which they can be supported by logical
analysis) is important as well as di�cult. We hope to show that only probability theory as logic
can solve this problem.

Are There General Inductive Rules?

What is shown by (9{10) and (9{11) is that on the information I0 the results of di�erent tosses
are, logically, completely independent propositions; giving the robot any information whatsoever
about the results of speci�ed tosses, tells it nothing relevant to any other toss. The reason for this
was stressed above: the robot does not yet know that the successive digits fr1; r2 : : :g represent
successive repetitions of the same experiment. It can be educated out of this state only by giving
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it some kind of information that has relevance to all tosses; for example, if we tell it something,
however slight, about some property that is common to all trials.

Perhaps, then, we might learn by introspection: what is that extra \hidden" information,
common to all trials, that you and I are using, unconsciously, when we do inductive reasoning? Then
we might try giving this hidden information to the robot (i.e., incorporate it into our equations).

But a very little introspection is enough to make us aware that there is no one piece of hidden
information; there are many di�erent kinds. Indeed, the inductive reasoning that we all do varies
widely, even for identical data, as our prior knowledge about the experiment varies. Sometimes we
\take the hint" immediately, and sometimes we are as slow to do it as the poorly informed robot.

For example, suppose the data are that the �rst three tosses of a coin have all yielded \heads":
D = H1H2H3. What is our intuitive probability P (H4jDI) for heads on the fourth toss? This
depends very much on what that prior information I is. On prior information I0 the answer is
always p(H4jDI0) = 1=2, whatever the data. Two other possibilities are:

I1 � \We have been allowed to examine the coin carefully and observe the tossing. We
know that the coin has a head and a tail and is perfectly symmetrical, with its center
of gravity in the right place, and we saw nothing peculiar in the way it was tossed."

I2 � \We were not allowed to examine the coin, and we are very dubious about the `honesty'
of either the coin or the tosser."

On information I1, our intuition will probably tell us that the prior evidence of the symmetry of
the coin far outweighs the evidence of three tosses; so we shall ignore the data and again assign
P (H4jDI1) = 1=2.

But on information I2 we would consider the data to have some cogency: we would feel that
the fact of three heads and no tails constitutes some evidence (although certainly not proof) that
some systematic inuence is at work favoring heads, and so we would assign P (H4jDI2) > 1=2.
Then we would be doing real inductive reasoning.

But now we seem to be facing a paradox. For I1 represents a great deal more information than
does I2; yet it is P (H4jDI1) that agrees with the poorly informed robot! In fact, it is easy to see
that all our inferences based on I1 agree with those of the poorly informed robot, as long as the
prior evidence of symmetry outweighs the evidence of the data).

However, this is only an example of something that we have surely noted many times in other
contexts. The fact that one person has far greater knowledge than another does not mean that they
necessarily disagree; an idiot might guess the same truth that a scholar has spent years establishing.
All the same, it does call for some deep thought to understand why knowledge of perfect symmetry
could leave us making the same inferences as does the poorly informed robot.

As a start on this, note that we would not be able to assign any de�nite numerical value to
P (H4jDI2) until that vague information I2 is speci�ed much more clearly. For example, consider
the extreme case:

I3 � \We know that the coin is a trick one, that has either two heads or two tails; but we
do not know which."

Then we would, of course, assign P (H4jDI3) = 1; in this state of prior knowledge, the evidence of
a single toss is already conclusive. It is not possible to take the hint any more strongly than this.

As a second clue, note that our robot did seem, at �rst glance, to be doing inductive reason-
ing of a kind back in Chapter 3, for example in (3{13), where we examined the hypergeometric
distribution. But on second glance it was doing \reverse induction"; the more red balls had been
drawn, the lower its probability for red in the future. And this reverse induction disappeared when
we went on to the limit of the binomial distribution.
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But you and I could also be persuaded to do reverse induction in coin tossing. Consider the
prior information:

I4 � \The coin has a concealed inner mechanism that constrains it to give exactly 50 heads
and 50 tails in the next 100 tosses"

On this prior information, we would say that tossing the coin is, for the next 100 times, equivalent
to drawing from an urn that contains initially 50 red balls and 50 white ones. We could then use
the product rule as in (9{9) but with the hypergeometric distribution h(rjN;M; n) of (3{18):

P (H4jDI4) =
h(4j100; 50; 4)

h(3j100; 50; 3)
=

0:05873

0:12121
= 0:4845 <

1

2

But in this case it is easier to reason it out directly: P (H4jDI4) = (M � 3)=(N � 3) = 47=97 =
0:4845.

The great variety of di�erent results that we have found from the same data makes it clear
that there can be no such thing as a single universal inductive rule and, in view of the unlimited
variety of di�erent kinds of conceivable prior information, makes it seem dubious that there could
exist even a classi�cation of all inductive rules by any system of parameters.

Nevertheless, such a classi�cation was attempted by the philosopher R. Carnap (1891{1970),
who found (Carnap, 1952) a continuum of rules determined by a single parameter �, (0 < � <1).
But ironically, Carnap's rules turned out to be identical with those given, on the basis of entirely
di�erent reasoning, by Laplace in the 18'th Century (the \rule of succession" and its generalizations)
that had been rejected as metaphysical nonsense by statisticians and philosophers.y

Laplace was not considering the general problem of induction, but was only �nding the conse-
quences of a certain type of prior information, so the fact that he did not obtain every conceivable
inductive rule never arose and would have been of no concern to him. In the meantime, superior
analyses of Laplace's problem had been given by W. E. Johnson (1932), Bruno de Finetti (1937)
and Harold Je�reys (1939), of which Carnap seemed unaware.

Carnap is seeking the general inductive rule (i.e., the rule by which, given the record of past
results, one can make the best possible prediction of future ones). But his exposition wanders o�
into abstract symbolic logic without ever considering a speci�c real example; and so it never rises to
the level of seeing that di�erent inductive rules correspond to di�erent prior information. It seems
to us obvious, from arguments like the above, that this is the primary fact controlling induction,
without which the problem cannot even be stated, much less solved. Yet neither the term \prior
information" nor the concept ever appears in Carnap's exposition.

This should give a good idea of the level of confusion that exists in this �eld, and the reason
for it; conventional frequentist probability theory simply ignores prior informationz and { just for
that reason { it is helpless to account for induction. Fortunately, probability theory as logic is able
to deal with the full problem. But to show this we need to develop our mathematical techniques
somewhat further, in the way that Laplace showed us some 200 years ago.

y Carnap (loc cit , p. 35), like Venn, claims that Laplace's rule is inconsistent (in spite of the fact that
it is identical with his own rule); we examine these claims in Chapter 18 and �nd, in agreement with
R. A. Fisher (1956), that they have misapplied Laplace's rule by ignoring the necessary conditions required
for its derivation.
z This is an understatement. Some frequentists take a militant stand against prior information, thereby
guaranteeing failure in trying to understand induction. We have already seen, in the example of Bertrand
at the end of Chapter 6, how disastrously wrong this is in other problems of inference.
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Multiplicity Factors

In spite of the formal simplicity of (9{3), the actual numerical evaluation of P (AjI0) for a com-
plicated proposition A may involve immense combinatorial calculations. For example, suppose we
toss a die twelve times. The number of conceivable outcomes is

612 = 2:18� 109 ;

which is about equal to the number of minutes since the Great Pyramid was built. The geologists
and astrophysicists tell us that the age of the universe is about 1010 years, or 3 � 1017 seconds.
Thus, in thirty tosses of a die, the number of possibilities (630 = 2:21 � 1023) is about equal to
the number of microseconds in the age of the universe. Yet we shall be particularly interested in
evaluating quantities like (9{3) pertaining to a famous experiment involving 20,000 tosses of a die!

It is true that we are concerned with �nite sets; but they can be rather large and we need
to learn how to calculate on them. An exact calculation will generally involve intricate number{
theoretic details (such as whether n is a prime number, whether it is odd or even, etc.), and may
require many di�erent analytical expressions for di�erent n; yet in view of the large numbers there
will be enormously good approximations which turn out to be easy to calculate.

A large class of problems may be �t into the following scheme. Let fg1; g2 : : : gmg be any set
of m �nite real numbers. For concreteness, one may think of gi as the \value" or the \gain" of
observing the i'th result in any trial (perhaps the number of pennies we win whenever that result
occurs), but the following considerations are independent of whatever meaning we attach to the
fgjg, with the proviso that they are additive; i.e., sums like g1+ g2 are to be, like sums of pennies,
meaningful to us. Or, perhaps gj is the excitation energy of the j'th atom, in which case G is the
total excitation energy of the sampled atoms. Or, perhaps gj is the size of the j'th account in a
bank, in which case G is the total deposits in the accounts inspected. The total amount of G found
in the experiment is then

G =
nX

k=1

g(rk) =
mX
j=1

nj gj (9{12)

where the sample number nj is the number of times the result rj occurred. If we ask the robot for
the probability of obtaining this amount, it will answer, from (9{3),

f(Gjn; I0) =
M(n;G)

N
(9{13)

where M(n;G) is the multiplicity of the event G; i.e., the number of di�erent outcomes which
yield the value G (we now indicate in it also the number of trials n { to the robot, the number of
digits which de�ne an outcome { because we want to allow this to vary). Many probabilities are
determined by this multiplicity factor; for example, suppose we are told the result of the i'th trial:
ri = j, where 1 � i � n; 1 � j � m. Then the total G becomes, in place of (9{12),

G = gj +
X
k 6=j

nk gk (9{14)

and the multiplicity of this is, evidently, M(n� 1; G� gj). Therefore the probability of getting the
total gain G is changed to

p(Gjri = j; n; I0) =
M(n� 1; G� gj)

mn�1
(9{15)
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and, given only I0, the probability of the event ri = j is, from (9{6),

p(ri = jjn; I0) =
1

m
(9{16)

This gives us everything we need to apply Bayes' theorem conditional on G:

p(ri = jjG; n; I0) = p(ri = jjn; I0)
p(Gjri = j; n; I0)

p(Gjn; I0)
(9{17)

or,

p(ri = jjG; n; I0) =
1

m

[M(n� 1; G� gj)=m
n�1]

[M(n;G)=mn]
=
M(n� 1; G� gj)

M(n;G)
(9{18)

Exercise 9.2: Extend this result to �nd the joint probability

p(ri = j; rs = tjG; n; I0) = M(n� 2; G� gj � gt)=M(n;G) (9{19)

as a ratio of multiplicities.

Many problems can be solved if we can calculate the multiplicity factor M(n;G); as noted it may
require an immense calculation to �nd it exactly, but there are relatively simple approximations
which become enormously good for large n.

Partition Function Algorithms

Formally, the above multiplicity varies with n and G in a simple way. Expanding M(n;G) according
to the result of the n'th trial gives the recursion relation

M(n;G) =
mX
j=1

M(n� 1; G� gj) : (9{20)

This is a linear di�erence equation with constant coe�cients in both n and G, so it must have
elementary solutions of exponential form:

exp(�n + �G) : (9{21)

On substitution into (9{19) we �nd that this is a solution of the di�erence equation if � and � are
related by

e� = Z(�) �
mX
j=1

e��gj : (9{22)

The function Z(�) is called the partition function, and it will have a fundamental importance
throughout all of probability theory. An arbitrary superposition of such elementary solutions:

H(n;G) =

Z
Zn(�) e�G h(�) d � (9{23)

is a formal solution of (9{19). However, the true M(n;G) also satis�es the initial condition
M(0; G) = �(G; 0) and is de�ned only for certain discrete values of G = �njgj, the values that are
possible results of n trials.
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Since (9{23) has the form of an inverse Laplace transform, let us note the discrete Laplace
transform ofM(n;G). Suppose we multiply M(n;G) by exp(��G) and sum over all possible values
of G. This sum contains a contribution from every possible outcome of the experiment, and so it
can be expressed equally well as a sum over all possible sample numbers:

X
G

e��G M(n;G) =
X
fnjg

W (n1 : : :nm) exp(���njgj) ; (9{24)

where the multinomial coe�cient

W (n1 : : :nm) �
N !

n1! : : :nm!
(9{25)

is the number of outcomes that have the sample numbers fn1 : : :nmg, and we sum over the region
fR :

P
nj = N; nj � 0g. But, comparing with the multinomial expansion of (x1+ � � �+xm)

n, this
is just X

G

e��GM(n;G) = Zn(�) : (9{26)

Therefore the proper choice of the function h(�) and path of integration in (9{23) is the one that
makes (9{23) and (9{26) a Laplace transform pair. To �nd it, note that the integrand in (9{23)
contains a sum of a �nite number of terms:

Zn(�)e�G =
X
k

M(n;Gk)e
�(G�Gk) (9{27)

where fGkg are the possible gains. Therefore it su�ces to consider a single term. Now an integral
over an in�nite domain is by de�nition the limit of a sequence of integrals over �nite domains, so
consider the integral

I(u) �
1

2i

Z iu

�iu

e�(G�Gk) d� =
sin u(G� Gk)

G�Gk

: (9{28)

As a function ofG, this has a single maximum of height u, width about �=u. In fact,
R
sin ux=xdx =

� independent of u. As u!1, we have I(u)! ��(G� Gk), so

1

2�i

Z i1

�i1

Zn(�) e�G d� =
X
k

M(n;Gk) �(G�Gk) (9{29)

and of course (9{26) can be written more explicitly as

Zn(�) =

Z
e��G q(G) dG (9{30)

where

q(G) �
X
k

M(n;Gk) �(G�Gk) : (9{31)

and so the required result is: Zn(�) and q(G) are a standard Laplace transform pair.y

y This illustrates again how awkward it would be to try to conduct substantive analytical work without
delta functions; they arise naturally and inevitably in the course of many calculations, and they can be
evaded only by elaborate and quite unnecessary subterfuges. The reader is expected to be aware of the
work of Lighthill establishing this rigorously, as noted in Appendices B and F.
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We consider the use of this presently, but note �rst that in many cases (9{26) is all we need
to solve combinatorial problems.

Equation (9{26) says that the number of ways M(n;G) in which a particular value G can be
realized is just the coe�cient of exp(��G) in Zn(�); in other words, Z(�) raised to the n'th power
displays the exact way in which all the possible outcomes in n trials are partitioned among the
possible values of G, which indicates why the name `partition function" is appropriate.

In some simple problems, this observation gives us the solution by mere inspection of Zn(�).
For example, if we make the choice

gj � �(i; 1) (9{32)

then the total G is just the �rst sample number:

G =
X

njgj = n1 : (9{33)

The partition function (9{22) is then

Z(�) = e�� +m� 1 (9{34)

and from Newton's binomial expansion,

Zn(�) =
nX
s=0

�
n

s

�
e��s (m� 1)n�s : (9{35)

M(n;G) = M(n; n1) is then the coe�cient of exp(��n1) in this expression:

M(n;G) = M(n; n1) =

�
n

n1

�
(m� 1)n�n1 : (9{36)

In this simple case, the counting could have been done also as: M(n; n1) = (number of ways of
choosing n1 trials out of n) � (number of ways of allocating the remaining m � 1 trial results to
the remaining n�n1 trials). However, the partition function method works just as well in far more
complicated problems; and even in this example the partition function method, once understood,
is easier to use.

In the choice (9{32) we separated o� the trial result j = 1 for special attention. More generally,
suppose we separate the m trial results arbitrarily into a subset S containing s of them, and the
complementary subset S consisting of the (m � s) remaining ones, where 1 < s < m. Call any
result in the subset S a \success", any in S a \failure". Then we replace (9{32) by

gj =

(
1; j 2 S

0; otherwise

)
(9{37)

and Equations (9{33){(9{36) are generalized as follows. G is now the total number of successes,
called traditionally r:

G =
mX
j=1

nj gj = r (9{38)

which, like n1, can take on all values in 0 � r � n. The partition function now becomes

Z(�) = s e�� +m� s (9{39)

from which
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Zn(�) =
nX

r=0

�
n

r

�
sre��r(m� s)n�r (9{40)

and

M(n;G) = M(n; r) =

�
n

r

�
sr (m� s)n�r : (9{41)

From (9{13), the poorly informed robot's probability for r successes is therefore

P (G = rjI0) =

�
n

r

�
pr (1� p)n�r ; 0 � r � n (9{42)

where, on the right{hand side, p = s=m.

But this is just the binomial distribution b(rjn; p), whose derivation cost us so much conceptual
agonizing in Chapter 3; now seen in a new light. In Chapter 3, we obtained the binomial distribution
(3{74) as the limiting form in drawing from an in�nitely large urn, and again as a randomized
approximate form (3{79) in drawing with replacement from a �nite urn; but in neither case was
it exact for a �nite urn. Now we have found a case where the binomial distribution arises for a
di�erent reason and it is exact for a �nite sample space.

This quantitative exactness is a consequence of our making the problem more abstract; there
is now, in the prior information I0, no mention of complicated physical properties such as those of
urns, balls, and hands reaching in. But more important, and surprising, is simply the qualitative
fact that the binomial distribution, ostensibly arising out of repeated sampling, has appeared in the
inferences of a robot so poorly informed that it does not even have the concept of repetitions and
sampling! In other words, the binomial distribution has an exact combinatorial basis, completely
independent of the notion of \repetitive sampling".

This gives us a clue toward understanding how the poorly informed robot functions. In con-
ventional probability theory, starting with James Bernoulli (1713), the binomial distribution has
always been derived from the postulate that the probability of any result is to be the same at each
trial, strictly independently of what happens at any other trial . But as we have noted already, that
is exactly what the poorly informed robot would say { not out of its knowledge of the physical
conditions of the experiment, but out of its complete ignorance of what is happening.

Now we could go through many other derivations and we would �nd that this agreement
persists: the poorly informed robot will �nd not only the binomial but also its generalization, the
multinomial distribution, as combinatorial theorems. Then all the usual probability distributions
of sampling theory (Poisson, Gamma, Gaussian, Chi{squared etc.) will follow as limiting forms
of these, as noted in Appendix E. All the results that conventional probability theory has been
obtaining from the frequency de�nition and the assumption of strict independence of di�erent
trials, are just what the poorly informed robot would �nd in the same problem. In other words,
we can now characterize the conventional frequentist probability theory functionally, simply as the
reasoning of the poorly informed robot .

Exercise 9.3: Derive the multinomial distribution found in Chapter 3, Eq. (3{77), as a
generalization or extension of our derivation of (9{42).

Then, since the poorly informed robot is unable to do inductive reasoning, we begin to under-
stand why conventional probability theory has trouble with it. Both lack the essential ingredient
required for induction; until we learn how to introduce some kind of correlation between the results
of di�erent trials, the results of any trials cannot tell us anything about any other trial, and it
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will be impossible to \take the hint." Indeed, frequentist probability theory is stuck with inde-
pendent trials because it lays great stress on limit theorems, and examination of them shows that
their validity depends entirely on the strict independence of di�erent trials. The slightest positive
correlation between the results of di�erent trials will render those theorems qualitatively wrong.
Indeed, without that strict independence virtually all of the sampling distributions for estimators,
on which orthodox statistics depends, would be incorrect, invalidating their procedures.

Yet on second glance there is an important di�erence; in conventional probability theory that
\independence" is held to mean causal physical independence; to the robot it means logical inde-
pendence, a very much stronger condition. But from the standpoint of the frequentist, that is only
a philosophical di�erence { not really a functional one { because he con�nes himself to what we
consider conceptually simple problems. We note this particularly in Chapter 16, comparing the
work of R. A. Fisher and H. Je�reys.

Relation to Generating Functions

Note that the number of conceivable outcomes can be written as N = mn = Zn(0), so that (9{40)
becomes

Zn(�)

Zn(0)
=

nX
r=0

b(rjn; p) zr (9{43)

where z � e��. This is just what we called the \generating function" for the binomial distribution
in Chapter 3 without further explanations.

In any problem we may set z = e��, and instead of a partition function, de�ne a generating
function �(z) � Z(�)=Z(0). Of course, anything that can be done with one function can be done
also with the other; but in calculations such as (9{23) where one must carry out integrations
over complex values of � or z, the partition function is generally a more convenient tool because
it remains single{valued in the complex �{plane in conditions (i.e., when the gj are irrational
numbers) where the generating function would develop an in�nite number of Riemann surfaces in
the z{plane.

We have seen above how the partition function may be used to calculate exact results in proba-
bility theory. However, its real power appears in problems so complicated that we would not attempt
to calculate the exact Z(�) analytically. When n becomes large, there are very accurate asymp-
totic formulas for logZ(�) which are amenable to hand calculation. Indeed, partition functions and
generating functions are such powerful calculational devices that Laplace's Th�eorie analytique des

probabilit�es devotes Volume 1 entirely to developing the theory of generating functions, and how to
use them for solving �nite di�erence equations such as (9{19), before even mentioning probability.

Since the fundamental work of Gibbs (1902), the partition function has also been the standard
device on which all useful calculations in Statistical Mechanics are based; indeed, there is hardly
any nontrivial problem which can be solved at all without it. Typically, one expresses Z or logZ
as a contour integral, then chooses the path of integration to pass over a saddle point that becomes
sharper as n ! 1, whereupon saddle{point integration yields excellent asymptotic formulas. We
shall see examples presently.

Then Shannon (1948) found that the di�erence equation (9{19) and the above way of solving it
are the basic tools for calculating channel capacity in Communication Theory. Finally, it is curious
that Laplace's original discussion of generating functions contains almost all the mathematical
material that Electrical Engineers use today in the theory of digital �lters, not thought of as
related to probability theory at all.

From Laplace transform theory, the path of integration in (9{23) will be from (�i1) to (i1)
in the complex � { plane, passing to the right of all singularities in the integrand. In complicated
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problems one may use the integral representation (9{23) to evaluate probabilities. In particular,
integral representations of a function usually provide the easiest way of extracting asymptotic forms
(for large n). However, resort to (9{23) is not always necessary if we note the following.

Another Way of Looking at it

The following observation gives us a better intuitive understanding of the partition function method.
Unfortunately, it is only a number{theoretic trick, useless in practice. From (9{24) and (9{25) we
see that the multiplicity of ways in which the total G can be realized can be written as

M(n;G) =
X
fnjg

W (n1 � � �nm) (9{44)

where we are to sum over all sets of non{negative integers fnjg satisfyingX
nj = n ;

X
njgj = G : (9{45)

Let fnjg and fn0jg be two such di�erent sets which yield the same total:
P

njgj =
P

n0jgj = G.
Then it follows that

mX
j=1

kjgj = 0 (9{46)

where by hypothesis the integers kj � nj � n0j cannot all be zero.

Two numbers f; g are said to be incommensurable if their ratio is not a rational number; i.e.,
if (f=g) cannot be written as (r=s) where r and s are integers (but of course, any ratio may be thus
approximated arbitrarily closely by choosing r; s large enough). Likewise, we shall call the numbers
(g1 � � �gm) jointly incommensurable if no one of them can be written as a linear combination of the
others with rational coe�cients. But if this is so, then (9{46) implies that all kj = 0:

nj = n0j ; 1 � j � m

so if the fg1 � � �gmg are jointly incommensurable, then in principle the solution is immediate; for
then a given value of G =

P
njgj can be realized by only one set of sample numbers nj ; i.e., if G

is speci�ed exactly, this determines the exact values of all the fnjg. Then we have only one term
in (9{44):

M(n;G) = W (n1 � � �nm) (9{47)

and

M(n � 1; G� gj) = W (n01 � � �n
0

m) (9{48)

where, necessarily, n0i = ni � �ij . Then the exact result (9{18) reduces to

p(rk = jjG; n; I0) =
W (n01 � � �n

0

m)

W (n1 � � �nm)
=

(n� 1)!

n!

nj !

(nj � 1)!
=

nj

n
(9{49)

In this case the result could have been found in a di�erent way: whenever by any means the robot
knows the sample number nj (i.e., the number of digits fr1 � � �rng equal to j) but does not know
at which trials the j'th result occurred (i.e., which digits are equal to j), it can apply Bernoulli's
rule (9{3) directly:
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P (rk = jjnj; I0) =
nj

(total number of digits)
(9{50)

Again, the probability of any proposition A is equal to the frequency with which it is true in
the relevant set of equally possible hypotheses. So again our robot, even if poorly informed, is
nevertheless producing the standard results that current conventional treatments all assure us are
correct. Conventional writers appear to regard this as a kind of law of physics; but we need not
invoke any \law" to account for the fact that a measured frequency often approximates an assigned
probability (to a relative accuracy something like n�1=2 where n is the number of trials). If the
information used to assign that probability includes all of the systematic e�ects at work in the real
experiment, then the great majority of all things that could happen in the experiment correspond
to frequencies remaining in such a shrinking interval; this is simply a combinatorial theorem, which
in essence was given already by de Moivre and Laplace in the 18'th Century, in their asymptotic
formula. In virtually all of current probability theory this strong connection between probability and
frequency is taken for granted for all probabilities but without any explanation of the mechanism
that produces it; for us, this connection is only a special case.

Now if certain factors are not varying from one trial to the next, there is presumably some
physical cause which is preventing that variation. Therefore, we might call the unvarying factors the
constraints or the signal, the uncontrolled variable factors the noise operating in the experiment.
Evidently, if we know the constraints in advance, then we can do a tolerably good job of predicting
the data. Conversely, given some data we are often interested primarily in estimating what signal
is present in them; i.e., what constraints must be operating to produce such data.

The Better Informed Robot

With the clues just uncovered, we are able to educate the robot so that it can do inductive reasoning
in more or less the same way that you and I do. Perhaps the best explored, and to date most useful,
classes of correlated sampling distributions are those called Dirichlet , exchangeable, autoregressive,
and maximum entropy distributions. Let us see how each of these enables the robot to deal with
problems like the survey sampling noted above.

********************* MUCH MORE COMING HERE! *************************

We can now sum up what we have learned about probability and frequency.

Probability and Frequency

In our terminology, a probability is something that we assign, in order to represent a state of
knowledge, or that we calculate from previously assigned probabilities according to the rules of
probability theory. A frequency is a factual property of the real world that we measure or esti-
mate. The phrase \estimating a probability" is just as much a logical incongruity as \assigning a
frequency" or \drawing a square circle".

The fundamental, inescapable distinction between probability and frequency lies in this rela-
tivity principle: probabilities change when we change our state of knowledge; frequencies do not.
It follows that the probability p(E) that we assign to an event E can be equal to its frequency
f(E) only for certain particular states of knowledge. Intuitively, one would expect this to be
the case when the only information we have about E consists of its observed frequency; and the
mathematical rules of probability theory con�rm this in the following way.

We note the two most familiar connections between probability and frequency. Under the
assumption of exchangeability and certain other prior information (Jaynes, 1968), the rule for
translating an observed frequency in a binary experiment into an assigned probability is Laplace's
rule of succession. We have encountered this already in Chapter 6 in connection with Urn sampling,
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and we analyze it in detail in Chapter 18. Under the assumption of independence, the rule for
translating an assigned probability into an estimated frequency is Bernoulli's weak law of large
numbers (or, to get an error estimate, the de Moivre { Laplace limit theorem).

However, many other connections exist. They are contained, for example, in the principle of
maximum entropy (Chapter 11), the principle of transformation groups (Chapter 12), and in the
theory of uctuations in exchangeable sequences (Jaynes, 1978).

If anyone wished to research this matter, we think he could �nd a dozen logically distinct
connections between probability and frequency, that have appeared in various applications. But
these connections always appear automatically, as mathematical consequences of probability theory
as logic, whenever they are relevant to the problem; there is never any need to de�ne a probability
as a frequency.

Indeed, Bayesian theory may justi�ably claim to use the notion of frequency more e�ectively
than does the \frequency" theory. For the latter admits only one kind of connection between prob-
ability and frequency, and has trouble in cases where a di�erent connection is appropriate. Those
cases include some important, real problems which are today at the forefront of new applications.

Today, Bayesian practice has far outrun the original class of problems where frequency de�ni-
tions were usable; yet it includes as special cases all the useful results that had been found in the
frequency theory. In discarding frequency de�nitions, then, we have not lost \objectivity"; rather,
we have advanced to the exibility of a far deeper kind of objectivity than that envisaged by Venn,
von Mises, and Fisher. This exibility is necessary for scienti�c inference; for most real problems
arise out of incomplete information, and have nothing to do with random experiments.

In physics, when probabilities are allowed to become physically real, logical consistency even-
tually forces one to regard ordinary objects such as atoms, as unreal; this is rampant in the current
literature of statistical mechanics and theoretical physics. In economics, where experiments cannot
be repeated, belief that probabilities are real would force one to invent an ensemble of imaginary
worlds to de�ne a sample space, diverting attention away from the one real world that we are trying
to reason about.

The \propensity" lies not in the de�nition of probability in general, or in any \physical reality"
of probabilities; it lies in the prior information that was used to calculate the probability. Where the
appropriate prior information is lacking, so is the propensity. We found already in Chapter 3 that
conditional probabilities { even sampling probabilities { express fundamentally logical inferences

which may or may not correspond to causal physical inuences.

*******************************************************************

R. A. Fisher, J. Neyman, R. von Mises, Wm. Feller, and L. J. Savage denied vehemently
that probability theory is an extension of logic, and accused Laplace and Je�reys of committing
metaphysical nonsense for thinking that it is. It seems to us that, if Mr. A wishes to study
properties of frequencies in random experiments and publish the results for all to see and teach
them to the next generation, he has every right to do so, and we wish him every success. But
in turn Mr. B has an equal right to study problems of logical inference that have no necessary
connection with frequencies or random experiments, and to publish his conclusions and teach them.
The world has ample room for both.

Then why should there be such unending conict, unresolved after over a Century of bitter
debate? Why cannot both coexist in peace? What we have never been able to comprehend is this:
If Mr. A wants to talk about frequencies, then why can't he just use the word \frequency"? Why
does he insist on appropriating the word \probability" and using it in a sense that ies in the face
of both historical precedent and the common colloquial meaning of that word? By this practice he
guarantees that his meaning will be misunderstood by almost every reader who does not belong
to his inner circle clique. It seems to us that he would �nd it easy { and very much in his own
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self{interest { to avoid these constant misunderstandings, simply by saying what he means. [H.
Cram�er (1946) did this fairly often, although not with 100% reliability, so his work is today easier
to read and comprehend.]

Of course, von Mises, Feller, Fisher, and Neyman would not be in full agreement among
themselves on anything. Nevertheless, whenever any of them uses the word \probability", if we
merely substitute the word \frequency" we shall go a long way toward clearing up the confusion
by producing a statement that means more nearly what they had in mind.

However, we think it is obvious that the vast majority of the real problems of science fall into
Mr. B's category and therefore, in the future, science will be obliged to turn more and more toward
his viewpoint and results. Furthermore, Mr. B's use of the word \probability" as expressing human
information enjoys not only the historical precedent, but it is also closer to the colloquial meaning
of the word.

Halley's Mortality Table

An early example of the use of observed frequencies as probabilities, in a more useful and digni�ed
context than gambling, and by a procedure that is so nearly correct that we could not improve
on it appreciably today, was provided by the astronomer Edmund Halley (1656{1742) of \Halley's
Comet" fame. Interested in many things besides astronomy, he also prepared in 1693 the �rst
modern Mortality Table. Let us dwell a moment on the details of this work because of its great
historical interest.

The subject does not quite start with Halley, however. In England, due presumably to increas-
ing population densities, various plagues were rampant from the 16'th Century up to the adoption
of public sanitation policies and facilities in the mid 19'th Century. In London, starting intermit-
tently in 1591, and continuously from 1604 for several decades, there were published weekly Bills
of Mortality, which listed for each parish the number of births and deaths of males and females
and the statistics compiled by the Searchers, a body of \antient Matrons" who carried out the
unpleasant task of examining corpses and from the physical evidence and any other information
they were able to elicit by inquiry, judged as best as they could the cause of each death.

In 1662, John Graunt (1620{1674) called attention to the fact that these Bills, in their totality,
contained valuable demographic information that could be useful to Governments and Scholars for
many other purposes besides judging the current state of public health.y He aggregated the data
for 1632 into a single more useful table and made the observation that in su�ciently large pools of
data on births there are always slightly more boys than girls, which circumstance provoked many
speculations and calculations by probabilists for the next 150 years. Graunt was not a scholar, but
a self{educated shopkeeper. Nevertheless, his short work contained so much valuable good sense
that it came to the attention of Charles II, who as a reward ordered the Royal Society (which he
had founded shortly before) to admit Graunt as a Fellow.z

y It appears that this story may be repeated some 330 years later, in the recent realization that the records
of credit card companies contain a wealth of economic data which have been sitting there unused for many
years. For the largest such company (Citicorp), a record of one percent of the nation's retail sales comes
into its computers every day. For predicting some economic trends and activity this is far more detailed,
reliable, and timely than the monthly Government releases.
z Contrast this enlightened attitude and behavior with that of Oliver Cromwell shortly before, who through
his henchmen did more wanton, malicious damage to Cambridge University than any other person in
history. The writer lived for a year in the Second Court of St. John's College, Cambridge, which Cromwell
appropriated and put to use, not for scholarly pursuits, but as the stockade for holding his prisoners.
Whatever one may think of the private escapades of Charles II, one must ask also: What was the alternative?
Had the humorless fanatic Cromwell prevailed, there would have been no Royal Society, and no recognition
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Edmund Halley (1656{1742)was highly educated, mathematically competent (later succeeding
Wallis (1703) as Savilian Professor of Mathematics at Oxford University and Flamsteed (1720) as
Astronomer Royal and Director of the Greenwich Observatory), a personal friend of Isaac Newton
and the one who had persuaded him to publish his Principia by dropping his own work to see
it through publication and paying for it out of his own modest fortune. He was eminently in a
position to do more with demographic data than was John Graunt.

In undertaking to determine the actual distribution of age in the population, Halley had
extensive data on births and deaths from London and Dublin. But records of the age at death were
often missing, and he perceived that London and Dublin were growing rapidly by in{migration,
biasing the data with people dying there who were not born there. So he found instead �ve years'
data (1687{1691) for a city with a stable population: Breslau in Silesia (today called Wroclaw, in
what is now Poland). Silesians, more meticulous in record keeping and less inclined to migrate,
generated better data for his purpose.

Of course, contemporary standards of nutrition, sanitation, and medical care in Breslau might
di�er from those in England. But in any event Halley produced a mortality table surely valid for
Breslau and presumably not badly in error for England. We have converted it into a graph, with
three emendations described below, and present it in Fig. 9.1.

In the 17'th Century, even so learned a man as Halley did not have the habits of full, clear
expression that we expect in scholarly works today. In reading his work we are exasperated at the
ambiguities and omissions, which make it impossible to ascertain some important details about
his data and procedure. We know that his data consisted of monthly records of the number of
births and deaths and the age of each person at death. Unfortunately, he does not show us the
original, unprocessed data, which would today be of far greater value to us than anything in his
work, because with modern probability theory and computers, we could easily process the data for
ourselves, and extract much more information from them than Halley did.

Halley presents two tables derived from the data, giving respectively the estimated number
d(x) of annual deaths (total number /5) at each age of x years (but which inexplicably contains
some entries that are not multiples of 1/5), and the estimated distribution n(x) of population by
age. Thus the �rst table is, crudely, something like the negative derivative of the second. But,
inexplicably, he omits the very young (< 7 yr) from the �rst table, and the very old (> 84 yr)
from the second, thus withholding what are in many ways the most interesting parts, the regions
of strong curvature of the graph.

Even so, if we knew the exact procedure by which he constructed the tables from the raw
data, we might be able to reconstruct both tables in their entirety. But he gives absolutely no
information about this, saying only, \From these Considerations I have formed the adjoyned Table,
whose Uses are manifold, and give a more just Idea of the State and Condition of Mankind, than
any thing yet extant that I know of." But he fails to inform us what \these Considerations" are,
so we are reduced to conjecturing what he actually did.

Although we were unable to �nd any conjecture which is consistent with all the numerical
values in Halley's tables, we can clarify things to some extent. In the �rst place, the actual number
of deaths at each age in the �rst table naturally shows considerable \statistical uctuations" from
one age to the next. Halley must have done some kind of smoothing of this, because the uctuations
do not show in the second table.

From other evidence in his article we infer that he reasoned as follows: if the population
distribution is stable (exactly the same next year as this year), then the di�erence n(25)� n(26)

for scholarly accomplishment in England; quite likely, the magni�cent achievements of British science in
the 19'th Century would not have happened. It is even problematical whether Cambridge and Oxford
Universities would still exist today.
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between number now alive at ages 25 and 26 must be equal to the number d(25) now at age 25
who will die in the next year. Thus we would expect that the second table might be constructed
by starting with the estimated number (1238) born each year as n(0), and by recursion taking
n(x) = n(x � 1) � d(x), where d(x) is the smoothed estimate of d. Finally, the total population
of Breslau is estimated as

P
x n(x) = 34; 000. But although the later parts of table 2 are well

accounted for by this surmise, the early parts (0 < x < 7) do not �t it, and we have been unable
to form even a conjecture about how he determined the �rst six entries of table 2.

Secondly, we have shifted the ages downward by one year in our graph because it appears that
the common meanings of terms have changed in 300 years. Today, when we say colloquially that a
boy is `eight years old', we mean that his exact age x is in the range (8 � x < 9); i.e., he is actually
in his ninth year of life. But we can make sense out of Halley's numbers only if we assume that for
him the phrase `eight years current' meant in the eighth year of life; (7 < x � 8).

These points were noted also by Major Greenwood (1942), whose analysis con�rms our con-
clusion about the meaning of `age current'. However, our attempt to follow his reasoning beyond
that point leaves us more confused than before (he suggests that Halley took into account that the
death rate of very young children is greater in the �rst half of a year than in the second; but while
we accept the phenomenon, we are unable to see how this could a�ect his tables, which refer only
to whole years). At this point we must give up, and simply accept Halley's judgment, whatever it
was.

In Fig. 9.1 we give Halley's second table as a graph of a shifted function n(y). Thus where
Halley's table reads (25 567) we give it as n(24) = 567, which we interpret to mean an estimated
567 persons in the age range (24 � x < 25). Thus our n(y) is what we believe to be Halley's
estimated number of persons in the age range (y; y + 1) years.

Thirdly, Halley's second table stops at the entry (84 20); yet the �rst table has data beyond
that age, which he used in estimating the total population of Breslau. His �rst table indicates what
we interpret as 19 deaths in the range (85; 100) in the �ve years, including three at \age current"
100. He estimated the total population in that age range as 107. We have converted this meager
information, plus other comparisons of the two tables, into a smoothed extrapolation of Halley's
second table [our entries n(84) : : :n(99)], which shows the necessary sharp curvature in the tail.

What strikes us �rst about this graph is the appalling infant mortality rate. Halley states
elsewhere that only 56% of those born survived to the age of six (although this does not agree with
his table 2) and that 50% survive to age 17 (which does agree with the table). The second striking
feature is the almost perfect linearity in the age range (35 { 80).

Halley notes various uses that can be made of his second table, including estimating the size
of the army that the city could raise, and the values of annuities. Let us consider only one, the
estimation of future life expectancy. We would think it reasonable to assign a probability that a
person of age y will live to age z, as p = n(z)=n(y), to su�cient accuracy.

Actually, Halley does not use the word \probability" but instead refers to \odds" in exactly the
same way that we use it today: \- - - if the number of Persons of any Age remaining after one year,
be divided by the di�erence between that and the number of the Age proposed, it shews the odds
that there is, that a Person of that Age does not die in a Year." Thus Halley's odds on a person
living mmore years, given present age of y years is O(mjy) = n(y+m)=(n(y)�n(y+m)) = p=(1�p),
in agreement with our calculation.

Another exasperating feature is that Halley pooled the data for males and females, and thus
failed to exhibit their di�erent mortality functions; lacking his raw data, we are unable to rectify
this.

Let the things which exasperate us in Halley's work be a lesson for us today: the First Com-
mandment of scienti�c data analysis publication ought to be: \Thou shalt reveal thy full original



921 Chap. 9: REPETITIVE EXPERIMENTS { PROBABILITY AND FREQUENCY 921

data, unmutilated by any processing whatsoever." Just as today we could do more with Halley's
raw data than he did, future readers may be able to do more with our raw data than we can, if
only we will refrain from mutilating it according to our present purposes and prejudices. At the
very least, they will approach our data with a di�erent state of prior knowledge than ours, and we
have seen how much this can a�ect the conclusions.

Exercise 9.3. Suppose you had the same raw data as Halley. How would you process them
today, taking full advantage of probability theory? How di�erent would the actual conclusions
be?

COMMENTS

The Irrationalists. Philosophers have argued over the nature of induction for centuries. Some,
from David Hume (1711{1776) in the mid{18'th Century to Karl Popper in the mid{20'th, [for
example, Popper & Miller (1983)], have tried to deny the possibility of induction, although all
scienti�c knowledge has been obtained by induction. D. Stove (1982) calls them \the irrationalists"
and tries to understand (1) How could such an absurd view ever have arisen? and (2) By what
linguistic practices do the irrationalists succeed in gaining an audience? However, since we are
not convinced that much of an audience exists, we were concerned above not with exposing the
already obvious fallacy of irrationalism, but with showing how probability theory as logic supplies
a constructive alternative to it.

In denying the possibility of induction, Popper holds that theories can never attain a high
probability. But this presupposes that the theory is being tested against an in�nite number of
alternatives. We would observe that the number of atoms in the known universe is �nite; so also,
therefore, is the amount of paper and ink available to write alternative theories. It is not the absolute
status of an hypothesis embedded in the universe of all conceivable theories, but the plausibility of
an hypothesis relative to a de�nite set of speci�ed alternatives, that Bayesian inference determines.

As we showed in connection with multiple hypothesis testing in Chapter 4, and Newton's
theory in Chapter 5, an hypothesis can attain a very high or very low probability within a class

of well{de�ned alternatives. Its probability within the class of all conceivable theories is neither
large nor small; it is simply unde�ned because the class of all conceivable theories is unde�ned.
In other words, Bayesian inference deals with determinate problems { not the unde�ned ones of
Popper { and we would not have it otherwise.

The objection to induction is often stated in di�erent terms. If a theory cannot attain a high
absolute probability against all alternatives, then there is no way to prove that induction from it
will be right. But that quite misses the point; it is not the function of induction to be `right', and
working scientists do not use it for that purpose (and could not if we wanted to). The functional use
of induction in science is not to tell us what predictions must be true, but rather what predictions
are most strongly indicated by our present hypotheses and our present information?

Put more carefully, What predictions are most strongly indicated by the information that we

have put into the calculation? It is quite legitimate to do induction based on hypotheses that we do
not believe; or even that we know to be false, to learn what their predictable consequences would
be. Indeed, an experimenter seeking evidence for his favorite theory, does not know what to look
for unless he knows what predictions are made by some alternative theory. He must give temporary
lip{service to the alternative to �nd out what it predicts, although he does not really believe it.

If predictions made by a theory are borne out by future observation, then we become more
con�dent of the hypotheses that led to them; and if the predictions never fail in vast numbers
of tests, we come eventually to call those hypotheses \physical laws". Successful induction is, of
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course, of great practical value in planning strategies for the future. But from successful induction
we do not learn anything basically new; we only become more con�dent of what we knew already.

On the other hand, if the predictions prove to be wrong, then induction has served its real
purpose; we have learned that our hypotheses are wrong or incomplete, and from the nature of the
error we have a clue as to how they might be improved. So those who criticize induction on the
grounds that it might not be right, could not possibly be more mistaken. Induction is most valuable
to a scientist just when it turns out to be wrong. But to comprehend this, one must recognize that
probability distributions do not describe reality; they describe only our present information about

reality { which is, after all, the only thing we have to reason on.

Some striking case histories are found in biology, where causal relations are often so complex
and subtle that it is remarkable that it was possible to uncover them at all. For example, it became
clear in the 20'th Century that new inuenza pandemics were coming out of China; the worst ones
acquired names like the Asian Flu (1957), the Hong Kong Flu (1968), and Beijing A (1993). It
appears that the cause has been traced to the fact that Chinese farmers raise ducks and pigs side by
side. Humans are not infected directly by viruses in ducks, even by handling them and eating them;
but pigs can absorb duck viruses, transfer some of their genes to other viruses, and in this form
pass them on to humans, where they take on a life of their own because they appear as something
entirely new, for which the human immune system is unprepared.

An equally remarkable causal chain is in the role of the gooseberry as a host transmuting and
transmitting the white pine blister rust disease. Many other examples of unravelling subtle cause{
e�ect chains are found in the classic work of Louis Pasteur, and of modern medical researchers who
continue to succeed in locating the speci�c genes responsible for various disorders.

We stress that all of these triumphant examples of highly important detective work were
accomplished by qualitative plausible reasoning using the format de�ned by P�olya (1954). Modern
Bayesian analysis is just the unique quantitative expression of this reasoning format; the inductive
reasoning that philosophers like Hume and Popper held to be impossible. It is true that this
reasoning format does not guarantee that the conclusion must be correct; rather, it tells us which
conclusions are indicated most strongly by our present information, whereupon direct tests can
con�rm it or refute it. Without the preparatory inductive reasoning phase, one would not know
which direct tests to try.

Superstitions

Another curious circumstance is that, although induction has proved a tricky thing to understand
and justify logically, the human mind has a predilection for rampant, uncontrolled induction, and
it requires much education to overcome this. As we noted briey in Chapter 5, the reasoning of
those without training in any mental discipline { who are therefore unfamiliar with either deductive
logic or probability theory { is mostly unjusti�ed induction.

In spite of modern science, general human comprehension of the world has progressed very
little beyond the level of ancient superstitions. As we observe constantly in news commentaries
and documentaries, the untrained mind never hesitates to interpret every observed correlation as a
causal inuence, and to predict its recurrence in the future. For one with no comprehension of what
science is, it makes no di�erence whether that causation is or is not explainable rationally by a
physical mechanism. Indeed, the very idea that a causal inuence requires a physical mechanism to
bring it about, is quite foreign to the thinking of the uneducated; belief in supernatural inuences
makes such hypotheses, for them, unnecessary.y

y In the meantime, progress in human knowledge continues to be made by those who, like modern biologists,
do think in terms of physical mechanisms; as soon as that premise is abandoned, progress ceases, as we
observe in modern quantum theory.
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Thus the commentators for the very numerous TV Nature documentaries showing us the
behavior of animals in the wild, never hesitate to see in every random mutation some teleological
purpose; always, the environmental niche is there and the animal mutates, purposefully, in order
to adapt to it. Each conformation of feather, beak, and claw is explained to us in terms of its
purpose, but never suggesting how an unsubstantial purpose could bring about a physical change
in the animal.z

It would seem that we have here a golden opportunity to illustrate and explain evolution;
yet the commentators have no comprehension of the simple, easily understood cause{and{e�ect
mechanism pointed out by Charles Darwin. When we have the palpable evidence, and a simple
explanation of it, before us, it is incredible that anybody could look to something supernatural,
that nobody has ever observed, to explain it. But never does a commentator imagine that the
mutation occurs �rst, and the resulting animal is obliged to seek a niche where it can survive and
use its body structures as best it can in that environment. We see only the ones who were successful
at this; the others are not around when the cameraman arrives and their small numbers make it
highly unlikely that a paleontologist will ever �nd evidence of them.? These documentaries always
have very beautiful photography, and they deserve commentaries that make sense.

Indeed, there are powerful counter{examples to the theory that an animal adapts its body
structure purposefully to its environment. In the Andes mountains there are woodpeckers where
there are no trees. Evidently, they did not become woodpeckers by adapting their body structures
to their environment; rather, they were woodpeckers �rst who, �nding themselves through some
accident in a strange environment, survived by putting their body structures to a di�erent use. In
our view, this is not an exceptional case; rather it is a common feature of almost all evolution.

z But it is hard to believe that the ridiculous color patterns of the Pu�n, the Wood Duck, and the Pileated
Woodpecker serve any survival purpose; what would the teleologists have to say about this? Our answer
would be that, even without subsequent natural selection, divergent evolution can proceed by mutations
that have nothing to do with survival. We noted some of this in Chapter 7, in connection with the work of
Francis Galton.
? But a striking exception was found in the Burgess shale of the Canadian Rockies (Gould, 1989), in which
beautifully preserved fossils of soft{bodied creatures contemporary with trilobites, which did not survive
to leave any evolutionary lines, were found in such profusion that it radically revised our picture of life in
the Cambrian.
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CHAPTER 10

PHYSICS OF \RANDOM EXPERIMENTS"

\I believe, for instance, that it would be very di�cult to persuade an intelligent physicist

that current statistical practice was sensible, but that there would be much less di�culty

with an approach via likelihood and Bayes' theorem." | G. E. P. Box (1962).

As we have noted several times, the idea that probabilities are physically real things, based ulti-
mately on observed frequencies of random variables, underlies most recent expositions of probability
theory, which would seem to make it a branch of experimental science. At the end of Chapter 8
we saw some of the di�culties that this view leads us to; in some real physical experiments the
distinction between random and nonrandom quantities is so obscure and arti�cial that you have
to resort to black magic in order to force this distinction into the problem at all. But that dis-
cussion did not reach into the serious physics of the situation. In this Chapter, we take time o�
for an interlude of physical considerations that show the fundamental di�culty with the notion of
\random" experiments.

An Interesting Correlation

There have always been dissenters from the \frequentist" view who have maintained, with Laplace,
that probability theory is properly regarded as the \calculus of inductive reasoning," and is not
fundamentally related to random experiments at all. A major purpose of the present work is to
demonstrate that probability theory can deal, consistently and usefully, with far more than frequen-
cies in random experiments, if only it is allowed to do so. According to this view, consideration
of random experiments is only one specialized application of probability theory, and not even the
most important one; for probability theory as logic solves far more general problems of reasoning
which have nothing to do with chance or randomness, but a great deal to do with the real world. In
the present Chapter we carry this further and show that `frequentist' probability theory has major
logical di�culties in dealing with the very random experiments for which it was invented.

One who studies the literature of these matters perceives that there is a strong correlation;
those who have advocated the non{frequency view have tended to be physicists, while up until very
recently mathematicians, statisticians, and philosophers almost invariably favored the frequentist
view. Thus it appears that the issue is not merely one of philosophy or mathematics; in some way
not yet clear, it also involves physics.

The mathematician tends to think of a random experiment as an abstraction { really nothing
more than a sequence of numbers. To de�ne the \nature" of the random experiment he introduces
statements { variously termed assumptions, postulates, or axioms { which specify the sample space
and assert the existence, and certain other properties, of limiting frequencies. But in the real world,
a random experiment is not an abstraction whose properties can be de�ned at will. It is surely
subject to the laws of physics; yet recognition of this is conspicuously missing from frequentist
expositions of probability theory. Even the phrase `laws of physics' is not to be found in them. But
de�ning a probability as a frequency is not merely an excuse for ignoring the laws of physics; it is
more serious than that. We want to show that maintenance of a frequency interpretation to the
exclusion of all others requires one to ignore virtually all the professional knowledge that scientists
have about real phenomena. If the aim is to draw inferences about real phenomena, this is hardly
the way to begin.
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As soon as a speci�c random experiment is described, it is the nature of a physicist to start
thinking, not about the abstract sample space thus de�ned, but about the physical mechanism of
the phenomenon being observed. The question whether the usual postulates of probability theory
are compatible with the known laws of physics is capable of logical analysis, with results that have a
direct bearing on the question, not of the mathematical consistency of frequency and non{frequency
theories of probability, but of their applicability in real situations. In our opening quotation, the
statistician G. E. P. Box noted this; let us analyze his statement in the light both of history and of
physics.

Historical Background

As we know, probability theory started in consideration of gambling devices by Gerolamo Cardano
in the 16'th Century, and by Pascal and Fermat in the 17'th; but its development beyond that level,
in the 18'th and 19'th centuries, was stimulated by applications in astronomy and physics, and was
the work of people { James and Daniel Bernoulli, Laplace, Poisson, Legendre, Gauss, Boltzmann,
Maxwell, Gibbs { most of whom we would describe today as mathematical physicists.

But reactions against Laplace started already in the mid Nineteenth Century, when Cournot,
Ellis, Boole, and Venn { none of whom had any training in physics { were unable to comprehend
Laplace's rationale and attacked what he did, simply ignoring all his successful results. In particular,
John Venn, a philosopher without the tiniest fraction of Laplace's knowledge of either physics or
mathematics, nevertheless considered himself competent to write scathing, sarcastic attacks on
Laplace's work. In Chapter 16 we note his possible later inuence on the young R. A. Fisher.
Boole (1854, Chapters XX and XXI) shows repeatedly that he does not understand the function
of Laplace's prior probabilities (to represent a state of knowledge rather than a physical fact). In
other words, he too su�ers from the Mind Projection Fallacy. On p. 380 he rejects a uniform prior
probability assignment as `arbitrary' and explicitly refuses to examine its consequences; by which
tactics he prevents himself from learning what Laplace was really doing and why.

Laplace was defended staunchly by the mathematician Augustus de Morgan and the physicist
W. Stanley Jevons,y who understood Laplace's motivations and for whom his beautiful mathematics
was a delight rather than a pain. Nevertheless, the attacks of Boole and Venn found a sympathetic
hearing in England among non{physicists. Perhaps this was because biologists, whose training
in physics and mathematics was for the most part not much better than Venn's, were trying to
�nd empirical evidence for Darwin's theory and realized that it would be necessary to collect and
analyze large masses of data in order to detect the small, slow trends that they visualized as the
means by which evolution proceeds. Finding Laplace's mathematical works too much to digest,
and since the profession of Statistician did not yet exist, they would naturally welcome suggestions
that they need not read Laplace after all.

In any event, a radical change took place at about the beginning of this Century when a
new group of workers, not physicists, entered the �eld. They were concerned mostly with biological
problems and with Venn's encouragement proceeded to reject virtually everything done by Laplace.
To �ll the vacuum, they sought to develop the �eld anew based on entirely di�erent principles
in which one assigned probabilities only to data and to nothing else. Indeed, this did simplify
the mathematics at �rst, because many of the problems solvable by Laplace's methods now lay
outside the ambit of their methods. As long as they considered only relatively simple problems
(technically, problems with su�cient statistics but no nuisance parameters), the shortcoming was

y Jevons did so many things that it is di�cult to classify him by occupation. Zabell (1989), apparently
guided by the title of one of his books (1874), describes Jevons as a logician and philosopher of science;
from examination of his other works we are inclined to list him rather as a physicist who wrote extensively
on economics.
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not troublesome. This extremely aggressive school soon dominated the �eld so completely that its
methods have come to be known as \orthodox" statistics, and the modern profession of Statistician
has evolved mostly out of this movement.

Simultaneously with this development, the physicists { with Sir Harold Je�reys as almost the
sole exception { quietly retired from the �eld, and statistical analysis disappeared from the physics
curriculum. This disappearance has been so complete that, if today someone were to take a poll of
physicists, we think that not one in a hundred could identify such names as Fisher, Neyman, Wald;
or such terms as maximum likelihood, con�dence interval, analysis of variance.

This course of events { the leading role of physicists in development of the original Bayesian
methods, and their later withdrawal from orthodox statistics { was no accident. As further evidence
that there is some kind of basic conict between orthodox statistical doctrine and physics, we may
note that two of the most eloquent proponents of non{frequency de�nitions in the early 20'th
Century { Poincar�e and Je�reys { were mathematical physicists of the very highest competence,
as was Laplace. Professor Box's statement thus has a clear basis in historical fact.

But what is the nature of this conict? What is there in the physicist's knowledge that
leads him to reject the very thing that the others regard as conferring \objectivity" on probability
theory? To see where the di�culty lies, we examine a few simple random experiments from the
physicist's viewpoint. The facts we want to point out are so elementary that one cannot believe
they are really unknown to modern writers on probability theory. The continual appearance of
new textbooks which ignore them merely illustrates what we physics teachers have always known;
you can teach a student the laws of physics, but you cannot teach him the art of recognizing the
relevance of this knowledge, much less the habit of actually applying it, in his everyday problems.

How to Cheat at Coin and Die Tossing

Cram�er (1946) takes it as an axiom that \Any random variable has a unique probability distribu-
tion." From the later context, it is clear that what he really means is that it has a unique frequency
distribution. If one assumes that the number obtained by tossing a die is a random variable, this
leads to the conclusion that the frequency with which a certain face comes up is a physical property
of the die; just as much so as its mass, moment of inertia, or chemical composition. Thus, Cram�er
(p. 154) states:

\The numbers pr should, in fact, be regarded as physical constants of the particular die that we are
using, and the question as to their numerical values cannot be answered by the axioms of probability
theory, any more than the size and the weight of the die are determined by the geometrical and
mechanical axioms. However, experience shows that in a well{made die the frequency of any event r
in a long series of throws usually approaches 1/6, and accordingly we shall often assume that all the
pr are equal to 1/6 � � � ."

To a physicist, this statement seems to show utter contempt for the known laws of mechanics. The
results of tossing a die many times do not tell us any de�nite number characteristic only of the die.
They tell us also something about how the die was tossed. If you toss \loaded" dice in di�erent
ways, you can easily alter the relative frequencies of the faces. With only slightly more di�culty,
you can still do this if your dice are perfectly \honest."

Although the principles will be just the same, it will be simpler to discuss a random experiment
with only two possible outcomes per trial. Consider, therefore, a \biased" coin, about which I. J.
Good (1962) has remarked:

\Most of us probably think about a biased coin as if it had a physical probability. Now whether it is
de�ned in terms of frequency or just falls out of another type of theory, I think we do argue that way.
I suspect that even the most extreme subjectivist such as de Finetti would have to agree that he did
sometimes think that way, though he would perhaps avoid doing it in print."
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We do not know de Finetti's private thoughts, but would observe that it is just the famous ex-
changeability theorem of de Finetti which shows us how to carry out a probability analysis of the
biased coin without thinking in the manner suggested.

In any event, it is easy to show how a physicist would analyze the problem. Let us suppose
that the center of gravity of this coin lies on its axis, but displaced a distance x from its geometrical
center. If we agree that the result of tossing this coin is a \random variable," then according to the
axiom stated by Cram�er and hinted at by Good, there must exist a de�nite functional relationship
between the frequency of heads and x:

pH = f(x) : (10{1)

But this assertion goes far beyond the mathematician's traditional range of freedom to invent
arbitrary axioms, and encroaches on the domain of physics; for the laws of mechanics are quite
competent to tell us whether such a functional relationship does or does not exist.

The easiest game to analyze turns out to be just the one most often played to decide such
practical matters as the starting side in a football game. Your opponent �rst calls \heads" or
\tails" at will. You then toss the coin into the air, catch it in your hand, and without looking at
it, show it �rst to your opponent, who wins if he has called correctly. It is further agreed that a
\fair" toss is one in which the coin rises at least nine feet into the air, and thus spends at least 1.5
seconds in free ight.

The laws of mechanics now tell us the following. The ellipsoid of inertia of a thin disc is an
oblate spheroid of eccentricity 1=

p
2. The displacement x does not a�ect the symmetry of this

ellipsoid, and so according to the Poinsot construction, as found in textbooks on rigid dynamics
[such as Routh (1955) or Goldstein (1980, Chapter 5)], the polhodes remain circles concentric with
the axis of the coin. In consequence, the character of the tumbling motion of the coin while in
ight is exactly the same for a biased as an unbiased coin, except that for the biased one it is the
center of gravity, rather than the geometrical center, which describes the parabolic \free particle"
trajectory.

An important feature of this tumbling motion is conservation of angular momentum; during
its ight the angular momentum of the coin maintains a �xed direction in space (but the angular
velocity does not; and so the tumbling may appear chaotic to the eye). Let us denote this �xed
direction by the unit vector n; it can be any direction you choose, and it is determined by the
particular kind of twist you give the coin at the instant of launching. Whether the coin is biased
or not, it will show the same face throughout the motion if viewed from this direction (unless, of
course, n is exactly perpendicular to the axis of the coin, in which case it shows no face at all).

Therefore, in order to know which face will be uppermost in your hand, you have only to carry
out the following procedure. Denote by k a unit vector passing through the coin along its axis,
with its point on the \heads" side. Now toss the coin with a twist so that k and n make an acute
angle, then catch it with your palm held at, in a plane normal to n. On successive tosses, you can
let the direction of n, the magnitude of the angular momentum, and the angle between n and k,
vary widely; the tumbling motion will then appear entirely di�erent to the eye on di�erent tosses,
and it would require almost superhuman powers of observation to discover your strategy.

Thus, anyone familiar with the law of conservation of angular momentum can, after some
practice, cheat at the usual coin{toss game and call his shots with 100 per cent accuracy. You can
obtain any frequency of heads you want; and the bias of the coin has no inuence at all on the

results !

Of course, as soon as this secret is out, someone will object that the experiment analyzed is
too \simple." In other words, those who have postulated a physical probability for the biased coin
have, without stating so, really had in mind a more complicated experiment in which some kind of
\randomness" has more opportunity to make itself felt.
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While accepting this criticism, we cannot suppress the obvious comment: scanning the litera-
ture of probability theory, isn't it curious that so many mathematicians, usually far more careful
than physicists to list all the quali�cations needed to make a statement correct, should have failed
to see the need for any quali�cations here? However, to be more constructive, we can just as well
analyze a more complicated experiment.

Suppose that now, instead of catching the coin in our hands, we toss it onto a table, and let
it spin and bounce in various ways until it comes to rest. Is this experiment su�ciently \random"
so that the true \physical probability" will manifest itself? No doubt, the answer will be that it is
not su�ciently random if the coin is merely tossed up six inches starting at the table level, but it
will become a \fair" experiment if we toss it up higher.

Exactly how high, then, must we toss it before the true physical probability can be measured?
This is not an easy question to answer, and we make no attempt to answer it here. It would appear,
however, that anyone who asserts the existence of a physical probability for the coin ought to be
prepared to answer it; otherwise it is hard to see what content the assertion has (that is, there is
no way to con�rm it or disprove it).

We do not deny that the bias of the coin will now have some inuence on the frequency of
heads; we claim only that the amount of that inuence depends very much on how you toss the
coin so that, again in this experiment, there is no de�nite number pH = f(x) describing a physical
property of the coin. Indeed, even the direction of this inuence can be reversed by di�erent
methods of tossing, as follows.

However high we toss the coin, we still have the law of conservation of angular momentum;
and so we can toss it by Method A: to ensure that heads will be uppermost when the coin �rst
strikes the table, we have only to hold it heads up, and toss it so that the total angular momentum
is directed vertically. Again, we can vary the magnitude of the angular momentum, and the angle
between n and k, so that the motion appears quite di�erent to the eye on di�erent tosses, and it
would require very close observation to notice that heads remains uppermost throughout the free
ight. Although what happens after the coin strikes the table is complicated, the fact that heads is
uppermost at �rst has a strong inuence on the result, which is more pronounced for large angular
momentum.

Many people have developed the knack of tossing a coin by Method B: it goes through a phase
of standing on edge and spinning rapidly about a vertical axis, before �nally falling to one side or
the other. If you toss the coin this way, the eccentric position of the center of gravity will have
a dominating inuence, and render it practically certain that it will fall always showing the same
face. Ordinarily, one would suppose that the coin prefers to fall in the position which gives it the
lowest center of gravity; i.e., if the center of gravity is displaced toward tails, then the coin should
have a tendency to show heads. However, for an interesting mechanical reason, which we leave for
you to work out from the principles of rigid dynamics, method B produces the opposite inuence,
the coin strongly preferring to fall so that its center of gravity is high.

On the other hand, the bias of the coin has a rather small inuence in the opposite direction
if we toss it by Method C: the coin rotates about a horizontal axis which is perpendicular to the
axis of the coin, and so bounces until it can no longer turn over.

In this experiment also, therefore, a person familiar with the laws of mechanics can toss a
biased coin so that it will produce predominantly either heads or tails, at will. Furthermore, the
e�ect of method A persists whether the coin is biased or not; and so one can even do this with
a perfectly \honest" coin. Finally, although we have been considering only coins, essentially the
same mechanical considerations (with more complicated details) apply to the tossing of any other
object, such as a die.

The writer has never thought of a biased coin `as if it had a physical probability' because,
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being a professional physicist, I know that it does not have a physical probability. From the fact
that we have seen a strong preponderance of heads, we cannot conclude legitimately that the coin
is biased; it may be biased, or it may have been tossed in a way that systematically favors heads.
Likewise, from the fact that we have seen equal numbers of heads and tails, we cannot conclude
legitimately that the coin is \honest." It may be honest, or it may have been tossed in a way that
nulli�es the e�ect of its bias.

Experimental Evidence

Since the conclusions just stated are in direct contradiction to what is postulated, almost universally,
in expositions of probability theory, it is worth noting that you can verify them easily in a few
minutes of experimentation in your kitchen. An excellent \biased coin" is provided by the metal
lid of a small pickle jar, of the type which is not knurled on the outside, and has the edge rolled
inward rather than outward, so that the outside surface is accurately round and smooth, and so
symmetrical that on an edge view one cannot tell which is the top side.

Suspecting that many people not trained in physics, simply would not believe the things just
claimed without experimental proof, we have performed these experiments with a jar lid of diameter
d = 2 5=8 inches, height h = 3=8 inch. Assuming a uniform thickness for the metal, the center of
gravity should be displaced from the geometrical center by a distance x = dh=(2d+ 8h) = 0:120
inches; and this was con�rmed by hanging the lid by its edge and measuring the angle at which
it comes to rest. Ordinarily, one expects this bias to make the lid prefer to fall bottom side (i.e.,
the inside) up; and so this side will be called \heads." The lid was tossed up about 6 feet, and fell
onto a smooth linoleum oor. I allowed myself ten practice tosses by each of the three methods
described, and then recorded the results of a number of tosses by: method A deliberately favoring
heads, method A deliberately favoring tails, method B, and method C, as given in Table 10.1.

Method No: of tosses No: of heads

A(H) 100 99
A(T) 50 0
B 100 0
C 100 54

Table 10.1. Results of tossing a \biased coin" in four di�erent ways.

In method A the mode of tossing completely dominated the result (the e�ect of bias would, pre-
sumably, have been greater if the \coin" were tossed onto a surface with a greater coe�cient of
friction). In method B, the bias completely dominated the result (in about thirty of these tosses it
looked for a while as if the result were going to be heads, as one might naively expect; but each time
the \coin" eventually righted itself and turned over, as predicted by the laws of rigid dynamics).
In method C, there was no signi�cant evidence for any e�ect of bias. The conclusions are pretty
clear.

A holdout can always claim that tossing the coin in any of the four speci�c ways described is
\cheating," and that there exists a \fair" way of tossing it, such that the \true" physical probabilities
of the coin will emerge from the experiment. But again, the person who asserts this should be
prepared to de�ne precisely what this fair method is, otherwise the assertion is without content.
Presumably, a fair method of tossing ought to be some kind of random mixture of methods A(H),
A(T), B, C, and others; but what is a \fair" relative weighting to give them? It is di�cult to see
how one could de�ne a \fair" method of tossing except by the condition that it should result in a
certain frequency of heads; and so we are involved in a circular argument.
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This analysis can be carried much further, as we shall do below; but perhaps it is su�ciently
clear already that analysis of coin and die tossing is not a problem of abstract statistics, in which
one is free to introduce postulates about \physical probabilities" which ignore the laws of physics.
It is a problem of mechanics, highly complicated and irrelevant to probability theory except insofar
as it forces us to think a little more carefully about how probability theory must be formulated if it
is to be applicable to real situations. Performing a random experiment with a coin does not tell us
what the physical probability of heads is; it may tell us something about the bias, but it also tells
us something about how the coin is being tossed. Indeed, unless we know how it is being tossed,
we cannot draw any reliable inferences about its bias from the experiment.

It may not, however, be clear from the above that conclusions of this type hold quite generally
for random experiments, and in no way depend on the particular mechanical properties of coins
and dice. In order to illustrate this, consider an entirely di�erent kind of random experiment, as a
physicist views it.

Bridge Hands

Elsewhere we quote Professor Wm. Feller's pronouncements on the use of Bayes' theorem in quality
control testing (Chap.17), on Laplace's rule of succession (Chap. 18), and on Daniel Bernoulli's
conception of the utility function for decision theory (Chap. 13). He does not fail us here either; in
this interesting textbook (Feller, 1951), he writes: \The number of possible distributions of cards
in bridge is almost 1030. Usually, we agree to consider them as equally probable. For a check

of this convention more than 1030 experiments would be required|a billion of billion of years if

every living person played one game every second, day and night." Here again, we have the view
that bridge hands possess \physical probabilities," that the uniform probability assignment is a
\convention," and that the ultimate criterion for its correctness must be observed frequencies in a
random experiment.

The thing which is wrong here is that none of us { not even Feller { would be willing to use
this criterion with a real deck of cards. Because, if we know that the deck is an honest one, our
common sense tells us something which carries more weight than 1030 random experiments do. We
would, in fact, be willing to accept the result of the random experiment only if it agreed with our

preconceived notion that all distributions are equally likely.

To many, this last statement will seem like pure blasphemy { it stands in violent contradiction
to what we have all been taught is the correct attitude toward probability theory. Yet in order to
see why it is true, we have only to imagine that those 1030 experiments had been performed, and
the uniform distribution was not forthcoming. If all distributions of cards have equal frequencies,
then any combination of two speci�ed cards will appear together in a given hand, on the average,
once in (52� 51)=(13� 12) = 17 deals. But suppose that the combination (Jack of hearts { Seven
of clubs) appeared together in each hand three times as often as this. Would we then accept it
as an established fact that there is something about the particular combination (Jack of hearts {
Seven of clubs) that makes it inherently more likely than others?

We would not. We would reject the experiment and say that the cards had not been properly
shu�ed. But once again we are involved in a circular argument, because there is no way to de�ne a
\proper" method of shu�ing except by the condition that it should produce all distributions with
equal frequency!

But any attempt to �nd such a de�nition involves one in even deeper logical di�culties; one dare
not describe the procedure of shu�ing in exact detail because that would destroy the \randomness"
and make the exact outcome predictable and always the same. In order to keep the experiment
\random", one must describe the procedure incompletely, so that the outcome will be di�erent on
di�erent runs. But how could one prove that an incompletely de�ned procedure will produce all
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distributions with equal frequency? It seems to us that the attempt to uphold Feller's postulate of
physical probabilities for bridge hands leads one into an outright logical contradiction.

Conventional teaching holds that probability assignments must be based fundamentally on
frequencies; and that any other basis is at best suspect, at worst irrational with disastrous conse-
quences. On the contrary, this example shows very clearly that there is a principle for determining

probability assignments which has nothing to do with frequencies, yet is so compelling that it takes

precedence over any amount of frequency data. If present teaching does not admit the existence
of this principle, it is only because our intuition has run so far ahead of logical analysis { just
as it does in elementary geometry { that we have never taken the trouble to present that logical
analysis in a mathematically respectable form. But if we learn how to do this, we may expect to
�nd that the mathematical formulation can be applied to a much wider class of problems, where
our intuition alone would hardly su�ce.

In carrying out a probability analysis of bridge hands, are we really concerned with physical
probabilities; or with inductive reasoning? To help answer this, consider the following scenario.
The date is 1956, when the writer met Willy Feller and had a discussion with him about these
matters. Suppose I had told him that I have dealt at bridge 1000 times, shu�ing \fairly" each
time; and that in every case the seven of clubs was in my own hand. What would his reaction be?
He would, I think, mentally visualize the number

�
1

4

�1000

= 10�602 (10{2)

and conclude instantly that I have not told the truth; and no amount of persuasion on my part
would shake that judgment. But what accounts for the strength of his belief? Obviously, it cannot
be justi�ed if our assignment of equal probabilities to all distributions of cards (therefore probability
1/4 for the seven of clubs to be in the dealer's hand) is merely a \convention," subject to change
in the light of experimental evidence; he rejects my reported experimental evidence, just as we
did above. Even more obviously, he is not making use of any knowledge about the outcome of an
experiment involving 1030 bridge hands.

Then what is the extra evidence he has, which his common sense tells him carries more weight
than do any number of random experiments; but whose help he refuses to acknowledge in writing
textbooks? In order to maintain the claim that probability theory is an experimental science, based
fundamentally not on logical inference but on frequency in a random experiment, it is necessary to
suppress some of the information which is available. This suppressed information, however, is just
what enables our inferences to approach the certainty of deductive reasoning in this example and
many others.

The suppressed evidence is, of course, simply our recognition of the symmetry of the situation.
The only di�erence between a seven and an eight is that there is a di�erent number printed on
the face of the card. Our common sense tells us that where a card goes in shu�ing depends
only on the mechanical forces that are applied to it; and not on which number is printed on its
face. If we observe any systematic tendency for one card to appear in the dealer's hand, which
persists on inde�nite repetitions of the experiment, we can conclude from this only that there is
some systematic tendency in the procedure of shu�ing, which alone determines the outcome of the
experiment.

Once again, therefore, performing the experiment tells you nothing about the \physical prob-
abilities" of di�erent bridge hands. It tells you something about how the cards are being shu�ed.
But the full power of symmetry as cogent evidence has not yet been revealed in this argument; we
return to it presently.
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General Random Experiments

In the face of all the foregoing arguments, one can still take the following position (as a member
of the audience did after one of the writer's lectures): \You have shown only that coins, dice,
and cards represent exceptional cases, where physical considerations obviate the usual probability
postulates; i.e., they are not really `random experiments.' But that is of no importance because
these devices are used only for illustrative purposes; in the more digni�ed random experiments
which merit the serious attention of the scientist, there is a physical probability."

To answer this we note two points. First, we reiterate that when anyone asserts the existence of
a physical probability in any experiment, then the onus is on him to de�ne the exact circumstances
in which this physical probability can be measured; otherwise the assertion is without content.

This point needs to be stressed: those who assert the existence of physical probabilities do
so in the belief that this establishes for their position an `objectivity' that those who speak only
of a `state of knowledge' lack. Yet to assert as fact something which cannot be either proved or
disproved by observation of facts, is the opposite of objectivity; it is to assert something that one
could not possibly know to be true. Such an assertion is not even entitled to be called a description
of a `state of knowledge'.

Secondly, note that any speci�c experiment for which the existence of a physical probability
is asserted, is subject to physical analysis like the ones just given, which will lead eventually to
an understanding of its mechanism. But as soon as this understanding is reached, then this new
experiment will also appear as an exceptional case like the above ones, where physical considerations
obviate the usual postulates of physical probabilities.

For, as soon as we have understood the mechanism of any experiment E, then there is logically
no room for any postulate that various outcomes possess physical probabilities; for the question:
\What are the probabilities of various outcomes (O1; O2 � � �)?" then reduces immediately to the
question: \What are the probabilities of the corresponding initial conditions (I1; I2 � � �) that lead
to these outcomes?"

We might suppose that the possible initial conditions fIkg of experiment E themselves possess
physical probabilities. But then we are considering an antecedent random experiment E0, which
produces conditions Ik as its possible outcomes: Ik = O0

k. We can analyze the physical mechanism
of E0 and as soon as this is understood, the question will revert to: \What are the probabilities of
the various initial conditions I 0k for experiment E0?"

Evidently, we are involved in an in�nite regress fE; E 0; E00; � � �g; the attempt to introduce a
physical probability will be frustrated at every level where our knowledge of physical law permits us
to analyze the mechanism involved. The notion of \physical probability" must retreat continually
from one level to the next, as knowledge advances.

We are, therefore, in a situation very much like the \warfare between science and theology" of
earlier times. For several centuries, theologians with no factual knowledge of astronomy, physics,
biology, and geology, nevertheless considered themselves competent to make dogmatic factual as-
sertions which encroached on the domains of those �elds { which they were later forced to retract
one by one in the face of advancing knowledge.

Clearly, probability theory ought to be formulated in a way that avoids factual assertions
properly belonging to other �elds, and which will later need to be retracted (as is now the case for
many assertions in the literature concerning coins, dice, and cards). It appears to us that the only
formulation which accomplishes this, and at the same time has the analytical power to deal with
the current problems of science, is the one which was seen and expounded on intuitive grounds
by Laplace and Je�reys. Its validity is a question of logic, and does not depend on any physical
assumptions.



1010 10: Induction Revisited 1010

As we saw in Chapter 2, a major contribution to that logic was made by R. T. Cox (1946),
(1961), who showed that those intuitive grounds can be replaced by theorems. We think it is no
accident that Richard Cox was also a physicist (Professor of Physics and Dean of the Graduate
School at Johns Hopkins University), to whom the things we have pointed out here would be evident
from the start.

The Laplace{Je�reys{Cox formulation of probability theory does not require us to take one
reluctant step after another down that in�nite regress; it recognizes that anything which { like
the child's spook { continually recedes from the light of detailed inspection, can exist only in our
imagination. Those who believe most strongly in physical probabilities, like those who believe in
astrology, never seem to ask what would constitute a controlled experiment capable of con�rming
or disproving their belief.

Indeed, the examples of coins and cards should persuade us that such controlled experiments
are in principle impossible. Performing any of the so{called random experiments will not tell us
what the \physical probabilities" are, because there is no such thing as a \physical probability".

The experiment tells us, in a very crude and incomplete way, something about how the initial
conditions are varying from one repetition to another.

A much more e�cient way of obtaining this information would be to observe the initial con-
ditions directly. However, in many cases this is beyond our present abilities; as in determining
the safety and e�ectiveness of a new medicine. Here the only fully satisfactory approach would be
to analyze the detailed sequence of chemical reactions that follow the taking of this medicine, in
persons of every conceivable state of health. Having this analysis one could then predict, for each
individual patient, exactly what the e�ect of the medicine will be.

Such an analysis being entirely out of the question at present, the only feasible way of ob-
taining information about the e�ectiveness of a medicine is to perform a \random" experiment.
No two patients are in exactly the same state of health; and the unknown variations in this factor
constitute the variable initial conditions of the experiment, while the sample space comprises the
set of distinguishable reactions to the medicine. Our use of probability theory in this case is a
standard example of inductive reasoning which amounts to the following:

If the initial conditions of the experiment (i.e., the physiological conditions of the patients who
come to us) continue in the future to vary over the same unknown range as they have in the past,
then the relative frequency of cures will, in the future, approximate those which we have observed
in the past. In the absence of positive evidence giving a reason why there should be some change
in the future, and indicating in which direction this change should go, we have no grounds for
predicting any change in either direction, and so can only suppose that things will continue in more
or less the same way. As we observe the relative frequencies of cures and side{e�ects to remain
stable over longer and longer times, we become more and more con�dent about this conclusion.
But this is only inductive reasoning { there is no deductive proof that frequencies in the future will
not be entirely di�erent from those in the past.

Suppose now that the eating habits or some other aspect of the life style of the population
starts to change. Then the state of health of the incoming patients will vary over a di�erent
range than before, and the frequency of cures for the same treatment may start to drift up or
down. Conceivably, monitoring this frequency could be a useful indicator that the habits of the
population are changing, and this in turn could lead to new policies in medical procedures and
public health education.

At this point, we see that the logic invoked here is virtually identical with that of industrial
quality control, discussed in Chapter 4. But looking at it in this greater generality makes us see the
role of induction in science in a very di�erent way than has been imagined by some philosophers.
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Induction Revisited

As we noted in Chapter 9, some philosophers have rejected induction on the grounds that there is
no way to prove that it is \right" (theories can never attain a high probability); but this misses the
point. The function of induction is to tell us, not which predictions are right, but which predictions
are indicated by our present knowledge. If the predictions succeed, then we are pleased and become
more con�dent of our present knowledge; but we have not learned much.

The real role of induction in science was pointed out clearly by Harold Je�reys (1931, Chapter
1) over sixty years ago; yet to the best of our knowledge no mathematician or philosopher has ever
taken the slightest note of what he had to say:

\A common argument for induction is that induction has always worked in the past and therefore may
be expected to hold in the future. It has been objected that this is itself an inductive argument and
cannot be used in support of induction. What is hardly ever mentioned is that induction has often
failed in the past and that progress in science is very largely the consequence of direct attention to
instances where the inductive method has led to incorrect predictions."

Put more strongly, it is only when our inductive inferences are wrong that we learn new things
about the real world. For a scientist, therefore, the quickest path to discovery is to examine those
situations where it appears most likely that induction from our present knowledge will fail. But
those inferences must be our best inferences, which make full use of all the knowledge we have. One
can always make inductive inferences that are wrong in a useless way, merely by ignoring cogent
information.

Indeed, that is just what Popper did. His trying to interpret probability itself as expressing
physical causation not only cripples the applications of probability theory in the way we saw in
Chapter 3 (it would prevent us from getting about half of all conditional probabilities right because
they express logical connections rather than causal physical ones) { it leads one to conjure up
imaginary causes while ignoring what was already known about the real physical causes at work.
This can reduce our inferences to the level of pre{scienti�c, uneducated superstition even when we
have good data.

Why do physicists see this more readily than others? Because, having created this knowledge
of physical law, we have a vested interest in it and want to see it preserved and used. Frequency or
propensity interpretations start by throwing away practically all the professional knowledge that
we have labored for Centuries to get. Those who have not comprehended this are in no position to
discourse to us on the philosophy of science or the proper methods of inference.

But What About Quantum Theory?

Those who cling to a belief in the existence of \physical probabilities" may react to the above
arguments by pointing to quantum theory, in which physical probabilities appear to express the
most fundamental laws of physics. Therefore let us explain why this is another case of circular
reasoning. We need to understand that present quantum theory uses entirely di�erent standards
of logic than does the rest of science.

In biology or medicine, if we note that an e�ect E (for example, muscle contraction, pho-
totropism, digestion of protein) does not occur unless a condition C (nerve impulse, light, pepsin)
is present, it seems natural to infer that C is a necessary causative agent for E. Most of what is
known in all �elds of science has resulted from following up this kind of reasoning. But suppose
that condition C does not always lead to e�ect E; what further inferences should a scientist draw?
At this point the reasoning formats of biology and quantum theory diverge sharply.

In the biological sciences one takes it for granted that in addition to C there must be some
other causative factor F, not yet identi�ed. One searches for it, tracking down the assumed cause
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by a process of elimination of possibilities that is sometimes extremely tedious. But persistence
pays o�; over and over again medically important and intellectually impressive success has been
achieved, the conjectured unknown causative factor being �nally identi�ed as a de�nite chemical
compound. Most enzymes, vitamins, viruses, and other biologically active substances owe their
discovery to this reasoning process.

In quantum theory, one does not reason in this way. Consider, for example, the photoelectric
e�ect (we shine light on a metal surface and �nd that electrons are ejected from it). The experi-
mental fact is that the electrons do not appear unless light is present. So light must be a causative
factor. But light does not always produce ejected electrons; even though the light from a unimode
laser is present with absolutely steady amplitude, the electrons appear only at particular times that
are not determined by any known parameters of the light. Why then do we not draw the obvious
inference, that in addition to the light there must be a second causative factor, still unidenti�ed,
and the physicist's job is to search for it?

What is done in quantum theory today is just the opposite; when no cause is apparent one
simply postulates that no cause exists { ergo, the laws of physics are indeterministic and can be
expressed only in probability form. The central dogma is that the light determines, not whether a
photoelectron will appear, but only the probability that it will appear. The mathematical formalism
of present quantum theory { incomplete in the same way that our present knowledge is incomplete {
does not even provide the vocabulary in which one could ask a question about the real cause of an
event.

Biologists have a mechanistic picture of the world because, being trained to believe in causes,
they continue to use the full power of their brains to search for them { and so they �nd them. Quan-
tum physicists have only probability laws because for two generations we have been indoctrinated
not to believe in causes { and so we have stopped looking for them. Indeed, any attempt to search
for the causes of microphenomena is met with scorn and a charge of professional incompetence and
`obsolete mechanistic materialism'. Therefore, to explain the indeterminacy in current quantum
theory we need not suppose there is any indeterminacy in Nature; the mental attitude of quantum
physicists is already su�cient to guarantee it.y

This point also needs to be stressed, because most people who have not studied quantum
theory on the full technical level are incredulous when told that it does not concern itself with
causes; and indeed, it does not even recognize the notion of `physical reality.' The currently taught
interpretation of the mathematics is due to Niels Bohr, who directed the Institute for Theoretical
Physics in Copenhagen; therefore it has come to be called `The Copenhagen Interpretation'.

As Bohr stressed repeatedly in his writings and lectures, present quantum theory can answer
only questions of the form: \If this experiment is performed, what are the possible results and
their probabilities?" It cannot, as a matter of principle, answer any question of the form: \What is
really happening when � � � ?" Again, the mathematical formalism of present quantum theory, like
Orwellian newspeak , does not even provide the vocabulary in which one could ask such a question.
These points have been explained in some detail in recent articles (Jaynes, 1986d, 1989, 1990a,
1991c).

y Here there is a striking similarity to the position of the parapsychologists Soal & Bateman (1954),
discussed in Chapter 5. They suggest that to seek a physical explanation of parapsychological phenomena
is a regression to the quaint and reprehensible materialism of Thomas Huxley. Our impression is that by
1954 the views of Huxley in biology were in a position of complete triumph over vitalism, supernaturalism,
or any other anti{materialistic teachings; for example, the long mysterious immune mechanism was at last
understood, and the mechanism of DNA replication had just been discovered. In both cases the phenomena
could be described in `mechanistic' terms so simple and straightforward { templates, geometrical �t, etc. {
that they would be understood immediately in a machine shop.
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We suggest, then, that those who try to justify the concept of `physical probability' by pointing
to quantum theory, are entrapped in circular reasoning, not basically di�erent from that noted above
with coins and bridge hands. Probabilities in present quantum theory express the incompleteness
of human knowledge just as truly as did those in classical statistical mechanics; only its origin is
di�erent.

In classical statistical mechanics, probability distributions represented our ignorance of the true
microscopic coordinates { ignorance that was avoidable in principle but unavoidable in practice, but
which did not prevent us from predicting reproducible phenomena, just because those phenomena
are independent of the microscopic details.

In current quantum theory, probabilities express our own ignorance due to our failure to search
for the real causes of physical phenomena { and worse, our failure even to think seriously about
the problem. This ignorance may be unavoidable in practice, but in our present state of knowledge
we do not know whether it is unavoidable in principle; the \central dogma" simply asserts this,
and draws the conclusion that belief in causes, and searching for them, is philosophically na��ve. If
everybody accepted this and abided by it, no further advances in understanding of physical law
would ever be made; indeed, no such advance has been made since the 1927 Solvay Congress in
which this mentality became solidi�ed into physics.z But it seems to us that this attitude places a
premium on stupidity; to lack the ingenuity to think of a rational physical explanation is to support
the supernatural view.

But to many people, these ideas are almost impossible to comprehend because they are so
radically di�erent from what we have all been taught from childhood. Therefore let us show how
just the same situation could have happened in coin tossing, had classical physicists used the same
standards of logic that are now used in quantum theory.

Mechanics Under the Clouds

We are fortunate that the principles of Newtonian mechanics could be developed and veri�ed
to great accuracy by studying astronomical phenomena, where friction and turbulence do not
complicate what we see. But suppose the Earth were, like Venus, enclosed perpetually in thick
clouds. The very existence of an external universe would be unknown for a long time, and to
develop the laws of mechanics we would be dependent on the observations we can make locally.

Since tossing of small objects is nearly the �rst activity of every child, it would be observed
very early that they do not always fall with the same side up, and that all one's e�orts to control
the outcome are in vain. The natural hypothesis would be that it is the volition of the object
tossed, not the volition of the tosser, that determines the outcome; indeed, that is the hypothesis
that small children make when questioned about this.

Then it would be a major discovery, once coins had been fabricated, that they tend to show both
sides about equally often; and the equality appears to get better as the number of tosses increases.
The equality of heads and tails would be seen as a fundamental law of physics; symmetric objects
have a symmetric volition in falling (as indeed, Cram�er and Feller seem to have thought).

With this beginning, we could develop the mathematical theory of object tossing, discovering
the binomial distribution, the absence of time correlations, the limit theorems, the combinatorial
frequency laws for tossing of several coins at once, the extension to more complicated symmetric
objects like dice, etc. All the experimental con�rmations of the theory would consist of more and
more tossing experiments, measuring the frequencies in more and more elaborate scenarios. From

z Of course, physicists continued discovering new particles and calculation techniques { just as an as-
tronomer can discover a new planet and a new algorithm to calculate its orbit, without any advance in his
basic understanding of celestial mechanics.
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such experiments, nothing would ever be found that called into question the existence of that
volition of the object tossed; they only enable one to con�rm that volition and measure it more
and more accurately.

Then suppose that someone was so foolish as to suggest that the motion of a tossed object is
determined, not by its own volition, but by laws like those of Newtonian mechanics, governed by
its initial position and velocity. He would be met with scorn and derision; for in all the existing
experiments there is not the slightest evidence for any such inuence. The Establishment would
proclaim that, since all the observable facts are accounted for by the volition theory, it is philo-
sophically na��ve and a sign of professional incompetence to assume or search for anything deeper.
In this respect, the elementary physics textbooks would read just like our present quantum theory
textbooks.

Indeed, anyone trying to test the mechanical theory would have no success; however carefully
he tossed the coin (not knowing what we know) it would persist in showing head and tails about
equally often. To �nd any evidence for a causal instead of a statistical theory, would require control
over the initial conditions of launching, orders of magnitude more precise than anyone can achieve
by hand tossing. We would continue almost inde�nitely, satis�ed with laws of physical probability
and denying the existence of causes for individual tosses external to the object tossed { just as
quantum theory does today { because those probability laws account correctly for everything that
we can observe reproducibly with the technology we are using.

But after thousands of years of triumph of the statistical theory, someone �nally makes a
machine which tosses coins in absolutely still air, with very precise control of the exact initial
conditions. Magically, the coin starts giving unequal numbers of heads and tails; the frequency of
heads is being controlled partially by the machine. With development of more and more precise
machines, one �nally reaches a degree of control where the outcome of the toss can be predicted
with 100% accuracy. Belief in \physical probabilities" expressing a volition of the coin is recognized
�nally as an unfounded superstition. The existence of an underlying mechanical theory is proved
beyond question; and the long success of the previous statistical theory is seen as due only to the
lack of control over the initial conditions of the tossing.

Because of recent spectacular advances in the technology of experimentation, with increasingly
detailed control over the initial states of individual atoms [see, for example, Rempe, et al (1987);
Knight (1987)], we think that the stage is going to be set, before very many more years have
passed, for the same thing to happen in quantum theory; a Century from now the true causes
of microphenomena will be known to every schoolboy and, to paraphrase Seneca, they will be
incredulous that such clear truths could have escaped us throughout the 20'th Century.

More On Coins and Symmetry

Now we go into a more careful, detailed discussion of some of these points, alluding to technical
matters that must be explained more fully elsewhere. The rest of this Chapter is not for the casual
reader; only the one who wants a deeper understanding than is conveyed by the above simple
scenarios. But many of the attacks on Laplace arise from failure to comprehend the following
points.

The problems in which intuition compels us most strongly to a uniform probability assignment
are not the ones in which we merely apply a principle of \equal distribution of ignorance." Thus,
to explain the assignment of equal probabilities to heads and tails on the grounds that we \saw
no reason why either face should be more likely than the other," fails utterly to do justice to the
reasoning involved. The point is that we have not merely \equal ignorance." We also have positive
knowledge of the symmetry of the problem; and introspection will show that when this positive
knowledge is lacking, so also is our intuitive compulsion toward a uniform distribution. In order
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to �nd a respectable mathematical formulation we therefore need to �nd �rst a more respectable
verbal formulation. We suggest that the following verbalization does do justice to the reasoning,
and shows us how to generalize the principle.

\I perceive here two di�erent problems, Having formulated one de�nite problem { call it P1 {
involving the coin, the operation which interchanges heads and tails transforms the problem into a
di�erent one { call it P2. If I have positive knowledge of the symmetry of the coin, then I know that
all relevant dynamical or statistical considerations, however complicated, are exactly the same in
the two problems. Whatever state of knowledge I had in P1, I must therefore have exactly the same
state of knowledge in P2, except for the interchange of heads and tails. Thus, whatever probability
I assign to heads in P1, consistency demands that I assign the same probability to tails in P2.

Now it might be quite reasonable to assign probability 2/3 to heads, 1/3 to tails in P1; where-
upon from symmetry it must be 2/3 to tails, 1/3 to heads in P2. This might be the case, for example,
if P1 speci�ed that the coin is to be held between the �ngers heads up, and dropped just one inch
onto a table. Thus symmetry of the coin by no means compels us to assign equal probabilities to
heads and tails; the question necessarily involves the other conditions of the problem.

But now suppose the statement of the problem is changed in just one respect; we are no longer
told whether the coin is held initially with heads up or tails up. In this case, our intuition suddenly
takes over with a compelling force, and tells us that we must assign equal probabilities to heads
and tails; and in fact, we must do this regardless of what frequencies have been observed in previous

repetitions of the experiment.

The great power of symmetry arguments lies just in the fact that they are not deterred by
any amount of complication in the details. The conservation laws of physics arise in this way;
thus conservation of angular momentum for an arbitrarily complicated system of particles is a
simple consequence of the fact that the Lagrangian is invariant under space rotations. In current
theoretical physics, almost the only known exact results in atomic and nuclear structure are those
which we can deduce by symmetry arguments, using the methods of group theory.

These methods could be of the highest importance in probability theory also, if orthodox
ideology did not forbid their use. For example, they enable us, in many cases, to extend the
principle of indi�erence to �nd consistent prior probability assignments in a continuous parameter
space �, where its use has always been considered ambiguous. The basic point is that a consistent
principle for assigning prior probabilities must have the property that it assigns equivalent priors
to represent equivalent states of knowledge.

The prior distribution must therefore be invariant under the symmetry group of the problem;
and so the prior can be speci�ed arbitrarily only in the so{called \fundamental domain" of the
group (Wigner, 1959). This is a subspace �0 � � such that (1) applying two di�erent group
elements gi 6= gj to �0, the subspaces �i � gi�0; �j � gj �0 are disjoint; and (2) carrying out all
group operations on �0 just generates the full hypothesis space: [j �j = �.

For example, let points in a plane be de�ned by their polar coordinates (r; �). If the group is
the four-element one generated by a 90� rotation of the plane, then any sector 90� wide, such as
(� � � < � + �=2) is a fundamental domain. Specifying the prior in any such sector, symmetry
under the group then determines the prior everywhere in the plane.

If the group contains a continuous symmetry operation, the dimensionality of the fundamental
domain is less than that of the parameter space; and so the probability density need be speci�ed
only on a set of points of measure zero, whereupon it is determined everywhere. If the number of
continuous symmetry operations is equal to the dimensionality of the space �, the fundamental
domain reduces to a single point, and the prior probability distribution is then uniquely determined
by symmetry alone, just as it is in the case of an honest coin. Later we shall formalize and generalize
these symmetry arguments.
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There is still an important constructive point to be made about the power of symmetry argu-
ments in probability theory. To see it, let us go back for a closer look at the coin{tossing problem.
The laws of mechanics determine the motion of the coin, as describing a certain trajectory in a
twelve{dimensional phase space [three coordinates (q1; q2; q3) of its center of mass, three Eulerian
angles (q4; q5; q6) specifying its orientation, and six associated momenta (p1; : : : ; p6)]. The di�culty
of predicting the outcome of a toss arises from the fact that very small changes in the location of
the initial phase point can change the �nal results.

Imagine the possible initial phase points to be labelled H or T , according to the �nal results.
Contiguous points labelled H comprise a set which is presumably twisted about in the twelve{
dimensional phase space in a very complicated, convoluted way, parallel to and separated by similar
T{sets.

Consider now a region R of phase space, which represents the accuracy with which a human
hand can control the initial phase point. Because of limited skill, we can be sure only that the
initial point is somewhere in R, which has a phase volume

�(R) =

Z
R

dq1 � � �dq6 dp1 � � �dp6

If the region R contains both H and T domains, we cannot predict the result of the toss. But
what probability should we assign to heads? If we assign equal probability to equal phase volumes
in R, this is evidently the fraction pH � �(H)=�(R) of phase volume of R that is occupied by H

domains. This phase volume � is the \invariant measure" of phase space. The cogency of invariant
measures for probability theory will be explained later; for now we note that the measure � is
invariant under a large group of \canonical" coordinate transformations, and also under the time
development, according to the equations of motion. This is Liouville's theorem, fundamental to
statistical mechanics; the exposition of Gibbs (1902) devotes the �rst three Chapters to discussion
of it, before introducing probabilities.

Now if we have positive knowledge that the coin is perfectly \honest," then it is clear that the
fraction �(H)=�(R)is very nearly 1/2, and becomes more accurately so as the size of the individual
H and T domains become smaller compared to R. Because, for example, if we are launching the
coin in a region R where the coin makes �fty complete revolutions while falling, then a one percent
change in the initial angular velocity will just interchange heads and tails by the time the coin
reaches the oor. Other things being equal, (all dynamical properties of the coin involve heads and
tails in the same manner), this should just reverse the �nal result.

A change in the initial \orbital" velocity of the coin, which results in a one percent change in
the time of ight, should also do this (strictly speaking, these conclusions are only approximate,
but we expect them to be highly accurate, and to become more so if the changes become less than
one percent). Thus, if all other initial phase coordinates remain �xed, and we vary only the initial
angular velocity _� and upward velocity _z, the H and T domains will spread into thin ribbons, like
the stripes on a zebra. From symmetry, the width of adjacent ribbons must be very nearly equal.

This same \parallel ribbon" shape of the H and T domains presumably holds also in the full
phase space.y This is quite reminiscent of Gibbs' illustration of �ne{grained and coarse{grained
probability densities, in terms of the stirring of colored ink in water. On a su�ciently �ne scale,

y Actually, if the coin is tossed onto a perfectly at and homogeneous level oor and is not only perfectly
symmetrical under the reection operation that interchanges heads and tails, but also perfectly round, the
probability of heads is independent of �ve of the twelve coordinates, so we have this intricate structure only
in a seven{dimensional space. Let the reader for whom this is a startling statement think about it hard, to
see why symmetry makes �ve coordinates irrelevant (they are the two horizontal coordinates of its center
of mass, the direction of its horizontal component of momentum, the Eulerian angle for rotation about a
vertical axis, and the Eulerian angle for rotation about the axis of the coin).
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every phase region is either H or T ; the probability of heads is either zero or unity. But on the scale
of sizes of the \macroscopic" region R corresponding to ordinary skills, the probability density is
the coarse{grained one, which from symmetry must be very nearly 1/2 if we know that the coin is
honest.

What if we don't consider all equal phase volumes within R as equally likely? Well, it doesn't
really matter if the H and T domains are su�ciently small. \Almost any" probability density
which is a smooth, continuous function within R, will give nearly equal weight to the H and T

domains, and we will still have very nearly 1/2 for the probability of heads. This is an example of a
general phenomenon, discussed by Poincar�e, that in cases where small changes in initial conditions
produce big changes in the �nal results, our �nal probability assignments will be, for all practical
purposes, independent of the initial ones.

As soon as we know that the coin has perfect dynamical symmetry between heads and tails {
i.e., its Lagrangian function

L(q1 : : : p6) = (Kinetic energy)� (Potential energy)

is invariant under the symmetry operation that interchanges heads and tails { then we know an
exact result. No matter where in phase space the initial region R is located, for every H domain
there is a T domain of equal size and identical shape, in which heads and tails are interchanged.
Then if R is large enough to include both, we shall persist in assigning probability 1/2 to heads.

But now suppose the coin is biased. The above argument is lost to us, and we expect that the
phase volumes ofH and T domains within R are no longer equal. In this case, the \frequentist" tells
us that there still exists a de�nite \objective" frequency of heads, pH 6= 1=2 which is a measurable
physical property of the coin. Let us understand clearly what this implies. To assert that the

frequency of heads is a physical property only of the coin, is equivalent to asserting that the ratio

v(H)=v(R) is independent of the location of region R. If this were true, it would be an utterly
unprecedented new theorem of mechanics, with important implications for physics which extend
far beyond coin tossing.

Of course, no such thing is true. From the three speci�c methods of tossing the coin discussed
above which correspond to widely di�erent locations of the region R, it is clear that the frequency
of heads will depend very much on how the coin is tossed. Method A uses a region of phase space
where the individual H and T domains are large compared to R, so human skill is able to control
the result. Method B uses a region where, for a biased coin, the T domain is very much larger than
either R or the H domain. Only method C uses a region where the H and T domains are small
compared to R, making the result unpredictable from knowledge of R.

It would be interesting to know how to calculate the ratio v(H)=v(R) as a function of the
location of R from the laws of mechanics; but it appears to be a very di�cult problem. Note,
for example, that the coin cannot come to rest until its initial potential and kinetic energy have
been either transferred to some other object or dissipated into heat by frictional forces; so all the
details of how that happens must be taken into account. Of course, it would be quite feasible to
do controlled experiments which measure this ratio in various regions of phase space. But it seems
that the only person who would have any use for this information is a professional gambler.

Clearly, our reason for assigning probability 1/2 to heads when the coin is honest is not based
merely on observed frequencies. How many of us can cite a single experiment in which the frequency
1/2 was established under conditions we would accept as signi�cant? Yet none of us hesitates a
second in choosing the number 1/2. Our real reason is simply common{sense recognition of the
symmetry of the situation. Prior information which does not consist of frequencies is of decisive

importance in determining probability assignments even in this simplest of all random experiments.

Those who adhere publicly to a strict frequency interpretation of probability jump to such
conclusions privately just as quickly and automatically as anyone else; but in so doing they have
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violated their basic premise that (probability) � (frequency); and so in trying to justify this choice
they must suppress any mention of symmetry, and fall back on remarks about assumed frequencies
in random experiments which have, in fact, never been performed.y

Here is an example of what one loses by so doing. From the result of tossing a die, we cannot
tell whether it is symmetrical or not. But if we know, from direct physical measurements, that the
die is perfectly symmetrical and we accept the laws of mechanics as correct, then it is no longer
plausible inference, but deductive reasoning, that tells us this: any nonuniformity in the frequencies

of di�erent faces is proof of a corresponding nonuniformity in the method of tossing. The qualitative
nature of the conclusions we can draw from the random experiment depend on whether we do or
do not know that the die is symmetrical.

This reasoning power of arguments based on symmetry has led to great advances in physics
for sixty years; as noted, it is not very exaggerated to say that the only known exact results in
mathematical physics are the ones that can be deduced by the methods of group theory from
symmetry considerations. Although this power is obvious once noted and it is used intuitively by
every worker in probability theory, it has not been widely recognized as a legitimate formal tool in
probability theory.z

We have just seen that in the simplest of the random experiments, any attempt to de�ne a
probability merely as a frequency involves us in the most obvious logical di�culties as soon as we
analyze the mechanism of the experiment. In many situations where we can recognize an element
of symmetry our intuition readily takes over and suggests an answer; and of course it is the same
answer that our basic desideratum { that equivalent states of knowledge should be represented by
equivalent probability assignments { requires for consistency.

But in situations in which we have positive knowledge of symmetry are rather special ones
among all those faced by the scientist. How can we carry out consistent inductive reasoning
in situations where we do not perceive any clear element of symmetry? This is an open{ended
problem because there is no end to the variety of di�erent special circumstances that might arise.
As we shall see, the principle of Maximum Entropy gives a useful and versatile tool for many such
problems. But in order to give a start toward understanding this, let's go way back to the beginning
and consider the tossing of the coin still another time, in a di�erent way.

Independence of Tosses

\When I toss a coin the probability of heads is one half." What do we mean by this statement?
Over the past two centuries millions of words have been written about this simple question. A
recent exchange (Edwards, 1991) shows that it is still enveloped in total confusion in the minds of
some. But by and large, the issue is between the following two interpretations:

A: \The available information gives me no reason to expect heads rather than tails, or
vice versa { I am completely unable to predict which it will be."

B: \If I toss the coin a very large number of times, in the long run heads will occur about
half the time { in other words, the frequency of heads will approach 1/2."

We belabor still another time, what we have already stressed many times before: Statement (A)
does not describe any property of the coin, but only the robot's state of knowledge (or if you prefer,

y Or rather, whenever anyone has tried to perform such experiments under su�ciently controlled conditions
to be signi�cant, the expected equality of frequencies is not observed. The famous experiments of Weldon
and Wolf are discussed elsewhere in this work.
z Indeed, L. J. Savage (1962, p. 102) rejects symmetry arguments, thereby putting his system of `person-
alistic' probability in the position of recognizing the need for prior probabilities but refusing to admit any
formal principles for assigning them.
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of ignorance). (B) is, at least by implication, asserting something about the coin. Thus (B) is a
very much stronger statement than (A). Note, however, that (A) does not in any way contradict
(B); on the contrary, (A) could be a consequence of (B). For if our robot were told that this coin
has in the past given heads and tails with equal frequency, this would give it no help at all in
predicting the result of the next toss.

Why, then, has interpretation (A) been almost universally rejected by writers on probability
and statistics for two generations? There are, we think, two reasons for this. In the �rst place,
there is a widespread belief that if probability theory is to be of any use in applications, we must
be able to interpret our calculations in the strong sense of (B). But this is simply untrue, as
we have demonstrated throughout the last eight Chapters. We have seen examples of almost all
known applications of frequentist probability theory, and many useful problems outside the scope of
frequentist probability theory, which are nevertheless solved readily by probability theory as logic.

Secondly, it is another widely held misconception that the mathematical rules of probability
theory (the \laws of large numbers") would lead to (B) as a consequence of (A), and this seems to
be \getting something for nothing." For, the fact that I know nothing about the coin is clearly not
enough to make the coin give heads and tails equally often!

This misconception arises because of a failure to distinguish between the following two state-
ments:

C: \Heads and tails are equally likely on a single toss."

D: \If the coin is tossed N times, each of the 2N conceivable outcomes is equally likely."

To see the di�erence between (C) and (D), consider a case where it is known that the coin is biased,
but not whether the bias favors heads or tails. Then (C) is applicable but (D) is not. For on this
state of knowledge, as was noted already by Laplace, the sequences HH and TT are each somewhat
more likely than HT or TH . More generally, our common sense tells us that any unknown inuence
which favors heads on one toss will likely favor heads on the other toss. Unless our robot has positive
knowledge (symmetry of both the coin and the method of tossing) which de�nitely rules out all

such possibilities, (D) is not a correct description of his true state of knowledge; it assumes too
much.

Statement (D) implies (C), but says a great deal more. (C) says, \I do not know enough about
the situation to give me any help in predicting the result of the next throw," while (D) says, \I
know that the coin is honest, and that it is being tossed in a way which favors neither face over the
other, and that the method of tossing and the wear of the coin give no tendency for the result of
one toss to inuence the result of another."

Mathematically, the laws of large numbers require much more than (C) for their derivation.
Indeed, if we agree that tossing a coin generates an exchangeable sequence (i.e., the probability
that N tosses will yield heads at n speci�ed trials depends only on N and n, not on the order
of heads and tails), then application of the de Finetti theorem, as in Chapter 9, shows that the
weak law of large numbers holds only when (D) can be justi�ed. In this case, it is almost correct
to say that the probability assigned to heads is equal to the frequency with which the coin gives
heads; because, for any � ! 0, the probability that the observed frequency f = (n=N) lies in the
interval (1=2 � �) tends to unity as N ! 1. Let us describe this by saying that there exists a
strong connection between probability and frequency. We analyze this more deeply in Chapter 18.

In most recent treatments of probability theory, the writer is concerned with situations where
a strong connection between probability and frequency is taken for granted { indeed this is usually
considered essential to the very notion of probability. Nevertheless, the existence of such a strong
connection is clearly only an ideal limiting case unlikely to be realized in any real application.
For this reason, the laws of large numbers and limit theorems of probability theory can be grossly
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misleading to a scientist or engineer who na��vely supposes them to be experimental facts, and tries
to interpret them literally in his problems. Here are two simple examples:

(1) Suppose there is some random experiment in which you assign a probability p for some partic-
ular outcome A. It is important to estimate accurately the fraction f of times A will be true
in the next million trials. If you try to use the laws of large numbers, it will tell you various
things about f ; for example, that it is quite likely to di�er from p by less than a tenth of one
percent, and enormously unlikely to di�er from p by more than one percent. But now, imagine
that in the �rst hundred trials, the observed frequency of A turned out to be entirely di�erent
from p. Would this lead you to suspect that something was wrong, and revise your probability
assignment for the 101'st trial? If it would, then your state of knowledge is di�erent from that
required for the validity of the law of large numbers. You are not sure of the independence of
di�erent trials, and/or you are not sure of the correctness of the numerical value of p. Your
prediction of f for a million trials is probably no more reliable than for a hundred.

(2) The common sense of a good experimental scientist tells him the same thing without any prob-
ability theory. Suppose someone is measuring the velocity of light. After making allowances for
the known systematic errors, he could calculate a probability distribution for the various other
errors, based on the noise level in his electronics, vibration amplitudes, etc. At this point, a
na��ve application of the law of large numbers might lead him to think that he can add three
signi�cant �gures to his measurement merely by repeating it a million times and averaging the
results. But, of course, what he would actually do is to repeat some unknown systematic error
a million times. It is idle to repeat a physical measurement an enormous number of times in
the hope that \good statistics" will average out your errors, because we cannot know the full
systematic error. This is the old \Emperor of China" fallacy, discussed elsewhere.

Indeed, unless we know that all sources of systematic error { recognized or unrecognized { con-
tribute less than about one{third the total error, we cannot be sure that the average of a million
measurements is any more reliable than the average of ten. Our time is much better spent in
designing a new experiment which will give a lower probable error per trial. As Poincar�e put it,
\The physicist is persuaded that one good measurement is worth many bad ones." In other words,
the common sense of a scientist tells him that the probabilities he assigns to various errors do not
have a strong connection with frequencies, and that methods of inference which presuppose such a
connection could be disastrously misleading in his problems.

Then in advanced applications, it will behoove us to consider: How are our �nal conclusions
altered if we depart from the universal custom of orthodox statistics, and relax the assumption
of strong connections? Harold Je�reys showed a very easy way to answer this, as we shall see
later. As common sense tells us it must be, the ultimate accuracy of our conclusions is then
determined not by anything in the data or in the orthodox picture of things; but rather by our
own state of knowledge about the systematic errors. Of course, the orthodoxian will protest that,
\We understand this perfectly well; and in our analysis we assume that systematic errors have
been located and eliminated." But he does not tell us how to do this, or what to do if { as is the
case in virtually every real experiment { they are unknown and so cannot be eliminated. Then all
the usual `asymptotic' rules are qualitatively wrong, and only probability theory as logic can give
defensible conclusions.

The Arrogance of the Uninformed

Now we come to a very subtle and important point, which has caused trouble from the start in
the use of probability theory. Many of the objections to Laplace's viewpoint which you �nd in the
literature can be traced to the author's failure to recognize it. Suppose we do not know whether a
coin is honest, and we fail to notice that this state of ignorance allows the possibility of unknown
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inuences which would tend to favor the same face on all tosses. We say \Well, I don't see any
reason why any one of the 2N outcomes in N tosses should be more likely than any other, so I'll
assign uniform probabilities by the principle of indi�erence."

We would be led to statement (D) and the resulting strong connection between probability
and frequency. But this is absurd { in this state of uncertainty, we could not possibly make reliable
predictions of the frequency of heads. Statement (D), which is supposed to represent a great deal
of positive knowledge about the coin and the method of tossing can also result from failure to make
proper use of all the available information!

Nothing in our past experience could have prepared us for this; it is a situation without parallel
in any other �eld. In other applications of mathematics, if we fail to use all of the relevant data
of a problem, the result will not be that we get an incorrect answer. The result will be that we
are unable to get any answer at all. But probability theory cannot have any such built{in safety
device, because in principle, the theory must be able to operate no matter what our incomplete
information might be.

If we fail to include all of the relevant data or to take into account all the possibilities allowed
by the data and prior information, probability theory will still give us a de�nite answer; and
that answer will be the correct conclusion from the information that we actually gave the robot.
But that answer may be in violent contradiction to our common{sense judgments which did take
everything into account, if only crudely. The onus is always on the user to make sure that all the

information, which his common sense tells him is relevant to the problem, is actually incorporated

into the equations and that the full extent of his ignorance is also properly represented. If you fail
to do this, then you should not blame Bayes and Laplace for your nonsensical answers.

We shall see examples of this kind of misuse of probability theory later, in the various objections
to the Rule of Succession. It may seem paradoxical that a more careful analysis of a problem may
lead to less certainty in prediction of the frequency of heads. However, look at it this way. It is
commonplace that in all kinds of questions the fool feels a certainty that is denied to the wise man.
The semiliterate on the next bar stool will tell you with absolute, arrogant assurance just how to
solve all the world's problems; while the scholar who has spent a lifetime studying their causes is
not at all sure how to do this.

In almost any example of inference, a more careful study of the situation, uncovering new
facts, can lead us to feel either more certain or less certain about our conclusions, depending on
what we have learned. New facts may support our previous conclusions, or they may refute them;
we saw some of the subtleties of this in Chapter 5. If our mathematical model failed to reproduce
this phenomenon, it could not be an adequate \calculus of inductive reasoning."
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CHAPTER 11

DISCRETE PRIOR PROBABILITIES { THE ENTROPY PRINCIPLE

At this point we return to the job of designing this robot. We have part of its brain designed, and

we have seen how it would reason in a few simple problems of hypothesis testing and estimation.
In every problem it has solved thus far, the results have either amounted to the same thing as, or

were usually demonstrably superior to, those o�ered in the \orthodox" statistical literature. But
it is still not a very versatile reasoning machine, because it has only one means by which it can

translate raw information into numerical values of probabilities; the principle of indi�erence (2{
74). Consistency requires it to recognize the relevance of prior information, and so in almost every

problem it is faced at the onset with the problem of assigning initial probabilities, whether they
are called technically prior probabilities or sampling probabilities. It can use indi�erence for this

if it can break the situation up into mutually exclusive, exhaustive possibilities in such a way that

no one of them is preferred to any other by the evidence. But often there will be prior information
that does not change the set of possibilities but does give a reason for preferring one possibility to

another. What do we do in this case?

Orthodoxy evades this problem by simply ignoring prior information for �xed parameters, and

maintaining the �ction that sampling probabilities are known frequencies. Yet in some forty years
of active work in this �eld, the writer has never seen a real problem in which one actually has prior

information about sampling frequencies! In practice, sampling probabilities are always assigned

from some standard theoretical model (binomial distribution, etc.) which starts from the principle
of indi�erence. If the robot is to rise above such false pretenses, we must give it more principles for

assigning initial probabilities by logical analysis of the prior information. In this Chapter and the
following one we introduce two new principles of this kind, each of which has an unlimited range

of useful applications. But the �eld is open{ended in all directions; we expect that more principles
will be found in the future, leading to a still wider range of applications.

A New Kind of Prior Information.

Imagine a class of problems in which the robot's prior information consists of average values of

certain things. Suppose, for example, that statistics were collected in a recent earthquake and that
out of 100 windows broken, there were 976 pieces found. But we are not given the numbers 100,

976; we are told only that \The average window is broken into m = 9.76 pieces." That is the way
it would be reported. Given only that information, what is the probability that a window would be
broken into exactly m pieces? There is nothing in the theory so far that will answer that question.

As another example, suppose we have a table which we cover with black cloth, and some dice,
but for reasons that will be clear in a minute, they are black dice with white spots. A die is tossed

onto the black table. Above there is a camera. Every time it is tossed, we take a snapshot. The
camera will record only the white spots. Now we don't change the �lm in between, so we end up

with a multiple exposure; uniform blackening of the �lm after we have done this a few thousand
times. From the known density of the �lm and the number of tosses, we can infer the average

number of spots which were on top, but not the frequencies with which various faces came up.
Suppose that the average number of spots turned out to be 4.5 instead of the 3.5 that we might

expect from an honest die. Given only this information (i.e., not making use of anything else that

you or I might know about dice except that they have six faces), what estimates should the robot
make of the frequencies with which n spots came up? Supposing that successive tosses form an
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exchangeable sequence as de�ned in Chapter 3, what probability should it assign to the n'th face
coming up on the next toss?

As a third example, suppose that we have a string of N = 1,000 cars, bumper to bumper,

and they occupy the full length of L = 3 miles. As they drive onto a rather large ferry boat, the
distance that it sinks into the water determines their total weight W . But the numbers N;L;W

are withheld from us; we are told only their average length L=N and average weight W=N . We can
look up statistics from the manufacturers, and �nd out how long the Volkswagen is, how heavy it

is; how long a Cadillac is, and how heavy it is, and so on, for all the other brands. From knowledge
only of the average length and the average weight of these cars, what can we then infer about the

proportion of cars of each make that were in the cluster?

If we knew the numbers N;L;W , then this could be solved by direct application of Bayes'

theorem; without that information we could still introduce the unknowns N;L;W as nuisance
parameters and use Bayes' theorem, eliminating them at the end. We shall give an example of this

procedure in the nonconglomerability problem in Chapter 15. The Bayesian solution is not really
wrong, and for large N it would be for all practical purposes the same as the solution advocated

below; but it would be tedious for three nuisance parameters and it would not really address our
problem; it only transfers it to the problem of assigning priors to N;L;W , leaving us back in

essentially the same situation. Is there a better procedure that will go directly to the real problem?

Now, it is not at all obvious how our robot should handle problems of this sort. Actually, we
have de�ned two di�erent problems; estimating a frequency distribution, and assigning a probability

distribution. But in an exchangeable sequence these are almost identical mathematically. So let's
think about how we would want the robot to behave in this situation. Of course, we want it

to take into account fully all the information it has, of whatever kind. But we would not want

it to jump to conclusions that are not warranted by the evidence it has. We have seen that a
uniform probability assignment represents a state of mind completely noncommittal with regard to

all possibilities; it favors no one over any other, and thus leaves the entire decision to the subsequent
data which the robot may receive. The knowledge of average values does give the robot a reason

for preferring some possibilities to others, but we would like it to assign a probability distribution
which is, in some sense, as uniform as it can get while agreeing with the available information. The

most conservative, noncommittal distribution is the one which is in some sense as \spread{out"
as possible. In particular, the robot must not ignore any possibility { it must not assign zero

probability to any situation unless its information really rules out that situation.

This sounds very much like de�ning a variational problem; the information available de�nes
constraints �xing some properties of the initial probability distribution, but not all of them. The

ambiguity remaining is to be resolved by the policy of honesty; frankly acknowledging the full

extent of its ignorance by taking into account all possibilities allowed by its knowledge.y To cast it
into mathematical form, the aim of avoiding unwarranted conclusions leads us to ask whether there

is some reasonable numerical measure of how uniform a probability distribution is, which the robot
could maximize subject to constraints which represent its available information. Let's approach
this in the way most problems are solved; the time{honored method of trial and error. We just
have to invent some measures of uncertainty, and put them to the test to see what they give us.

One measure of how broad an initial distribution is would be its variance. Would it make sense
if the robot were to assign probabilities so as to maximize the variance subject to its information?
But consider the distribution of maximum variance for a given m, if the conceivable values of m are
unlimited, as in the broken window problem. Then the maximum variance solution would be the
one where the robot assigns a very large probability for no breakage at all, and an enormously small

y This is really an ancient principle of wisdom, recognized clearly already in such sources as Herodotus

and the Old Testament.
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probability of a window to be broken into billions and billions of pieces. You can get an arbitrarily
high variance this way, while keeping the average at 9.76. In the dice problem, the solution with

maximum variance would be to assign all the probability to the one and the six, in such a way that
p1 + 6p6 = 4:5, or p1 = 0:3; p6 = 0:7. So that, evidently, is not the way we would want our robot

to behave; it would be jumping to wildly unjusti�ed conclusions, since nothing in its information
says that it is impossible to have three spots up.

Minimum
P

p2i .

Another kind of measure of how spread out a probability distribution is, which has been used

a great deal in statistics, is the sum of the squares of the probabilities assigned to each of the
possibilities. The distribution which minimizes this expression, subject to constraints represented

by average values, might be a reasonable way for our robot to behave. Let's see what sort of a

solution this would lead to. We want to makeX
m

p2m

a minimum, subject to the constraints that the sum of all pm shall be unity, and the average over
the distribution is m. A formal solution is obtained at once from the variational problem

�

�X
m

p2m � �
X
m

mpm � �
X
m

pm

�
=
X
m

(2pm � �m� �)�pm = 0 (11{1)

where � and � are Lagrange Multipliers. So pm will be a linear function of m: 2pm � �m� � = 0.

Then � and � are found from X
m

pm = 1;
X
m

mpm = m; (11{2)

where m is the average value of m, given to us in the statement of the problem..

Suppose that m can take on only the values 1; 2; and 3. Then the formal solution is

p1 =
4

3
� m

2
; p2 =

1

3
; p3 =

m

2
� 2

3
: (11{3)

This would be at least usable for some values of m. But in principle, m could be anywhere in
1 � m � 3, and p1 becomes negative when m > 8=3 = 2:667, while p3 becomes negative when

m < 4=3 = 1:333. The formal solution for minimum
P

p2i lacks the property of nonnegativity.
We might try to patch this up in an ad hoc way by replacing the negative values by zero and

adjusting the other probabilities to keep the constraint satis�ed. But then the robot is using
di�erent principles of reasoning in di�erent ranges of m; and it is still assigning zero probability to
situations that are not ruled out by its information. This performance is not acceptable; it is an
improvement over maximum variance, but the robot is still behaving inconsistently and jumping

to unwarranted conclusions. We have taken the trouble to examine this criterion because some

writers have rejected the entropy solution given next and suggested on intuitive grounds, without
examining the actual results, that minimum

P
p2i would be a more reasonable criterion.

But the idea behind the variational approach still looks like a good one. There should be

some consistent measure of the uniformity, or \amount of uncertainty" of a probability distribution
which we can maximize, subject to constraints, and which will have the property that forces the

robot to be completely honest about what it knows, and in particular it does not permit the robot

to draw any conclusions unless those conclusions are really justi�ed by the evidence it has. But we
must pay more attention to the consistency requirement.
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Entropy: Shannon's Theorem.

At this stage we turn to the most quoted theorem in Shannon's work on Information Theory
(Shannon, 1948; Shannon & Weaver, 1949). If there exists a consistent measure of the \amount of

uncertainty" represented by a probability distribution, there are certain conditions it will have to

satisfy. We shall state them in a way which will remind you of the arguments we gave in Chapter
2; in fact, this is really a continuation of the basic development of probability theory:

(1) We assume that some numerical measure Hn(p1; p2; : : : ; pn) exists; i.e., that it is
possible to set up some kind of association between \amount of uncertainty" and real

numbers.

(2) We assume a continuity property: Hn is a continuous function of the pi. For otherwise

an arbitrarily small change in the probability distribution would still lead to the same
big change in the amount of uncertainty.

(3) We require that this measure should correspond qualitatively to common sense in
that when there are many possibilities, we are more uncertain than when there are

few. This condition takes the form that in case the pi are all equal, the quantity

h(n) = Hn

�
1

n
; : : : ;

1

n

�

is a monotonic increasing function of n. This establishes the \sense of direction."

(4) We require that the measure Hn be consistent in the same sense as before; i.e. if

there is more than one way of working out its value, we must get the same answer
for every possible way.

Previously, our conditions of consistency took the form of the functional equations (2{4), (2{30).
Now we have instead a hierarchy of functional equations relating the di�erent Hn to each other.

Suppose the robot perceives two alternatives, to which it assigns probabilities p1 and q � 1 � p1.
Then the \amount of uncertainty" represented by this distribution is H2(p1; q). But now the robot

learns that the second alternative really consists of two possibilities, and it assigns probabilities p2,
p3 to them, satisfying p2 + p3 = q. What is now his full uncertainty H3(p1; p2; p3) as to all three

possibilities? Well, the process of choosing one of the three can be broken down into two steps.
First, decide whether the �rst possibility is or is not true; the uncertainty removed by this decision

is the original H2(p1; q). Then, with probability q he encounters an additional uncertainty as to
events 2, 3, leading to

H3(p1; p2; p3) = H2(p1; q) + qH2

�
p2

q
;
p3

q

�
(11{4)

as the condition that we shall obtain the same net uncertainty for either method of calculation. In
general, a function Hn can be broken down in many di�erent ways, relating it to the lower order

functions by a large number of equations like this.

Note that equation (11{4) says rather more than our previous functional equations did. It

says not only that the Hn are consistent in the aforementioned sense, but also that they are to be
additive. So this is really an additional assumption which we should have included in our list.
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Exercise 11.1 It seems intuitively that the most general condition of consistency would be a

functional equation which is satis�ed by any monotonic increasing function of Hn. But this is
ambiguous unless we say something about how the monotonic functions for di�erent n are to

be related; is it possible to invoke the same function for all n? Carry out some new research in
this �eld by investigating this matter; try either to �nd a possible form of the new functional

equations, or to explain why this cannot be done.

At any rate, the next step is perfectly straightforward mathematics; let's see the full proof of

Shannon's theorem, now dropping the unnecessary subscript on Hn.

First, we �nd the most general form of the composition law (11{4) for the case that there

are n mutually exclusive propositions (A1; � � � ; An) to consider, to which we assign probabilities
(p1; � � � ; pn) respectively. Instead of giving the probabilities of the (A1; � � � ; An) directly, we might

�rst group the �st k of them together as the proposition denoted by (A1 + A2 + � � � + Ak) in

Boolean algebra, and give its probability which by (2{64) is equal to w1 = (p1 + � � �+ pk); then
the next m propositions are combined into (Ak+1+ � � �+Ak+m), for which we give the probability

w2 = (pk+1 + � � �+ pk+m), etc. When this much has been speci�ed, the amount of uncertainty as
to the composite propositions is H(w1; : : : ; wr).

Next we give the conditional probabilities (p1=w1; : : : ; pk=w1) of the propositions (A1; : : : ; Ak),
given that the composite proposition (A1+� � �+Ak) is true. The additional uncertainty, encountered

with probability w1, is then H(p1=w1; � � � ; pk=wk). Carrying this out for the composite propositions
(Ak+1+ � � �+Ak+m), etc., we arrive ultimately at the same state of knowledge as if the (p1; : : : ; pn)

had been given directly; so consistency requires that these calculations yield the same ultimate
uncertainty no matter how the choices were broken down in this way. Thus we have

H(p1 : : : pn) = H(w1 : : :wr) + w1H(p1=w1; : : : ; pk=w1)

+ w2H(pk+1=w2; : : : ; pk+m=w2) + � � � (11{5)

which is the general form of the functional equation (11{4). For example,

H(1=2; 1=3; 1=6) = H(1=2; 1=2)+ (1=2)H(2=3; 1=3) :

Since H(p1; : : : ; pn) is to be continuous, it will su�ce to determine it for all rational values

pi =
niP
ni

(11{6)

with ni integers. But then (11{5) determines the function H already in terms of the quantities

h(n) � H(1=n; : : :; 1=n) which measure the \amount of uncertainty" for the case of n equally likely
alternatives. For we can regard a choice of one of the alternatives (A1; � � � ; An) as the �rst step in

the choice of one of
nX
i=1

ni

equally likely alternatives in the manner just described, the second step of which is also a choice

between ni equally likely alternatives. As an example, with n = 3, we might choose n1 = 3, n2 = 4,
n3 = 2. For this case the composition law (11{5) becomes

h(9) = H

�
3

9
;
4

9
;
2

9

�
+

3

9
h(3) +

4

9
h(4) +

2

9
h(2)
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For a general choice of the ni, (11{5) reduces to

h(
X

ni) = H(p1; : : : ; pn) +
X
i

pih(ni) (11{7)

Now we can choose all ni = m; whereupon (11{7) collapses to

h(mn) = h(m) + h(n) : (11{8)

Evidently, this is solved by setting

h(n) = K logn (11{9)

where K is a constant. But is this solution unique? If m, n were continuous variables, this would

be easy to answer; di�erentiate with respect tom, setm = 1, and integrate the resulting di�erential
equation with the initial condition h(1) = 0 evident from (11{8), and you have proved that (11{9)

is the only solution. But in our case, (11{8) need hold only for integer values of m, n; and this
elevates the problem from a trivial one of analysis to an interesting little exercise in number theory.

First, note that (11{9) is no longer unique; in fact, (11{8) has an in�nite number of solutions

for integer m, n. For, each positive integer N has a unique decomposition into prime factors; and
so by repeated application of (11{8) we can express h(N) in the form

P
imih(qi) where qi are the

prime numbers and mi non-negative integers. Thus we can specify h(qi) arbitrarily for the prime
numbers qi, whereupon (11{8) is just su�cient to determine h(N) for all positive integers.

To get any unique solution for h(n), we have to add our qualitative requirement that h(n) be
monotonic increasing in n. To show this, note �rst that (11{8) ma;y be extended by induction:

h(nmr � � �) = h(n) + h(m) + h(r) + � � �

and setting the factors equal in the k'th order extension gives

h(nk) = kh(n) (11{10)

Now let t, s be any two integers not less than 2. Then for arbitrarily large n, we can �nd an integer
m such that

m

n
� log t

log s
<

m+ 1

n
; or sm � tn < sm+1 : (11{11)

Since h is monotonic increasing, h(sm) � h(tn) � h(sm+1); or from (11{10),

mh(s) � nh(t) � (m+ 1)h(s)

which can be written as

m

n
� h(t)

h(s)
� m+ 1

n
: (11{12)

Comparing (11{11), (11{12), we see that

���� h(t)h(s)
� log t

log s

���� � 1

n
; or

���� h(t)log t
� h(s)

log s

���� � � (11{13)

where
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� � h(s)

n log t

is arbitrarily small. Thus h(t)= log t must be a constant, and the uniqueness of (11{9) is proved.

Now di�erent choices ofK in (11{9) amount to the same thing as taking logarithms to di�erent

bases; so if we leave the base arbitrary for the moment, we can just as well write h(n) = log n. Sub-
stituting this into (11{7), we have Shannon's theorem: The only function H(p1; : : : ; pn) satisfying

the conditions we have imposed on a reasonable measure of \amount of uncertainty" is

H(p1; : : : ; pn) = �
nX
i=1

pi log pi (11{14)

Accepting this interpretation, it follows that the distribution (p1 � � �pn) which maximizes (11{

14) subject to constraints imposed by the available information, will represent the \most honest"
description of what the robot knows about the propositions (A1; : : : ; An). The only arbitrariness

is that we have the option of taking the logarithm to any base we please, corresponding to a
multiplicative constant in H . This, of course, has no e�ect on the values of (p1; : : : ; pn) which

maximize H .

As in Chapter 2, we note the logic of what has and has not been proved. We have shown that

use of the measure (11{14) is a necessary condition for consistency; but in accordance with G�odel's
theorem one cannot prove that it actually is consistent unless we move out into some as yet unknown

region beyond that used in our proof. From the above argument, given originally in Jaynes (1957a)

and leaning heavily on Shannon, we conjectured that any other choice of \information measure"
will lead to inconsistencies if carried far enough; and a direct proof of this was found subsequently

by Shore & Johnson (1980) using an argument entirely independent of ours. Many years of use
of the Maximum Entropy Principle (variously abbreviated to PME, MEM, MENT, MAXENT by

various writers) has not revealed any inconsistency; and of course we do not believe that one will
ever be found.

The function H is called the entropy; or better the information entropy of the distribution
fpig. This is an unfortunate terminology which now seems impossible to correct. We must warn

at the outset that the major occupational disease of this �eld is a persistent failure to distinguish
between the information entropy , which is a property of any probability distribution, and the

experimental entropy of thermodynamics, which is instead a property of a thermodynamic state as
de�ned, for example by such observed quantities as pressure, volume, temperature, magnetization,
of some physical system. They should never have been called by the same name; the experimental

entropy makes no reference to any probability distribution, and the information entropy makes
no reference to thermodynamics.y Many textbooks and research papers are awed fatally by the

author's failure to distinguish between these entirely di�erent things; and in consequence proving
nonsense theorems.

We have seen the mathematical expression �p log p appearing incidentally in several previous
Chapters, generally in connection with the multinomial distribution; now it has acquired a new

meaning as a fundamental measure of how uniform a probability distribution is.

y But in case the problem happens to be one of thermodynamics, there is a relation between them, which

we shall �nd presently.
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Exercise 11.2 Prove that any change in the direction of equalizing two probabilities will increase

the information entropy. That is, if pi < pj , then the change pi ! pi + �; pj ! pj � � where � is
in�nitesimal and positive, will increase H(p1 � � �pn) by an amount proportional to �. Applying

this repeatedly, it follows that the maximum attainable entropy is one for which all the di�erences
jpi � pj j are as small as possible. This shows also that information entropy is a global property,

not a local one; a di�erence jpi � pj j has just as great an e�ect on entropy whether ji� jj is 1
or 1000.

Although the above demonstration appears satisfactory mathematically, it is not yet in completely
satisfactory form conceptually. The functional equation (11{4) does not seem quite so intuitively

compelling as our previous ones were. In this case, the trouble is probably that we have not yet
learned how to verbalize the argument leading to (11{4) in a fully convincing manner. Perhaps

this will inspire you to try your hand at improving the verbiage that we used just before writing
(11{4). Then it is comforting to know that there are several other possible arguments, like the

aforementioned one of Shore & Johnson, which also lead uniquely to the same conclusion (11{14).
We note another of them.

The Wallis Derivation.

This resulted from a suggestion made to the writer in 1962 by Dr. Graham Wallis (although the
argument to follow di�ers slightly from his). We are given information I , which is to be used in

assigning probabilities fp1 � � �pmg tom di�erent possibilities. We have a total amount of probability

mX
i=1

pi = 1

to allocate among them. Now in judging the reasonableness of any particular allocation we are

limited to a consideration of I and the rules of probability theory; for to call upon any other
evidence would be to admit that we had not used all the available information in the �rst place.

The problem can also be stated as follows. Choose some integer n� m, and imagine that we

have n little \quanta" of probability, each of magnitude � = n�1, to distribute in any way we see
�t. In order to ensure that we have \fair" allocation, in the sense that none of the m possibilities

shall knowingly be given either more or fewer of these quanta than it \deserves," in the light of the
information I , we might proceed as follows.

Suppose we were to scatter these quanta at random among the m choices { you can make this

a blindfolded penny{pitching game into m equal boxes if you like. If we simply toss these \quanta"
of probability at random, so that each box has an equal probability of getting them, nobody can
claim that any box is being unfairly favored over any other. If we do this, and the �rst box receives
exactly n1 quanta, and the second n2, etc., we will say that the random experiment has generated

the probability assignment

pi = ni� = ni=n; i = 1; 2; : : : ; m :

The probability that this will happen is the multinomial distribution

m�n n!

n1! � � �nm!
: (11{15)

Now imagine that a blindfolded friend repeatedly scatters the n quanta at random among the m
boxes. Each time he does this we examine the resulting probability assignment. If it happens to
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conform to the information I , we accept it; otherwise we reject it and tell him to try again. We
continue until some probability assignment fp1; : : : ; pmg is accepted.

What is the most likely probability distribution to result from this game? From (11{15) it is

the one which maximizes

W =
n!

n1! � � �nm!
(11{16)

subject to whatever constraints are imposed by the information I . We can re�ne this procedure by
choosing smaller quanta; i.e. large n. In this limit we have, by the Stirling approximation

logn! = n logn� n+
p
2�n+

1

12n
+O(

1

n2
) (11{17)

where O(1=n2) denotes terms that tend to zero as n ! 1, as (1=n2) or faster. Using this result,

and writing ni = npi, we �nd easily that as n ! 1, ni ! 1, in such a way that ni=n ! pi =
const.,

1

n
logW ! �

mX
i=1

pi log pi = H(p1; : : : ; pm) (11{18)

and so, the most likely probability assignment to result from this game, is just the one that has
maximum entropy subject to the given information I .

You might object that this game is still not entirely \fair," because we have stopped at the

�rst acceptable result without seeing what other acceptable ones might also have turned up. In
order to remove this objection, we can consider all possible acceptable distributions and choose

the average pi of them. But here the \laws of large numbers" come to our rescue. We leave it
as an exercise for the reader to prove that in the limit of large n, the overwhelming majority of

all acceptable probability allocations that can be produced in this game are arbitrarily close to the

maximum{entropy distribution.y

From a conceptual standpoint, the Wallis derivation is quite attractive. It is entirely indepen-

dent of Shannon's functional equations (11{5), it does not require any postulates about connections

between probability and frequency; nor does it suppose that the di�erent possibilities f1; : : : ; mg are
themselves the result of any repeatable random experiment. Furthermore, it leads automatically
to the prescription that H is to be maximized { and not treated in some other way { without the
need for any quasi{philosophical interpretation of H in terms of such a vague notion as \amount

of uncertainty." Anyone who accepts the proposed game as a fair way to allocate probabilities that
are not determined by the prior information, is thereby led inexorably to the Maximum Entropy

Principle.

Let us stress this point. It is a big mistake to try to read too much philosophical signi�cance into
theorems which lead to equation (11{14). In particular, the association of the word \information"

with entropy expressions seems in retrospect quite unfortunate, because it persists in carrying the

wrong connotations to so many people. Shannon himself, with prophetic insight into the reception
his work would get, tried to play it down by pointing out immediately after stating the theorem,
that it was in no way necessary for the theory to follow. By this he meant that the inequalities which
H satis�es are already quite su�cient to justify its use; it does not really need the further support

of the theorem which deduces it from functional equations expressing intuitively the properties of
\amount of uncertainty."

y This result is formalized more completely in the Entropy Concentration Theorem given later.
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However, while granting that this is perfectly true, we would like now to show that if we

do accept the expression for entropy, very literally, as the correct expression for the \amount of

uncertainty" represented by a probability distribution, this will lead us to a much more uni�ed
picture of probability theory in general. It will enable us to see that the principle of indi�erence,

and many frequency connections of probability are special cases of a single principle, and that
statistical mechanics, communication theory, and a mass of other applications are all instances of

a single method of reasoning.

An Example.

First, let's test this principle by seeing how it would work out in the example discussed above, in
which m can take on only the values 1, 2, 3, and m is given. We can use our Lagrange multiplier

argument again to solve this problem; as in (11{1),

�

"
H(p1; : : : ; p3)� �

3X
m=1

mpm � �

3X
m=1

pm

#
=

3X
m=1

�
@H

@pm
� �m� �

�
�pm = 0: (11{19)

Now,

@H

@pm
= � log pm � 1 (11{20)

so our solution is

pm = e��0��m (11{21)

where �0 � �+ 1.

So the distribution which has maximum entropy, subject to a given average value, will be
in exponential form, and we have to �t the constants �0 and � by forcing this to agree with the

constraints that the sum of the p's must be one and the average value must be equal to the average
m that we assigned. This is accomplished quite neatly if you de�ne a function

Z(�) �
3X

m=1

e��m (11{22)

which we called the partition function in Chapter 9. The equations (11{2) which �x our Lagrange
multipliers then take the form

�0 = logZ(�) ; m = � @

@�
logZ(�) : (11{23)

We �nd easily that p1(m); p2(m); p3(m) are given in parametric form by

pk =
e�k�

e�� + e�2� + e�3�
=

e(3�k)�

e2� + e� + 1
; k = 1; 2; 3: (11{24)

m =
e2� + 2e� + 3

e2� + e� + 1
: (11{25)

In a more complicated problem we would just have to leave it in parametric form, but in this
particular case we can eliminate the parameter � algebraically, leading to the explicit solution
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p1 =
3�m� p2

2

p2 =
1

3

hp
4� 3(m� 2)2 � 1

i
p3 =

m� 1� p2

2

(11{26)

As a function of m, p2 is the arc of an ellipse which comes in with unit slope at the end points. p1
and p3 are also arcs of ellipses, but slanted one way and the other.

We have �nally arrived here at a solution which meets the objections we had to the �rst
two criteria. The maximum entropy distribution (11{24) has automatically the property pk � 0

because the logarithm has a singularity at zero which we could never get past. It has, furthermore,

the property that it never allows the robot to assign zero probability to any possibility unless the
evidence forces that probability to be zero.z The only place where a probability goes to zero is in

the limit where m is exactly one or exactly three. But of course, in those limits, some probabilities
did have to be zero by deductive reasoning, whatever principle we invoked.

Generalization: A More Rigorous Proof.

The maximum{entropy solution can be generalized in many ways. Suppose a variable x can take on
n di�erent discrete values (x1; : : : ; xn), which correspond to the n di�erent propositions (A1; : : : ; An)

above; and that there are m di�erent functions of x

fk(x); 1 � k � m < n; (11{27)

and the constraints are that we want them to have expectations, hfk(x)i = Fk ; 1 � k � m, where

the fFkg are numbers given to us in the statement of the problem. What probabilities (p1; : : : ; pn)
will the robot assign to the possibilities (x1; : : : ; xn)? We shall have

Fk = hfk(x)i =
nX
i=1

pifk(xi); (11{28)

and to �nd the set of pi's which has maximum entropy subject to all these constraints simultane-

ously, we just have to introduce as many Lagrange multipliers as there are constraints imposed on
the problem

�
h
H(p1 � � �pn)� (�0 � 1)

X
i

pi � �1
X
i

pif1(xi)� � � � � �m
X
i

pifm(xi)
i

=
X
i

�
@H

@pi
� (�0 � 1)� �1f1(xi)� � � � � �mfm(xi)

�
�pi = 0

and so from (11{19) our solution is the following:

pi = e��0��1f1(xi)������mfm(xi) ; (11{29)

as always, exponential in the constraints. To evaluate the �'s, the sum of all probabilities will have

to be unity:

z This property was stressed by Dr. David Blackwell, who considered it the most fundamental requirement

of a rational procedure for assigning probabilities.
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1 =
X
i

pi = e��0
X
i

exp [��1f1(xi)� � � � � �mfm(xi)] (11{30)

If we now de�ne a partition function as

Z(�1; � � � ; �m) �
nX
i=1

exp [��1f1(xi)� � � � � �mfm(xi)] (11{31)

then (11{30) reduces to

�0 = logZ(�1; : : : ; �m) : (11{32)

The average value (11{28) of fk(x) is then

Fk = e��0
X
i

fk(xi) exp [��1f1(xi)� � � � � �mfm(xi)]

or,

Fk = � @

@�k
logZ (11{33)

What is the maximum value of the entropy that we get from this probability distribution?

Hmax =

"
�

nX
i=1

pi log pi

#
max

(11{34)

From (11{29) we �nd that

Hmax = �0 + �1F1 + � � �+ �mFm : (11{35)

Now these results open up so many new applications that it is important to have as rigorous a

proof as possible. But to solve a maximization problem by variational means, as we just did, isn't
100 percent rigorous. Our Lagrange multiplier argument has the nice feature that it gives you the

answer instantaneously. It has the bad feature that after you've done it, you're not quite sure it

is the answer. Suppose we wanted to locate the maximum of a function whose absolute maximum
happened to occur at a cusp (discontinuity of slope) instead at a rounded top. If we state it as a

variational problem, it will locate any subsidiary rounded maxima, but it will not �nd the cusp.
Even after we've proved that we have the highest value that can be reached by variational methods,

it is possible that the function reaches a still higher value at some cusp that we can't locate by
variational methods. There would always be a little grain of doubt remaining if we do only the
variational problem.

So, now we give an entirely di�erent derivation which is strong just where the variational

argument is weak. For this we need a lemma. Let pi be any set of numbers which could be a
possible probability distribution; in other words,

nX
i=1

pi = 1; pi � 0 (11{36)

and let ui be another possible probability distribution,

nX
i=1

ui = 1; ui � 0 : (11{37)
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Now

log x � (x� 1); 0 � x <1 (11{38)

with equality if and only if x = 1. Therefore,

nX
i=1

pi log
ui

pi
�

nX
i=1

pi

�
ui

pi
� 1

�
= 0

or,

H(p1; : : : ; pn) �
nX
i=1

pi log

�
1

ui

�
(11{39)

with equality if and only if pi = ui, i = 1; 2; : : : ; n. This is the lemma we need.

Now we simply pull a distribution ui out of the hat;

ui �
1

Z(�1; : : : ; �m)
expf��1f1(xi)� � � � � �mfm(xi)g: (11{40)

where Z(�1; : : : ; �m) is de�ned by (11{31). Never mind why we chose ui this particular way; we'll
see why in a minute. We can now write the inequality (11{39) as

H �
nX
i=1

pi[logZ + �1f1(xi) + � � �+ �mfm(xi)]

or

H � logZ + �1hf1(x)i+ � � �+ �mhfm(x)i: (11{41)

Now, let the pi vary over the class of all possible probability distributions that satisfy the constraints
(11{28) of the problem. The right{hand side of (11{41) stays constant. Our lemma now says that

H attains its absolute maximum Hmax, making (11{41) an equality, if and only if the pi are chosen
as the canonical distribution (11{40).

This is the rigorous proof, which is independent of the things that might happen if you try
to do it as a variational problem. This argument is, as we see, strong just where the variational

argument is weak. On the other hand, this argument is weak where the variational argument is
strong, because we just had to pull the answer out of a hat in writing (11{40). We had to know
the answer before we could prove it. If you have both arguments side by side, then you have the

whole story.

Formal Properties of Maximum-Entropy Distributions.

Now we want to list the general formal properties of this canonical distribution (11{40). This is
a bad way of doing it in one sense; at this point it all sounds very abstract and you don't see

the connection to any real problem yet. On the other hand, we get all the things we want a lot
faster if we �rst become aware of all the formal properties that are going to be in this theory in
any application; and then later we'll go into speci�c physical problems and we'll see that every
one of these formal relations turns out to have many di�erent useful meanings, depending on the

particular problem.

Now the maximum attainable H that we can get by holding these averages �xed depends, of
course, on the average values we speci�ed,



1114 11: Formal Properties of Maximum-Entropy Distributions. 1114

Hmax = S(F1; � � � ; Fm) = logZ +

mX
k=1

�kFk : (11{42)

H itself we can regard as a measure of the \amount of the uncertainty" in any probability dis-

tribution. After we have maximized it, it becomes a function of the de�nite data of the problem
fFig, and we'll call it S with a view to the original application in physics. It's still a measure of

\uncertainty," but it's uncertainty when all the information we have consists of just these numbers.

It is \subjective" in the sense that it still measures uncertainty; but it is completely \objective" in

the sense that it depends only on the given data of the problem, and not on anybody's personality

or wishes. As we must stress repeatedly, it is \objectivity" in this sense that we need in scienti�c
inference.

If S is to be a function only of (F1; : : : ; Fm), then in (11{42) the (�1; : : : ; �m) must also be
thought of as functions of (F1; : : : ; Fm). At �rst, the �'s were just unspeci�ed constants, but

eventually we want to know what they are. If we choose di�erent �i, we are writing down di�erent

probability distributions (11{40); and we saw in (11{33) that the averages over this distribution
agree with the given averages Fk if

Fk = hfki = � @

@�k
(logZ); k = 1; 2; : : : ; m (11{43)

So we are now to regard (11{43) as a set of m simultaneous equations which are to be solved for

the �'s in terms of the given data Fk ; at least one would like to dream about this. Generally, in a
nontrival problem, it is impractical to solve for the �'s explicitly (although there is a simple formal

solution in (11{44) below) and we leave the �k where they are, expressing things in parametric
form. Actually, this isn't such a tragedy, because the �'s usually turn out to have such important

physical meanings that we are quite happy to use them as the independent variables. However, if
we can evaluate the function S(F1; : : : ; Fm) explicitly, then we can give the �'s as explicit functions

of the given data, as follows.

Suppose we make a small change in one of the constraint values Fk ; how does this change the
maximum attainable H? We have from (11{42),

@S

@Fk
=

mX
j=1

@ logZ

@�j

@�j

@Fk
+

mX
j=1

@�j

@Fk
Fk + �k

which, thanks to (11{43), collapses to

�k =
@S

@Fk
(11{44)

in which �k is given explicitly.

Compare this equation with (11{43); one gives Fk explicitly in terms of the �k, the other gives

the �k explicitly in terms of the Fk . If we specify logZ as a function of the �k; or if we specify S

as a function of the given data Fk , these are equivalent in the sense that each gives full information
about the probability distribution. The complete story is contained in either function, and in fact
you see that (11{42) is just the Legendre transformation that takes us from one representative

function to another.

We can derive some more interesting laws simply by di�erentiating the two we already have.
Di�erentiate (11{43) with respect to �j :
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@Fk

@�j
=

@2

@�j@�k
(logZ) =

@Fj

@�k
(11{45)

since the second cross derivatives of logZ are symmetric in j and k. So here's a general reci-
procity law which will hold in any problem that we do by maximizing the entropy. Likewise, if we

di�erentiate (11{44) a second time, we have

@�k

@Fj
=

@2S

@Fj@Fk
=

@�j

@Fk
(11{46)

another reciprocity law, which is however not independent of (11{45), because if we de�ne the
matrices Ajk � @�j=@Fk, Bjk � @Fj=@�k, you see easily that they are inverse matrices: A = B�1,

B = A�1. These reciprocity laws might appear trivial from the ease with which we derived
them here; but when we get around to applications we'll see that they have highly nontrivial and

nonobvious physical meanings. In the past, some of them were found by tedious means that made
them seem mysterious and arcane.

Now let's consider the possibility that one of these functions fk(x) contains an extra parameter
� which can be varied. If you want to think of applications, you can say fk(xi;�) stands for the i'th

energy level of some system and � represents the volume of the system. The energy levels depend

on the volume. Or, if it's a magnetic resonance system, you can say that fk(xi) represents the
energy of the i'th stationary state of the spin system and � represents the magnetic �eld H applied

to it. Often we want to make a prediction of how certain quantities change as we change �. We
may want to calculate the pressure or the susceptibility. By the criterion of minimum mean square

error, the best estimate of the derivative would be the mean value over the probability distribution

�
@fk

@�

�
=

1

Z

X
i

exp [��1f1(xi)� � � � � �kfk(xi;�)� � � � � �mfm(xi)]
@fk(xi; �)

@�

which reduces to �
@fk

@�

�
= � 1

�k

@

@�
logZ: (11{47)

In this derivation, we supposed that this parameter � appearers in only one function fk. If the

same parameter is in several di�erent fk, then you verify easily that this generalizes to

mX
k=1

�k

�
@fk

@�

�
= � @

@�
logZ: (11{48)

This general rule contains, among other things, the equation of state of any thermodynamic system.

When we add � to the problem, the maximum entropy S is a function not only of the speci�ed

average values hfki = Fk , but it depends on � too. Likewise, Z depends on �. But if we di�erentiate
logZ or S, we get the same thing:

�@S
@�

=

mX
k=1

�k

�
@fk

@�

�
= � @

@�
logZ (11{49)

with one tricky point that isn't brought out too clearly in this notation. In S the independent

variables are fFk; �g. In other words, S = S(F1; : : : ; Fm;�). But in logZ they are f�k;�g:
logZ = logZ(�1; : : : ; �m;�). So in (11{49) we have to understand that in (@S=@�) we are holding
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the Fk �xed, while in (@ logZ=@�) we are holding the �k �xed. The equality of these derivatives
then follows from the Legendre transformation (11{42). Evidently, if there are several di�erent

parameters f�1; �2; : : : ; �rg in the problem, a relation of the form (11{49) will hold for each of
them.

Now let's note some general \uctuation laws," or moment theorems. First, a comment about

notation: we're using the Fk , hfki to stand for the same number. They are equal because we speci�ed
that the expectation values fhf1i; : : : ; hfmig are to be set equal to the given data fF1; : : : ; Fmg of
the problem. When we want to emphasize that these quantities are expectation values over the
canonical distribution (11{40), we'll use the notation hfki. When we want to emphasize that they

are the given data, we'll call them Fk. At the moment, we want to do the former, and so the
reciprocity law (11{45) can be written equally well as

@hfki
@�j

=
@hfji
@�k

=
@2

@�j@�k
logZ (11{50)

In varying the �'s here, we're changing from one canonical distribution (11{40) to a slightly di�erent

one in which the hfki are slightly di�erent. Since the new distribution corresponding to (�k+d�k) is
still of canonical form, it is still a maximum{entropy distribution corresponding to slightly di�erent

data (Fk + dFk). Thus we are comparing two slightly di�erent maximum entropy problems. For
later physical applications it will be important to recognize this in interpreting the reciprocity law

(11{50).

But now we want to show that the quantities in (11{50) also have an important meaning with
reference to a single maximum entropy problem. In the canonical distribution (11{31), how are the

di�erent quantities fk(x) correlated with each other? More speci�cally, how are departures from
their mean values hfki correlated? The measure of this is the covariance or second central moments

of the distribution:

h(fj � hfji)(fk � hfki)i = hfjfk � fjhfji � hfjifk + hfjihfkii = hfjfki � hfjihfki (11{51)

If a value of fk greater than the average hfki is likely to be accompanied by a value of fj greater
than its average hfji, the covariance is positive; if they tend to uctuate in opposite directions, it
is negative; and if their variations are uncorrelated, the covariance is zero. If j = k, this reduces to
the variance:

h(fk � hfki)2i = hf2k i � hfki2 � 0: (11{52)

To calculate these quantities directly from the canonical distribution (11{40), we can �rst �nd

hfjfki =
1

Z(�1; : : : ; �m)

nX
i=1

fj(xi)fk(xi) exp[��1f1(xi)� � � � � �mfm(xi)]

=
1

Z

nX
i�1

@2

@�j@�k
exp[��1f1(xi)� � � � � �mfm(xi)]

=
1

Z

@2Z

@�j@�k

(11{53)

Then, using (11{43), the covariance becomes
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hfjfki � hfjihfki =
1

Z

@2Z

@�j@�k
� 1

Z2

@Z

@�j

@Z

@�k
=

@2

@�j@�k
logZ (11{54)

But this is just the quantity (11{50); therefore the reciprocity law takes on a bigger meaning,

hfjfki � hfjihfki = �@hfji
@�k

= �@hfki
@�j

: (11{55)

The second derivatives of logZ which gave us the reciprocity law also give us the covariance of fj
and fk in our distribution.

Note that (11{55) is in turn only a special case of a more general rule: Let q(x) be any function;

then the covariance with fk(x) is, as you verify easily,

hqfki � hqihfki = �@hqi
@�k

: (11{56)

Exercise 11.3. From comparing (11{43), (11{50), (11{55) we might expect that still higher

derivatives of logZ would correspond to higher central moments of the distribution (11{40).
Check this conjecture by calculating the third and fourth central moments in terms of logZ.

Hint : See Appendix C on the theory of cumulants.

For noncentral moments, it is customary to de�ne a moment generating function

�(�1; : : : ; �m) � hexp[�1f1 + � � �+ �mfm]i (11{57)

which evidently has the property

hfmi

i f
mj

j � � �i =
 

@mi

@�mi

i

@mj

@�
mj

j

� � �
!
�(�1; : : : ; �m)

����
�k=0

(11{58)

However, we �nd from (11{57)

�(�1; : : : ; �m) =
Z[(�1 � �1); : : : ; (�m � �m)]

Z(�1; : : : ; �m)
(11{59)

so that the partition function Z serves this purpose; instead of (11{58) we may write equally well,

hfmi

i f
mj

j � � �i = 1

Z

 
@mi

@�mi

i

@mj

@�
mj

j

� � �
!
Z (11{60)

which is the generalization of (11{53).

Now, we might ask, what are the covariances of the derivatives of fk with respect to a parameter
�? De�ne

gk � @fk

@�
: (11{61)

Then, for example, if fk is the energy and � is the volume then �gk is the pressure. We easily
verify another reciprocity relation:
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@hgji
@�k

= �[hgjfki � hgjihgki] = @hgki
@�ji

(11{62)

analogous to (11{55). By a similar derivation, we �nd the identity

mX
j=1

�j [hgjgki � hgjihgki] =
�
@gk

@�

�
� @hgki

@�
: (11{63)

We had found and used special cases of this for some time before realizing its generality.

Other derivatives of logZ are related to various moments of the fk and their derivatives with
respect to �. For example, closely related to (11{63) is

@2 logZ

@�2
=
X
jk

�j�k[hgjgki � hgjihgki]�
X
k

�k

�
@gk

@�

�
(11{64)

The cross{derivatives give us a simple and useful relation

@2 logZ

@�@�k
= �@hfki

@�
=
X
j

�j[hfkgji � hfkihgji]� hgki (11{65)

which also follows from (11{50) and (11{56); and by taking further derivatives an in�nite hierarchy
of similar moment relations is obtained. As we will see later, the above theorems have as special

cases many relations such as the Einstein uctuation laws for black{body radiation and for density

of a gas or liquid, the Nyquist voltage uctuations, or \noise" generated by a reversible electric
cell, etc.

It is evident that if several di�erent parameters f�1; � � � ; �rg are present, relations of the above
form will hold for each of them; and new ones like

@2 logZ

@�1@�2
=
X
k

�k

�
@2fk

@�1@�2

�
�
X
kj

�j�k

��
@fk

@�1

@fj

@�2

�
�
�
@fk

@�1

��
@fj

@�21

��
(11{66)

will appear.

The relation (11{42) between logZ(�1; : : : ; �m;�1; : : : ; �m) and S(hf1i; : : : ; hfmi;�1; : : : ; �r),
shows that they can all be stated also in terms of derivatives (i.e., variational properties) of S. In

the case of S, however, there is a still more general and important variational property.

In (11{44)we supposed that the de�nitions of the functions fk(x) were �xed once and for all, the
variation of hfki being due only to variations in the pi. We now derive a more general variational

statement in which both of these quantities are varied. Let �fk(xi) be speci�ed arbitrarily and
independently for each value of k and i, let �hfki be speci�ed independently of the �fk(xi), and
consider the resulting change from one maximum{entropy distribution pi to a slightly di�erent one
p0i = pi+�pi, the variations �pi and ��k being determined in terms of �fk(xi) and �hfki through the
above equations. In other words, we are now considering two slightly di�erent maximum{entropy

problems in which all conditions of the problem { including the de�nitions of the functions fk(x)
on which it is based { are varied arbitrarily. The variation in logZ is
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� logZ =
1

Z

nX
i=1

8<
:

mX
k=1

[��k�fk(xi)� ��kfk(xi)] exp[�
mX
j=1

�jfj(xi)]

9=
;

= �
mX
k=1

[�kh�fki+ ��khfki]
(11{67)

and thus from the Legendre transformation (11{42)

�S = �
X
k

�k[�hfki � h�fki] ; or �S =
X
k

�k�Qk (11{68)

where

�Qk � �hfki � h�fki =
NX
i=1

fk(xi)�pi : (11{69)

This result, which generalizes (11{44), shows that the entropy S is stationary not only in the sense

of the maximization property which led to the canonical distribution (11{40); it is also stationary
with respect to small variations in the functions fk(xi) if the pi are held �xed.

As a special case of (11{68), suppose that the functions fk contain parameters f�1; : : : ; �rg as
in (11{66), which generate the �fk(xi) by

�fk(xi; �j) =

rX
j=1

@fk(xi; �)

@�j
��j : (11{70)

While �Qk is not in general the exact di�erential of any function Qk(hfii;�j), (11{68) shows
that �k is an integrating factor such that

P
�k�Qk is the exact di�erential of a \state function"

S(hfii;�j). At this point, perhaps all this is beginning to sound familiar to those who have studied
thermodynamics.

Finally, we leave it for you to prove from (11{68) that

mX
k=1

hfki
@�k

@�
= 0 (11{71)

where hf1i; : : : ; hfri are held constant in the di�erentiation.

Evidently, there's now a large new class of problems which we can ask the robot to do, which

it can solve in rather a wholesale way. It �rst evaluates this partition function Z, or better still,
logZ. Then just by di�erentiating that with respect to all its arguments in every possible way, it

obtains all sorts of predictions in the form of mean values over the maximum{entropy distribution.
This is quite a neat mathematical procedure, and, of course, you recognize what we have been

doing here. These relations are all just the standard equations of statistical mechanics given to us
by J. Willard Gibbs, but now in a disembodied form with all the physics removed.

Indeed, virtually all known thermodynamic relations, found over more than a Century by
the most diverse and di�cult kinds of physical reasoning and experimentation, are now seen as
straightforward mathematical identities of the Maximum Entropy formalism. This makes it clear

that those relations are actually independent of any particular physical assumptions and are prop-

erties of extended logic in general, giving us a new insight into why the relations of thermodynamics
are so general, independent of the properties of any particular substance. This historically oldest
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application, Gibbsian statistical mechanics, is still the most used (although many of its users are
still unaware of its generality). We stress that generality by considering statistical mechanics only

in Chapter 29, after a few other applications have been expounded.

The maximum entropy mathematical formalism has a mass of other applications outside of

physics. In Chapter 14 we work out the full numerical solution to a nontrivial problem of inventory

control, and in Chapter 27 we give a highly nontrivial analytical solution of a problem of optimal
encoding in communication theory. In a sense, once we have understood the maximum entropy

principle as explained in this Chapter, most applications of probability theory are seen as invoking
it to assign the initial probabilities { whether called technically prior probabilities or sampling

probabilities. Whenever we assign uniform prior probabilities, we can say truthfully that we are
applying maximum entropy (although in that case the result is so simple and intuitive that we do not

need any of the above formalism). As we saw already in Chapter 7, whenever we assign a Gaussian
sampling distribution, this is the same as applying maximum entropy for given �rst and second

moments. And we saw in Chapter 9 that whenever we assign a binomial sampling distribution, this
is mathematically equivalent to assigning the uniform maximum entropy distribution on a deeper

hypothesis space.

Conceptual Problems { Frequency Correspondence.

The principle of maximum entropy is basically a simple and straightforward idea, and in the case
that the given information consists of average values it leads, as we have just seen, to a surprisingly

concise mathematical formalism, since essentially everything is known if we can evaluate a single
function logZ(�1; : : : ; �m;�1; : : : ; �r). Nevertheless, it seems to generate some serious conceptual

di�culties, particularly to people who have been trained to think of probability only in the frequency
sense. Therefore, before turning to applications, we want to examine, and hopefully resolve, some

of these di�culties. Here are some of the objections that have been raised against the principle of
maximum entropy:

(A) If the only justi�cation for the canonical distribution (11{40) is \maximum uncer-
tainty," that is a negative thing which can't possibly lead to any useful predictions;

you can't get reliable results out of mere ignorance.

(B) The probabilities obtained by maximum entropy cannot be relevant to physical pre-
dictions because they have nothing to do with frequencies { there is absolutely no
reason to suppose that distributions observed experimentally would agree with ones
found by maximizing entropy.

(C) The principle is restricted to the case where the constraints are average values { but
almost always the given data fF1; : : : ; Fng are not averages over anything. They are
de�nite measured numbers. When you set them equal to averages, Fk = hfki, you
are committing a logical contradiction, for the given data said that fk had the value
Fk; yet you immediately write down a probability distribution that assigns nonzero

probabilities to values of fk 6= Fk .

(D) The principle cannot lead to any de�nite physical results because di�erent people
have di�erent information, which would lead to di�erent distributions { the results

are basically arbitrary.

Objection (A) is, of course, nothing but a play on words. The \uncertainty" was always there. Our
maximizing the entropy did not create any \ignorance" or \uncertainty;" it is rather the means

of determining quantitatively the full extent of the uncertainty already present. It is failure to do

this { and as a result using a distribution that implies more knowledge than we really have { that
would lead to dangerously unreliable conclusions.
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Of course, the information put into the theory as constraints on our maximum{entropy dis-
tribution, may be so meager { the distribution is so weakly constrained from the uninformative

uniform one { that no reliable predictions can be made from it. But in that case, as we will see
later, the theory automatically tells us this. If we emerge with a very broad probability distribution

for some quantity � of interest (such as pressure, magnetization, electric current density, rate of
di�usion, etc., that is the robot's way of telling us: \You haven't given me enough information to

determine any de�nite prediction." But if we get a very sharp distribution for � [for example { and
typical of what does happen in many real problems { if the theory says the odds on � being in the

interval �0(1� 10�6) are greater than 1010 : 1], then the given information was su�cient to make
a very de�nite prediction.

But in both cases, and in the intermediate ones between these extremes, the distribution
for � always tells us just what conclusions we are entitled to draw about �, on the basis of the

information which was put into the equations. If someone has additional cogent information, but
fails to incorporate it into his calculation, the result is not a failure, only a misuse, of the maximum

entropy method.

To answer objection (B), we show that the situation is vastly more subtle than that. The

principle of maximum entropy has, fundamentally, nothing to do with any repeatable \random
experiment." Some of the most important applications are to cases where the probabilities pi in

(11{40) have no frequency connection { the xi are simply an enumeration of the possibilities, in
the single situation being considered, as in the cars on the ferry problem.

However, nothing prevents us from applying the principle of maximum entropy also to cases
where the xi are generated by successive repetitions of some experiment as in the dice problem;

and in this case, the question of the relation between the maximum{entropy probability p(xi) and
the frequency with which xi is observed, is capable of mathematical analysis. We demonstrate that

(1) in this case the maximum{entropy probabilities do have a precise connection with frequencies;
(2) in most real problems, however, this relation is unnecessary for the usefulness of the method;

(3) in fact, the principle of maximum entropy is most useful to us in just those cases where the
observed frequencies do not agree with the maximum{entropy probabilities.

Suppose now that the value of x is determined by some random experiment; at each repetition
of the experiment the �nal result is one of the values xi, i = 1; 2; : : : ; n; in the dice problem, n = 6.

But now, instead of asking for the probability pi, let's ask an entirely di�erent question: on the
basis of the available information, what can we say about the relative frequencies fi with which the

various xi occur?

Let the experiment consist of N trials (we are particularly interested in the limit N ! 1,
because that is the situation contemplated in the usual frequency theory of probability), and let
every conceivable sequence of results be analyzed. Each trial could give, independently, any one of

the results fx1; : : : ; xng; and so there a priori nN conceivable outcomes of the whole experiment.
But many of these will be incompatible with the given information (let's suppose again that his

consists of average values of several functions fk(x), k = 1; 2; : : : ; m; in the end it will be clear
that the �nal conclusions are independent of whether it takes this form or some other). We will,

of course, assume that the result of the experiment agrees with this information { if it didn't, then

the given information was false and we are doing the wrong problem. In the whole experiment, the
results xi will be obtained n1 times, x2 will be obtained n2 times, etc.. Of course,

nX
i=1

ni = N (11{72)

and if the speci�ed mean values Fk given to us are in fact observed in the actual experiment, we
have the additional relation
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nX
i=1

nifk(xi) = NFk; d = 1; 2; : : : ; m (11{73)

If m < n � 1, the relations (11{72), (11{73) are insu�cient to determine the relative frequencies

fi = ni=N . Nevertheless, we do have grounds for preferring some choices of the fi to others. For,
out of the original nN conceivable outcomes, how many would lead to a given set of sample numbers

fn1; n2; : : : ; nng? The answer is, of course, the multinomial coe�cient

W =
N !

n1!n2! : : :nn!
=

N !

(Nf1)!(Nf2)! : : :(Nfn)!
(11{74)

The set of frequencies ff1; � � � ; fng which can be realized in the greatest number of ways is therefore
the one which maximizes W subject to the constraints (11{72), (11{73). Now we can equally well

maximize any monotonic increasing function of W , in particular N�1 logW ; but as N ! 1 we
have, as we saw already in (11{18),

1

N
logW ! �

nX
i=1

fi log fi = Hf (11{75)

So you see that, in (11{72), (11{73), (11{75) we have formulated exactly the same mathematical

problem as in the maximum{entropy derivation, so the two problems will have the same solution.
This argument is mathematically reminiscent of the Wallis derivation noted above; and the same

result could have been found as well by direct application of Bayes' theorem, assigning uniform
prior probabilities over all the nN conceivable outcomes and passing to the limit N !1.

You see also, in partial answer to objection (C), that this identity of the mathematical problems

will persist whether or not the constraints take the form of mean values. If the given information
does consist of mean values, then the mathematics is particularly neat, leading to the partition

function, etc. But, for given information which places any de�nite kind of constraint on the
problem, we have the same conclusion: the probability distribution which maximizes the entropy is

numerically identical with the frequency distribution which can be realized in the greatest number
of ways.

The maximum in W is, furthermore, enormously sharp. To show this, let ff1; : : : ; fng be the

set of frequencies which maximizes W and has entropy Hf ; and let ff 01; : : : ; f 0ng be any other set of

possible frequencies [that is, a set which satis�es the constraints (11{72), (11{73) and has entropy
Hf 0 < Hf . The ratio (number of ways in which fi could be realized)/(number of ways in which f 0i
could be realized) grows asymptotically, according to (11{75), as

W

W 0
! expfN(Hf �Hf 0)g (11{76)

and passes all bounds as N ! 1. Therefore, the frequency distribution predicted by maximum

entropy can be realized experimentally in overwhelmingly more ways than can any other that
satis�es the same constraints. This is related later to the more complete entropy concentration

theorem.

We have here another precise and quite general connection between probability and frequency;

it had nothing to do with the de�nition of probability, but emerged as a mathematical consequence
of probability theory, interpreted as extended logic. Another kind of connection between probability
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and frequency, whose precise mathematical statement is di�erent in form, but which has the same
practical consequences, will appear in Chapter 12.

Turning to objection (C), our purpose in imposing constraints is to incorporate certain in-

formation into our probability distribution. Now, what does it mean to say that a probability
distribution \contains" some information? We take this as meaning that the information can be

extracted from it by using the usual rule for estimation, calculating the mean value. Usually, the
datum Fk is of unknown accuracy, and so using it to constrain only the hFki is just the process

of being honest, leaving the width of the distribution for fk(x) to be determined by the range
and density of the set of possibilities xi. But if we do have independent information about the

accuracy of F1, that can be incorporated by adding a new constraint on hf1(xi)2i; the formalism

already allows for this. But this seldom makes any substantive di�erence in the �nal conclusions,
because the variance of the maximum{entropy distribution for f1(x) is usually small compared to

any reasonable mean{square experimental error.

Now let's turn to objection (D) and analyze the situation with come care, because it is perhaps
the most common of all of them. Does the above connection between probability and frequency

justify our predicting that the maximum{entropy distribution will in fact be observed as a frequency
distribution in a real experiment? Clearly not, in the sense of deductive proof; for just as objection

(D) points out, we have to concede that di�erent people may have di�erent amounts of information,
which will lead them to writing down di�erent distributions which make di�erent predictions of

observable facts, and they can't all be right. But this misses the point about what we are trying

to do; let's look at it more closely.

Consider a speci�c case: Mr. A imposes constraints on the mean values hf1(x)i, hf2(x)i to
agree with his data F1; F2. Mr. B, better informed, imposes in addition a constraint on hf3(x)i to
agree with his extra datum F3. Each sets up a maximum{entropy distribution on the basis of his
information. Since Mr. B's entropy is maximized subject to one further constraint, we will have

SB � SA : (11{77)

Suppose that Mr. B's extra information was redundant, in the sense that it was only what Mr. A
would have predicted from his distribution. Now Mr. A has maximized his entropy with respect to
all variations of the probability distribution which hold hf1i, hf2i �xed at the speci�ed values F1,
F2. Therefore, he has a fortiori maximized it with respect to the smaller class of variations which

also hold hf3i �xed at the value �nally attained. Therefore Mr. A's distribution also solves Mr. B
problem in this case; �3 = 0, and Mr. A and Mr. B have identical probability distributions. In this

case, and only in this case, we have equality in (11{77).

From this we learn two things: (1) Two people with di�erent given information do not neces-

sarily arrive at di�erent maximum{entropy distributions; this is the case only when Mr. B's extra
information was \surprising" to Mr. A. (2) In setting up a maximum{entropy problem, it is not
necessary to determine whether the di�erent pieces of information used are independent: any re-
dundant information will not be \counted twice," but will drop out of the equations automatically.

Indeed, this not only agrees with our basic desideratum that AA = A in Boolean algebra; it would
be true of any variational principle (imposing a new constraint cannot change the solution if the

old solution already satis�ed that constraint).

Now suppose the opposite extreme: Mr. B's extra information was logically contradictory to
what Mr. A knows. For example, it might turn out that f3(x) = f1(x) + 2f2(x), but Mr. B's

data failed to satisfy F3 = F1 + 2F2. Evidently, there is no probability distribution that �ts Mr.

B's supposed data. How does our robot tell us this? Mathematically, you will then �nd that the
equations
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Fk = � @

@�k
logZ(�1; �2; �3) (11{78)

have no simultaneous solution with real �k. In the example just mentioned,

Z(�1; �2; �3) =

nX
i=1

exp[��1f1(xi)� �2f2(xi)� �3f3(xi)]

=

nX
i=1

exp[�(�1 + �3)f1(xi)� (�2 + 2�3)f2(xi)]

(11{79)

and so

@Z

@�3
=

@Z

@�1
+ 2

@Z

@�2
(11{80)

and so (11{78) cannot have solutions for �1, �2, �3 unless F3 = F1 + 2F2. So, when a new piece of

information logically contradicts previous information, the principle of maximum entropy breaks
down, as it should, refusing to give us any distribution at all.

The most interesting case is the intermediate one where Mr. B's extra information was neither
redundant nor contradictory. He then �nds a maximum{entropy distribution di�erent from that of

Mr. A, and the inequality holds in (11{77), indicating that Mr. B's extra information was \useful"

in further narrowing down the range of possibilities allowed by Mr. A's information. The measure
of this range is just W ; and from (11{76) we have asymptotically,

WA

WB

� expfN(SA � SB)g (11{81)

For large N , even a slight decrease in the entropy leads to an enormous decrease in the number of
possibilities.

Suppose now that we start performing the experiment with Mr. A and Mr. B watching. Since

Mr. A predicts a mean value hf3i di�erent from the correct one known to Mr. B, it is clear that
the experimental distribution cannot agree in all respects with Mr. A's prediction. We cannot be

sure in advance that it will agree with Mr. B's prediction either, for there may be still further
constraints on f4(x), f5(x), : : : ; etc., operating in the experiment unknown to Mr. B.

However, the property demonstrated above does justify the following weaker statement of
frequency correspondence: if the information incorporated into the maximum{entropy analysis

includes all the constraints actually operating in the random experiment, then the distribution
predicted by maximum entropy is overwhelmingly the most likely to be observed experimentally.
Indeed, most frequency distributions observed in Nature are maximum{entropy distributions, sim-

ply because they can be realized in so many more ways than can any other.

Conversely, suppose the experiment fails to con�rm the maximum{entropy prediction, and this
disagreement persists inde�nitely on repetition of the experiment. Then, since by hypothesis the

data Fi were true if incomplete, we will conclude that the physical mechanism of the experiment
must contain some additional constraint which was not taken into account in the maximum{entropy

calculation. The observed deviations then provide a clue as to the nature of this new constraint.
In this way, Mr. A can discover empirically that his information was incomplete.

In summary, the principle of maximum entropy is not an Oracle telling which predictions
must be right; it is a rule for inductive reasoning that tells us which predictions are most strongly

indicated by our present information.
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COMMENTS

The little scenario just described is an accurate model of just what did happen in one of the most
important applications of statistical analysis, carried out by J. Willard Gibbs. By the year 1901

it was known that in classical statistical mechanics, use of the canonical ensemble (which Gibbs
derived as the maximum{entropy distribution over the classical state space, or phase volume, based

on a speci�ed mean value of the energy) failed to predict some thermodynamic properties (heat

capacities, equation of state) correctly. Analysis of the data showed that the entropy of a real
physical system was always less than the value predicted. At that time, therefore, Gibbs was in

just the position of Mr. A in the scenario, and the conclusion was that the microscopic laws of
physics must involve some additional constraint not contained in the laws of classical mechanics.

But Gibbs died in 1903 and it was left to others to �nd the nature of this constraint; �rst by
Planck in the case of radiation, then by Einstein and Debye for solids, and �nally by Bohr for isolated

atoms. The constraint consisted in the discreteness of the possible energy values, thenceforth called
energy levels. By 1927, the mathematical theory by which these could be calculated from �rst

principles had been developed by Heisenberg and Schr�odinger.

Thus it is an historical fact that the �rst clues indicating the need for the quantum theory, and
indicating some necessary features of the new theory, were uncovered by a seemingly \unsuccessful"

application of the principle of maximum entropy. We may expect that such things will happen
again in the future, and this is the basis of the remark that the principle of maximum entropy is

most useful to us in just those cases where it fails to predict the correct experimental facts. This
illustrates the real nature, function, and value of inductive reasoning in science; an observation that

was stressed also by Je�reys (1957).

Gibbs (1902) wrote his probability density in phase space in the form

w(q1; : : : ; qn; p1; : : : ; pn) = exp[�(q1 : : : qn)] (11{82)

and called the function � the \index of probability of phase." He derived his canonical and grand
canonical ensembles from constraints on average energy, and average energy and particle numbers,

respectively, as (loc. cit., p. 143) \the distribution in phase which without violating this condition
gives the least value of the average index of probability of phase � : : :" This is, of course, just what

we would describe today as maximizing the entropy subject to constraints.

Unfortunately, Gibbs' work was left un�nished due to failing health. He did not give any
clear explanation, and we can only conjecture whether he possessed one, as to why this particular

function is to be maximized in preference to all others. Consequently, his procedure appeared
arbitrary to many, and for sixty years there was confusion and controversy over the justi�cation

for Gibbs' methods; they were rejected summarily by some writers on statistical mechanics, and
treated with the greatest caution by others. Only with the work of Shannon (1948) could one see
the way to new thinking on a fundamental level. These historical matters are discussed in more
detail in Jaynes (1967) and Jaynes (1992b).
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CHAPTER 13

DECISION THEORY { HISTORICAL BACKGROUND

\Your act was unwise," I exclaimed \as you see
by the outcome." He solemnly eyed me.

\When choosing the course of my action," said he,
\I had not the outcome to guide me."

| Ambrose Bierce

In several previous discussions we inserted parenthetic remarks to the e�ect that \there is still an
essential point missing here, which will be supplied when we take up decision theory." However, in

postponing the topic until now we have not deprived the reader of a needed technical tool, because

the solution of the decision problem was, from our viewpoint, so immediate and intuitive that we
did not need to invoke any underlying formal theory.

Inference vs. Decision

This situation arose as soon as we started applying probability theory to our �rst problem. When
we illustrated the use of Bayes' theorem by sequential testing in Chapter 4, we noted that there is

nothing in probability theory per se which could tell us where to put the critical levels at which

the robot changes its decision: whether to accept the batch, reject it, or make another test. The
location of these critical levels obviously depends in some way on value judgments as well as on

probabilities; what are the consequences of making wrong decisions, and what are the costs of
making further tests?

The same situation occurred in Chapter 6 when the robot was faced with the job of estimating a

parameter. Probability theory determined only the robot's state of knowledge about the parameter;
it did not tell us what estimate it should in fact make. We noted at that time that taking the mean

value over the posterior pdf was the same as making that decision which minimizes the expected
square of the error; but we noted also that in some cases we should really prefer the median.

Qualitatively and intuitively, these considerations are clear enough; but before we can claim to
have a really complete design for our robot, we must clean up the logic of this, and show that our
procedures were not just intuitive ad hockeries, but were optimal by some clearly de�ned criterion

of optimality. Wald's decision theory aims to accomplish this.

A common feature of all the problems considered thus far was: probability theory alone can

solve only the inference problem; i.e., it can give us only a probability distribution which represents
the robot's �nal state of knowledge with all the available prior information and data taken into

account; but in practice its job does not end at that point. An essential thing which is still missing

in our design of this robot is the rule by which it converts its �nal probability assignment into a

de�nite course of action. But for us, formal decision theory will only legitimize { not change { what
our intuition has already told us to do.

Decision theory has for us a di�erent kind of importance, in the light that it sheds on the

centuries{old controversies about the foundations of probability theory. The procedures of decision
theory can be derived equally well from either of two diametrically opposed views about what

probability theory is, and it therefore forms a kind of bridge between them and suggests that
decision theory might help to resolve the controversy. Therefore, we dwell here on the historical
background and relation of the two approaches to the decision problem.
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Daniel Bernoulli's Suggestion

As one might expect from the way this situation appeared in the most elementary applications

of probability theory, this problem is by no means new. It was clearly recognized, and a de�nite
solution o�ered for a certain class of problems, by Daniel Bernoulli (1738). In a crude form, the

same principle had been seen even earlier, at the time when probability theory was concerned
almost exclusively with problems of gambling. Although today it seems very hard to understand,

the historical record shows clearly and repeatedly that the notion of \expectation of pro�t" was
very intuitive to the �rst workers in probability theory; even more intuitive than that of probability.

Consider each possibility, i = 1; 2; :::; n, assign probabilities pi to them, and also assign numbers

Mi which represent the \pro�t" we would obtain if the i'th possibility should in fact turn out to
be true. Then the expectation of pro�t is, in either of our standard notations,

E(M) = hMi =

nX
i=1

piMi (13{1)

The prosperous merchants in 17'th Century Amsterdam bought and sold expectations as if they
were tangible goods. It seemed obvious to many that a person acting in pure self{interest should

always behave in such a way as to maximize his expected pro�t. This, however, led to some
paradoxes (particularly that of the famous St. Petersburg problem) which led Bernoulli to recognize

that simple expectation of pro�t is not always a sensible criterion of action.

For example, suppose that your information leads you to assign probability 0.51 to heads in a
certain slightly biased coin. Now you are given the choice of two actions: (1) to bet every cent you

have at even money, on heads for the next toss of this coin; (2) not to bet at all. According to the
criterion of expectation of pro�t, you should always choose to gamble when faced with this choice.

Your expectation of pro�t, if you do not gamble, is zero; but if you do gamble, it is

hMi = 0:51M0 + 0:49 (�M0) = 0:02M0 > 0 (13{2)

where M0 is the amount you have now. Nevertheless it seemed obvious to Bernoulli, as it doubtless
does also to the reader, that nobody in his right mind would really choose the �rst alternative.

This means that our common sense, in some cases, rejects the criterion of maximizing expected
pro�t.

Suppose that you are o�ered the following opportunity. You can bet any amount you want on

the basis that, with probability (1�10�6), you will lose your money; but with probability 10�6, you
will win 1,000,001 times the amount you had wagered. Again, the criterion of maximizing expected

pro�t says that you should bet all the money you have. Common sense rejects this solution even
more forcefully.

Daniel Bernoulli proposed to resolve these paradoxes by recognition that the true value to a

person, of receiving a certain amount of money, is not measured simply by the amount received; it
depends also upon how much he has already. In other words, Bernoulli said that we should recognize
that the mathematical expectation of pro�t is not the same thing as its \moral expectation." A
modern economist is expressing the same idea when he speaks of the \diminishing marginal utility

of money."

In the St. Petersburg game we toss an honest coin until it comes up heads for the �rst time.
The game is then terminated. If heads occurs for the �rst time at the n'th throw, the player receives

2n dollars. The question is: what is a \fair" entrance fee for him to pay, for the privilege of playing
this game? If we use the criterion that a fair game is one where the entrance fee is equal to the
expectation of pro�t, you see what happens. This expectation is in�nite:
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1X
k=1

(2�k)(2k) =

1X
k=1

1 =1: (13{3)

Nevertheless it is clear again that no sane person would be willing to risk more than a very small

amount on this game. We quote Laplace (1819) at this point:

\Indeed, it is apparent that one franc has much greater value for him who possesses only 100 than

for a millionaire. We ought then to distinguish the absolute value of the hoped{for bene�t from its

relative value. The latter is determined by the motives which make it desirable, whereas the �rst is

independent of them. The general principle for assigning this relative value cannot be given, but here

is one proposed by Daniel Bernoulli which will serve in many cases: The relative value of an in�nitely

small sum is equal to its absolute value divided by the total fortune of the person interested."

In other words, Bernoulli proposed that the \moral value," or what the modern economist would

call the \utility" of an amount M of money should be taken proportional to logM . Laplace, in

discussing the St. Petersburg problem and this criterion, reports the following result without giving
the calculation: a person whose total fortune is 200 francs ought not reasonably to stake more than

9 francs on the play of this game. Let us, 180 years later, check Laplace's calculation.

For a person whose initial \fortune" is m francs, the fair fee f(m) is determined by equating

his present utility with his expected utility if he pays the fee and plays the game; i.e., f(m) is the
root of

logm =

1X
n=1

1

2n
log(m� f + 2n): (13{4)

Computer evaluation gives f(200) = 8:7204; Laplace, without a computer, did his calculation very

well. Likewise, f(103) = 10:95, f(104) = 14:24, f(106) = 20:87. Even a millionaire should not risk
more than 21 francs on this dubious game.

It seems to us that this kind of numerical result is entirely reasonable. However the logarithmic
assignment of utility is not to be taken literally either in the case of extremely small fortunes (as

Laplace points out), or in the case of extremely large ones, as the following example of Savage

(1954) shows:

Suppose your present fortune is $1,000,000; then if your utility for money is proportional to

the logarithm of the amount, you should be as willing as not to accept a wager in which, with
probability one{half, you'll be left with only $1,000, and with probability one{half, you will be left

with $1,000,000,000. Most of us would consider such a bet to be distinctly disadvantageous to a
person with that initial fortune. This shows that our intuitive \utility" for money must increase

even less rapidly than the logarithm for extremely large values. Cherno� and Moses (1959) claim
that it is bounded; this appears to us plausible theoretically but not really demonstrated in the real
world (why do billionaires continue to work harder than anybody else to earn still more money?).

The gist of Daniel Bernoulli's suggestion was therefore that, in the gambler's problem of

decision making under uncertainty, one should act so as to maximize the expected value, not
necessarily of the pro�t itself, but of some function of the pro�t which he called the \moral value".
In more modern terminology the optimist will call this \maximizing expected utility," while the

pessimist will speak instead of \minimizing expected loss", the loss function being taken as the
negative of the utility function.
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The Rationale of Insurance

Let us illustrate some of the above remarks briey with the example of insurance, which is in

some ways like the St. Petersburg game. The following scenario is oversimpli�ed in obvious ways;
nevertheless it makes some valid and important points. Insurance premiums are always set high

enough to guarantee the insurance company a positive expectation of pro�t over all the contingencies

covered in the contract, and every dollar the company makes is a dollar lost by a customer. Then
why should anyone ever want to buy insurance?

The point is that the individual customer has a utility function for money that may be strongly
curved over ranges of $1000; but the insurance company is so much larger that its utility for money

is accurately linear over ranges of millions of dollars. Thus, let P be the premium for some
proposed insurance contract, let i = 1; 2; : : :n enumerate the contingencies covered, the i'th having

probability wi and cost to the insurance company, if it happens, of Li. Let the prospective customer
have Daniel Bernoulli's logarithmic utility for money and an initial amount M . Of course, by M

we should understand his so{called \net worth", not merely the amount of cash he has on hand.

Then the expected utility for the insurance company and for the customer, if he does or does not
buy the insurance, will be:

BUY DON 0T BUY

Company P �
P

wiLi 0

Customer log(M � P )
P

wi log(M � Li)

So if hLi < P , the company wants to sell the insurance, and if hlog(M � L)i < log(M � P ) the

customer wants to buy it. If the premium is in the range

hLi < P < [M � exphlog(M � L)i] (13{5)

it will be advantageous for both to do business.

We leave it as an exercise for the reader to show from (13{5) that a poor man should buy

insurance, but a rich man should not unless his assessment of expected loss hLi is much greater
than the insurance company's. Indeed, if your present fortune is much greater than any likely loss,
then your utility for money is nearly as linear as the insurance company's, in the region where it
matters; and you may as well be your own insurance company.

Further insight into the rich man's psychology is had by noting that if M >> hLi we may
expand in powers of M�1;

M � exphlog(M � L)i = hLi+
var(L)

2M
+ : : : (13{6)

where var(L) = hL2i� hLi2. Thus a moderately rich man might be willing to buy insurance even if

the premium is slightly larger than his expected loss, because this removes the uncertainty var(L)
about the actual loss which he would otherwise have to live with; we have an aversion not only to

risk, but to uncertainty about it.

Further insight into the poor man's psychology is had by writing the RHS of (13{5) as

M � exphlog(M � L)i = M ��i exp[wi log(M � Li)] (13{7)

Let the Li be enumerated so that L1 � L2 � L3 : : :. Then this expression does not make sense

unless M > L1; but presumably it is not possible to have M < L1, for one cannot lose more
than he has. But if M approaches L1, the last term becomes singular [exp(�1)] and drops out.
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Equation (13{5) then reduces to hLi < P < M ; it appears that this unfortunate person should
always buy insurance if he can, even if this leaves him as poor as if the worst possible contingency

had happened to him!

Of course, this only illustrates that the logarithmic utility assignment is unrealistic for very
small amounts. In fact, the utility is clearly bounded in that region also; he who possesses only

one penny does not consider it a calamity to lose it. We may correct this, as many have done,

by replacing logM by log(M + b), where b is an amount so small that we consider it practically
worthless. This modi�es our conclusion from (13{7) in a way that we leave for the reader to work

out, and which may suggest a good choice for b.

Entropy and Utility

The logarithmic assignment of utility is reasonable for many purposes, as long as it is not pushed
to extremes. It is also, incidentally, closely connected with the notion of entropy, as shown by

Bellman and Kalaba (1956). A gambler, who receives partially reliable advance tips on a game,
acts (i.e., decides on which side and how much to bet) so as to maximize the expected logarithm of

his fortune. They show that (1) one can never go broke following this strategy, in contrast to the
strategy of maximizing expected pro�t, where it is easily seen that with probability one this will

happen eventually (the classical \gambler's ruin" situation), and (2) the amount one can reasonably

expect to win on any one game is clearly proportional to the amount M0 he has to begin with, so
after n games, one could hope to have an amount M = M0e

�n. Evidently, to use the logarithmic

utility function means that one acts so as to maximize the expectation of �.

Exercise 13.1. Show that the maximum attainable h�i is just (H0�H), where H is the entropy
which describes the gambler's uncertainty as to the truth of his tips, and H0 is the maximum

possible entropy, if the tips were completely uninformative.

A similar result is derived below. This suggests that, with more development of the theory, entropy

might have an important place in guiding the strategy of a businessman or stock market investor.

There is a more subtle use of these considerations; the possibility not only of maximizing

our own utility, but of manipulating the utility considerations of others so as to induce them to
behave as we wish. Competent administrators know, instinctively but qualitatively, how to o�er

rewards and punishments so as to keep their organizations running smoothly and on course. A
much oversimpli�ed but quantitative example of this follows.

The Honest Weatherman

The weatherman's prior information and data yield a probability p = P (RainjData; I) that it will

rain tomorrow. Then what probability q will he announce publicly, in his evening TV forecast?
This depends on his perceived utility function. We suspect that weather forecasters systematically

overstate the probability of bad weather, i.e., announce a value q > p, in the belief that they will

incur more criticism from failing to predict a storm that arrives than from predicting one that fails
to arrive.y

Nevertheless, we would prefer to be told the value p actually indicated by all the data at

hand; indeed, if we were sure that we were being told this, we could not reasonably criticize the
weatherman for his failures. Is it possible to give the weatherman a utility environment that will
induce him always to tell the truth?

y Evidence for this is seen in the fact that, in St. Louis, we experience a predicted nonstorm almost every

other week; but a nonpredicted storm is so rare that it is a major news item.
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Suppose we write the weatherman's employment contract to stipulate that he will never be
�red for making too many wrong predictions; but that each day, when he announces a probability

q of rain, his pay for that day will be B log(2q) if it actually rains the next day, and B log 2(1� q)
if it does not, where B is a base rate that does not matter for our present considerations, as long

as it is high enough to make him want the job. Then the weatherman's expected pay for today, if
he announces probability q, is

B[p log 2q + (1� p) log 2(1� q)] = B[log 2 + p log q + (1� p) log(1� q)] : (13{8)

Taking the �rst and second derivatives, we �nd that this is a maximum when q = p.

Now any continuous utility function appears linear if we examine only a small segment of it.

Thus, if the weatherman considers a single days' pay small enough so that his utility for it is linear
in the amount, it will always be to his advantage to tell the truth. There exist combinations of

rewards and utility functions for which, quite literally, honesty is the best policy.

More generally, let there be n possible events (A1 : : :An) for which the available prior infor-
mation and data indicate the probabilities (p1 : : : pn). But a predictor chooses to announce instead

the probabilities (q1 : : : qn). Let him be paid B log(nqi) if the event Ai subsequently occurs; he is

rewarded for placing a high probability on the true event. Then his expectation of pay is

B[log n � I(q; p)] (13{9)

where I(q; p)�
P

pi log qi is essentially (to within an additive constant) the relative entropy of the
distributions [today commonly called the Kullback{Leibler Information, although its fundamental

properties were proved and exploited already by Gibbs (1902, Chap. 11)]. Then it will be to his
advantage to announce always qi = pi, and his maximum expectation of pay is

B[log n �H(p1 : : : pn)] (13{10)

where H(pi) is the entropy that measures his uncertainty about the Ai. It is not only to his

advantage to tell the truth; it is to his advantage to acquire the maximum possible amount of

information so as to decrease that entropy.

So, with an appropriate system of rewards, not only is honesty the best policy; industry is

also encouraged. We see from this that a person who acts in his own self{interest is not necessarily

acting counter to the interests of the rest of Society. Socio{economic activity is not a zero{sum
game; it is possible, at least theoretically, to organize things so that the individual's self{interest

runs parallel to that of Society as a whole (but we do not know how well this utopian situation is
approximated by present Societies).

Reactions to Daniel Bernoulli and Laplace

The mathematically elementary { yet evidently important { nature of these results, might make

one think that such things must have been not only perceived by many, but put to good use
immediately, as soon as Daniel Bernoulli and Laplace had started this train of thought. Indeed, it

seems in retrospect surprising that the notion of entropy was not discovered in this way, 100 years
before Gibbs.

But the actual course of history has been very di�erent; for most of the 20'th Century the

\frequentist" school of thought either ignored the above line of reasoning or condemned it as
metaphysical nonsense. In one of the best known books on probability theory (Feller, 1950; p. 199),
Daniel Bernoulli's resolution of the St. Petersburg paradox is rejected without even being described,

except to assure the reader that he \tried in vain to solve it by the concept of moral expectation."
Warren M. Hirsch, in a review of the book, ampli�ed this as follows:
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\Various mystifying `explanations' of this paradox had been o�ered in the past, involving, for example,

the concept of moral expectation. These explanations are hardly understandable to the modern student

of probability. Feller gives a straightforward mathematical argument which leads to the determination

of �nite entrance fee with which the St. Petersburg game has all the properties of a fair game."

We have just seen how `vain' and `hardly understandable' Daniel Bernoulli's e�orts were. Reading

Feller, one �nds that he `resolved' the paradox merely by de�ning and analyzing a di�erent game.
He undertakes to explain the rationale of insurance in the same way; but since he rejects Daniel

Bernoulli's concept of a curved utility function, he concludes that insurance is always necessarily
`unfair' to the insured. These explanations are hardly understandable to the modern economist (or

to us).

In the 1930's and 1940's a form of decision rules, as an adjunct to hypothesis testing, was

expounded by J. Neyman and E. S. Pearson. It enjoyed a period of popularity with electrical

engineers (Middleton, 1960) and economists (Simon, 1977) but it is now obsolete because it lacks
two fundamental features now recognized as essential to the problem. In Chapter 14 we give a

simple example of the Neyman{Pearson procedure, which shows how it is related to others.

Then in 1950 Abraham Wald gave a formulation that operates at a more fundamental level

which makes it appear likely to have a permanent validity, as far as it goes, and gives a rather fun-
damental justi�cation to Daniel Bernoulli's intuitive ideas. But these e�orts were not appreciated

in all quarters. Maurice Kendall (1963) wrote:

\There has been a strong movement in the U.S.A. to regard inference as a branch of decision theory.

Fisher would have maintained (and in my opinion rightly) that inference in science is not a matter of

decision, and that, in any case, criteria for choice in decision based on pay{o�s of one kind or another

are not available. This, broadly speaking, is the English as against the American point of view. � � � I

propound the thesis that some such di�erence of attitude is inevitable between countries where what a

man does is more important than what he thinks, and those where what he thinks is more important

than what he does."

But we need not rely on second{hand sources for Fisher's attitude toward decision theory; as noted

in Chapter 16, he was never at a loss to express himself on anything. In discussing signi�cance
tests, he writes (Fisher, 1956; p. 77):

\� � � recently � � � a considerable body of doctrine has attempted to explain, or rather to reinterpret,

these tests on the basis of quite a di�erent acceptance procedure. The di�erences between these

two situations seem to the author many and wide, and I do not think it would have been possible to

overlook them had the authors of this reinterpretation had any real familiarity with work in the natural

sciences, or consciousness of those features of an observational record which permit of an improved

scienti�c understanding."

Then he identi�es Neyman and Wald as the objects of his criticism.

Apparently, Kendall, appealing to motives usually disavowed by scholars, regarded decision
theory as a defect of the American, as opposed to the British character (although neither Neyman
nor Wald was born or educated in America { they ed here from Europe). Fisher regarded it as an

aberration of minds not versed in natural science (although the procedures were due originally to
Daniel Bernoulli and Laplace, whose stature as natural scientists will easily bear comparison with
Fisher's).

We agree with Kendall that the approach of Wald does indeed give the impression that inference
is only a special case of decision; and we deplore this as much as he did. But we observe that in
the original Bernoulli{Laplace formulation (and in ours), the clear distinction between these two
functions is maintained, as it should be. But while we perceive this necessary distinction between

inference and decision, we perceive also that inference not followed by decision is largely idle, and

no natural scientist worthy of the name would undertake the labor of conducting inference unless
it served some purpose.
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These quotations give an idea of the obstacles which the perfectly natural, and immensely
useful, ideas of Daniel Bernoulli and Laplace had to overcome; 200 years later, anyone who suggested

such things was still coming under attack from the entrenched `orthodox' statistical Establishment {
and in a way that reected no credit on the attackers. Let us now examine Wald's theory.

Wald's Decision Theory

Wald's formulation, in its initial stages, had no apparent connection with probability theory. We

begin by imagining (i.e., enumerating) a set of possible \states of Nature," f�1; �2; : : : ; �Ng whose
number is always, in practice, �nite although it might be a useful limiting approximation to think

of them as in�nite or even as forming a continuum. In the quality{control example of Chapter 4,
the \state of Nature" was the unknown number of defectives in the batch.

There are certain illusions that tend to grow and propagate here. Let us dispel one by noting

that, in enumerating the di�erent states of Nature, we are not describing any real (veri�able)
property of Nature { for, one and only one of them is in fact true. The enumeration is only a

means of describing a state of knowledge about the range of possibilities. Two persons, or robots,
with di�erent prior information may enumerate the �j di�erently without either being in error or

inconsistent. One can only strive to do the best he can with the information he has, and we expect

that the one with better information will naturally { and deservedly { make better decisions. This
is not a paradox, but a platitude.

The next step in our theory is to make a similar enumeration of the decisions fD1; D2; : : : ; Dkg

that might be made. In the quality{control example, there were three possible decisions at each

stage:

D1 � \Accept the batch"

D2 � \Reject the batch"

D3 � \Make another test"

In the particle counter problem of Mr. B in Chapter 6, where we were to estimate the number n1 of

particles passing through the counter in the �rst second, there were an in�nite number of possible
decisions:

Di � \n1 is estimated as equal to 0, 1, 2, : : :"

If we are to estimate the source strength, there are so many possible estimates that we thought of
them as forming a continuum of possible decisions, even though in actual fact we can write down

only a �nite number of decimal digits.

This theory is clearly of no use unless by \making a decision" we mean, \deciding to act as if
the decision were correct". It is idle for the robot to \decide" that n1 = 150 is the best estimate

unless we are then prepared to act on the assumption that n1 = 150. Thus the enumeration of the
Di that we give the robot is a means of describing our knowledge as to what kinds of actions are

feasible; it is idle and computationally wasteful to consider any decision which we know in advance
corresponds to an impossible course of action.

There is another reason why a particular decision might be eliminated; even though D1 is
easy to carry out, we might know in advance that it would lead to intolerable consequences. An
automobile driver can make a sharp turn at any time; but his common sense usually tells him not

to. Here we see two more points: (1) there is a continuous gradation { the consequences of an
action might be serious without being absolutely intolerable, and (2) the consequences of an action

(= decision) will in general depend on what is the true state of Nature { a sudden sharp turn does
not always lead to disaster, and it may actually avert disaster.

This suggests a third concept we need { the loss function L(Di; �j), which is a set of numbers
representing our judgment as to the \loss" incurred by making decision Di if �j should turn out to
be the true state of Nature. If the Di and �j are both discrete, this is a loss matrix Lij .
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Quite a bit can be done with just the �j ; Di; Lij and there is a rather extensive literature
dealing with criteria for making decisions with no more than this. In the early days of this theory

the results were summarized in a very readable and entertaining form by Luce and Rai�a (1957),
and in the aforementioned elementary textbook of Cherno� and Moses (1959), which we recommend

as still very much worth reading today. This culminated in the more advanced work of Rai�a &
Schlaifer (1961), which is still a standard reference work because of its great amount of useful

mathematical material (and, perhaps, its absence of rambling philosophy).

For a modern exposition with both the philosophy and the mathematics in more detail than
we give here, see James Berger (1985). This is written from a Bayesian viewpoint almost identical

to ours and it takes up many technical circumstances important for inference but which are not, in

our view, really part of decision theory.

The minimax criterion is: for each Di �nd the maximum possible loss Mi = maxj(Lij); then
choose that Di for which Mi is a minimum. This would be a reasonable strategy if we regard

Nature as an intelligent adversary who foresees our decision and deliberately chooses the state of
Nature so as to cause us the maximum frustration. In the theory of some games, this is not a

completely unrealistic way of describing the situation, and consequently minimax strategies are of
fundamental importance in game theory (von Neumann and Morgenstern, 1953).

But in the decision problems of the scientist, engineer, or economist we have no intelligent

adversary, and the minimax criterion is that of the long{faced pessimist who concentrates all his
attention on the worst possible thing that could happen, and thereby misses out on the favorable

opportunities.

Equally unreasonable from our standpoint is the starry{eyed optimist who believes that Nature

is deliberately trying to help him, and so uses this \minimin" criterion: for each Di �nd the
minimum possible loss mi = minj(Lij) and choose the Di that makes mi a minimum.

Evidently, a reasonable decision criterion for the scientist, engineer, or economist is in some

sense intermediate between minimax and minimin, expressing our belief that Nature is neutral
toward our goals. Many other criteria have been suggested, with such names as maximin utility

(Wald), �{optimism{pessimism (Hurwicz), minimax regret (Savage), etc. The usual procedure, as
described in detail by Luce and Rai�a, has been to analyze any proposed criterion to see whether

it satis�es about a dozen qualitative common{sense conditions such as

(1) Transitivity: If D1 is preferred to D2, and D2 preferred to D3, then D1 should be

preferred to D3

(2) Strong Domination: If for all states of Nature �j we have Lij < Lkj , then Di should

always be preferred to Dk.

This kind of analysis, although straightforward, can become tedious. We do not follow it any

further, because the �nal result is that there is only one class of decision criteria which passes all
the tests, and this class is obtained more easily by a di�erent line of reasoning.

A full decision theory, of course, cannot concern itself merely with the �j ; Di; Lij. We also,

in typical problems, have additional evidence E, which we recognize as relevant to the decision
problem, and we have to learn how to incorporate E into the theory. In the quality{control
example of Chapter 4, E consisted of the results of the previous tests.

At this point the decision theory of Wald takes a long, di�cult, and as we now realize, un-
necessary mathematical detour. One de�nes a \strategy" S, which is a set of rules of the form,

\If I receive new evidence Ei, then I will make decision Dk." In principle one �rst enumerates

all conceivable strategies (whose number is, however, astronomical even in quite simple problems),
and then eliminates the ones considered undesirable by the following criterion. Denote by
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p(Dkj�jS) =
X
i

p(DkjEi�jS) p(Eij�j) (13{11)

the sampling probability that, if �j is the true state of Nature, strategy S would lead us to make
decision Dk, and de�ne the risk presented by �j with strategy S as the expected loss over this

distribution:

Rj(S) = hLij =
X
k

p(Dkj�jS)Lkj: (13{12)

Then a strategy S is called admissible if no other S0 exists for which

Rj(S
0) � Rj(S); all j: (13{13)

If an S0 exists for which the strict inequality holds for at least one �j , then S is termed inadmissible.
The notions of risk and admissibility are evidently sampling theory criteria, not Bayesian, since

they invoke only the sampling distribution. Wald, thinking in sampling theory terms, considered

it obvious that the optimal strategy should be sought only within the class of admissible ones.

A principal object of Wald's theory is then to characterize the class of admissible strategies in

mathematical terms, so that any such strategy can be found by carrying out a de�nite procedure.
The fundamental theorem bearing on this is Wald's Complete Class Theorem which establishes a

result shocking to sampling theorists (including Wald himself). Berger (1985, Chap. 8) discusses
this in Wald's terminology. The term \complete class" is de�ned in a rather awkward way (Berger,

loc. cit., pp. 521{522). What Wald really wanted was just the set of all admissible rules, which
Berger calls a \minimal complete class". From Wald's viewpoint it is a highly nontrivial mathe-

matical problem to prove that such a class exists, and to �nd an algorithm by which any rule in
the class can be constructed.

However, from our viewpoint these are unnecessary complications, signifying only an inappro-

priate de�nition of the term \admissible". We shall return to this issue in Chapter 17 and come to a
di�erent conclusion; an `inadmissible' decision may be overwhelmingly preferable to an `admissible'

one, because the criterion of admissibility ignores prior information { even information so cogent
that, for example, in major medical, public health, or airline safety decisions, to ignore it would

put lives in jeopardy and support a charge of criminal negligence.

This illustrates the folly of inventing noble{sounding names like `admissible' and `unbiased'

for principles that are far from noble; and not even fully rational. In the future we should pro�t
from this lesson and take care that we describe technical conditions by names that are ethically

and morally neutral, and so do not have false connotations which could mislead others for decades,

as these have.

Since in real applications we do not want to { and could not { restrict ourselves to admissible
rules anyway, we shall not follow this quite involved argument. We give a di�erent line of rea-
soning which leads to the rules which are appropriate in the real world, while giving us a better

understanding of the reason for them.

What makes a decision process di�cult? Well, if we knew which state of Nature was the correct

one, there would be no problem at all; if �3 is the true state of Nature, then the best decision Di

is the one which renders Li3 a minimum. In other words, once the loss function has been speci�ed,
our uncertainty as to the best decision arises solely from our uncertainty as to the state of Nature.

Whether the decision minimizing Li3 is or is not best depends on this: How strongly do we believe
that �3 is the true state of Nature? How plausible is �3?
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To our robot it seems a trivial step { really only a rephrasing of the question { to ask next,
\Conditional on all the available evidence, what is the probability P3 that �3 is the true state of

Nature?" Not so to the sampling theorist, who regards the word \probability" as synonomous with
\long{run relative frequency in some random experiment". On this de�nition it is meaningless to

speak of the probability of �3, because the state of nature is not a \random variable". Thus, if we
adhere consistently to the sampling theory view of probability, we shall conclude that probability

theory cannot be applied to the decision problem, at least not in this direct way.

It was just this kind of reasoning which led statisticians, in the early part of this century,

to relegate problems of parameter estimation and hypothesis testing to a new �eld, Statistical
Inference, which was regarded as distinct from probability theory, and based on entirely di�erent

principles. But let us examine a typical problem of this type from the sampling theory viewpoint,
and see how introducing the notion of a loss function changes this conclusion.

Parameter Estimation for Minimum Loss

There is some unknown parameter �, and we make n repeated observations of a quantity, ob-

taining an observed \sample" x � fx1 : : :xng. We interpret the symbol x, without subscripts, as
standing for a vector in an n{dimensional \sample space" and suppose that the possible results

xi of individual observations are real numbers which we think of as continuously variable in some

domain (a � xi � b). From observation of the sample x, what can we say about the unknown
parameter �? We have already studied such problems from the Bayesian \Probability Theory as

Logic" viewpoint; now we consider them from the sampling theory viewpoint.

To state the problem more drastically, suppose that we are compelled to choose one speci�c

numerical value as our \best" estimate of �, on the basis of the observed sample x, and any other
prior information we might have, and then to act as if this estimate were true. This is the decision

situation which we all face daily, both in our professional capacity and in everyday life. The driver
approaching a blind intersection cannot know with certainty whether he will have enough time to

cross it safely; but still he is compelled to make a decision based on what he can see, and act on it.

Now it is clear that in estimating �, the observed sample x is of no use to us unless we can

see some kind of logical (not necessarily causal) connection between � and x. In other words, if we
knew �, but not x, then the probabilities which we would assign to various observable samples must

depend in some way on the value of �. If we consider the di�erent observations as independent, as
was almost always done in the sampling theory of parameter estimation, then the sampling density
function factors:

f(xj�) = f(x1j�) : : : f(xnj�): (13{14)

However, this very restrictive assumption is not necessary (and in fact does not lead to any formal
simpli�cation) in discussing the general principles of parameter estimation from the decision theory

standpoint.

Let � = �(x1 : : : xn) be an \estimator", i.e., any function of the data values, proposed as an
estimate of �. Also, let L(�; �) be the \loss" incurred by guessing the value � when � is in fact
the true value. Then for any given estimator the risk is the \pre{data" expected loss; i.e. the loss

for a person who already knows the true value of � but does not know what data will be observed:

R� �

Z
L(�; �) f(xj�) dx: (13{15)

By
R
( )dx we mean the n{fold integrationZ

� � �

Z
( ) dx1 : : : dxn: (13{16)
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We may interpret this notation as including both the continuous and discrete cases; in the latter
f(xj�) is a sum of delta{functions.

On the view of one who uses the frequency de�nition of probability, the above phase, \for a

person who already knows the true value of �" is misleading and unwanted. The notion of the
probability of sample x for a person with a certain state of knowledge is entirely foreign to him;

he regards f(xj�) not as a description of a mere state of knowledge about the sample, but as an

objective statement of fact, giving the relative frequencies with which di�erent samples would be
observed \in the long run".

Unfortunately, to maintain this view strictly and consistently would reduce the legitimate

applications of probability theory almost to zero; for one can (and most of us do) work in this
�eld for a lifetime without ever encountering a real problem in which one actually has knowledge

of the \true" limiting frequencies for an in�nite number of trials; how could one ever acquire such
knowledge? Indeed, quite apart from probability theory, no scientist ever has sure knowledge of

what is \really true"; the only thing we can ever know with certainty is: what is our state of

knowledge? To describe this is all that any science could ever have claimed to do.

Then how could one ever assign a probability which he knew was equal to a limiting frequency
in the real world? It seems to us that the belief that probabilities are realities existing in Nature is

pure Mind Projection Fallacy; and true \Scienti�c Objectivity" demands that we escape from this
delusion and recognize that in conducting inference our equations are not describing reality, only

our information about reality.

In any event, the \frequentist" believes that R� is not merely the \expectation of loss" in the

present situation, but is also, with probability 1, the limit of the average of actual losses which
would be incurred by using the estimator � an inde�nitely large number of times; i.e., by drawing

a sample of n observations repeatedly with a �xed value of �. Furthermore, the idea of �nding the
estimator which is \best for the present speci�c sample" is quite foreign to his outlook; because he

regards the notion of probability as referring to a collection of cases rather than a single case, he

is forced to speak instead of �nding that estimator \which will prove best, on the average, in the
long run".

On the frequentist view, therefore, it would appear that the best estimator will be the one

that minimizes R�. Is this a variational problem? A small change ��(x) in the estimator changes
the risk by

�R� =

Z
@L(�; �)

@�
f(xj�) ��(x) dx : (13{17)

If we were to require this to vanish for all ��(x), this would imply

@L

@�
= 0; all possible � : (13{18)

Thus the problem as stated has no truly stationary solution except in the trivial { and useless { case

where the loss function is independent of the estimated value �; if there is any \best" estimator by
the criterion of minimum risk, it cannot be found by variational methods.

Nevertheless, we can get some understanding of what is happening by considering (13{12)
for some speci�c choices of loss function. Suppose we take the quadratic loss function L(�; �) =

(�� �)2. Then (13{12) reduces to

R� =

Z
(�2 � 2�� + �2) f(xj�) dx (13{19)

or,

R� = (�� h�i)2 + var(�) (13{20)
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where var(�) � h�2i � h�i2 is the variance of the sampling pdf for �, and

h�ni �

Z
[�(x)]n f(xj�) dx (13{21)

is the n'th moment of that pdf . The risk (13{20) is the sum of two positive terms, and a good
estimator by the criterion of minimum risk has two properties:

(1) h�i = �

(2) var(�) is a minimum

These are just the two conditions which sampling theory has considered most important. An
estimator with property (1) is called unbiased [more generally, the function b(�) = h�i�� is called

the bias of the estimator �(x)], and one with both properties (1) and (2) was called e�cient by R.

A. Fisher. Nowadays, it is often called an unbiased minimum variance (UMV) estimator.

In Chapter 17 we shall examine the relative importance of removing bias and minimizing
variance, and derive the Cram�er{Rao inequality which places a lower limit on the possible value

of var(�). For the present, our concern is only with the failure of (13{17) to provide any optimal
estimator for a given loss function. This weakness of the sampling theory approach to parameter

estimation, that it does not tell us how to �nd the best estimator, but only how to compare

di�erent guesses, can be overcome as follows: we give a simple substitute for Wald's Complete
Class Theorem.

Reformulation of the Problem

It is easy to see why the criterion of minimum risk is bound to get us into trouble and is unable to

furnish any general rule for constructing an estimator. The mathematical problem was: for given
L(�; �) and f(xj�), what function �(x1 : : : xn) will minimize R�?

Although this is not a variational problem, it might have a unique solution; but the more

fundamental di�culty is that the solution will still, in general depend on �. Then the criterion of
minimum risk leads to an impossible situation { even if we could solve the mathematical minimiza-

tion problem and had before us the best estimator ��(x1 : : : xn) for each value of �, we could use

that result only if � were already known, in which case we would have no need to estimate. We
were looking at the problem backwards!

This makes it clear how to correct the trouble. It is of no use to ask what estimator is `best' for

some particular value of �; the answer to that question is always, obviously, �(x) = �, independent
of the data. But the only reason for using an estimator is that � is unknown. The estimator must

therefore be some compromise that allows for all possibilities within some prescribed range of �;
within this range it must do the best job of protecting against loss no matter what the true value
of � turns out to be.

Thus it is some weighted average of R�;

hRi =

Z
g(�)R�d� (13{22)

that we should really minimize, where the function g(�) � 0, measures in some way the relative
importance of minimizing R� for the various possible values that � might turn out to have.

But the mathematical character of the problem is completely changed by adopting (13{22) as

our criterion; we now have a solvable variational problem with a unique, well{behaved, and useful
solution. The �rst variation in hRi due to an arbitrary variation ��(x1 : : :xn) in the estimator is

�hRi =

Z
� � �

Z
dx1 � � �dxn

�Z
d� g(�)

@L(�; �)

@�
f(x1 : : : xnj�)

�
��(x1 : : :xn) (13{23)
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which vanishes independently of �� if

Z
d�g(�)

@L(�; �)

@�
f(x1 : : : xnj�) = 0 (13{24)

for all possible samples fx1 : : : xng.

Equation (13{24) is the fundamental integral equation which determines the `best' estimator

by our new criterion. Taking the second variation, we �nd the condition that (13{24) shall yield a
true minimum is

Z
d� g(�)

@2L

@�2
f(x1 : : :xnj�) > 0: (13{25)

Thus a su�cient condition for a minimum is simply @2L=@�2 � 0, but this is stronger than

necessary.

If we take the quadratic loss function L(�; �) = K(�� �)2, equation (13{24) reduces to

Z
d� g(�) (�� �) f(x1 : : :xnj�) = 0

or, the optimal estimator for quadratic loss is

�(x1 : : : xn) =

R
d�g(�)�f(x1 : : : xnj�)R
d� g(�) f(x1 : : : xnj�)

: (13{26)

But this is just the mean value over the posterior pdf for �:

f(�jx1 : : :xnI) =
g(�) f(x1 : : :xnj�)R
d� g(�) f(x1 : : :xnj�)

(13{27)

given by Bayes' theorem, if we interpret g(�) as a prior probability density! This argument shows,

perhaps more clearly than any other we have given, why the mathematical form of Bayes' theorem

intrudes itself inevitably into parameter estimation.

If we take as a loss function the absolute error, L(�; �) = j� � �j, then the integral equation

(13{24) becomes Z
�

�1

d� g(�) f(x1 : : : xnj�) =

Z 1

�

d�g(�) f(x1 : : : xnj�) (13{28)

which states that �(x1 : : :xn) is to be taken as the median over the posterior pdf for �:

Z
�

�1

d�f(�jx1 : : : xnI) =

Z 1

�

d� f(�jx1 : : :xnI) =
1

2
(13{29)

Likewise, if we take a loss function L(�; �) = (� � �)4, equation (13{24) leads to an estimator

�(x1 : : :xn) which is the real root of

f(�) = �3 � 3��2 + 3�2� � �3 = 0 (13{30)

where
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�n =

Z
d��n f(�jx1 : : :xnI) (13{31)

is the n'th moment of the posterior pdf for �. [That (13{30) has only one real root is seen on
forming the discriminant; the condition f 0(�) � 0 for all real � is just (�2 � �2) � 0.]

If we take L(�; �) = j�� �jk, and pass to the limit k ! 0, or if we just take

L(�; �) =

(
0 ; � = �

1 ; otherwise

)
(13{32)

Eq. (13{24) tells us that we should choose �(x1 : : : xn) as the \most probable value", or mode of

the posterior pdf f(�jx1 : : : xnI). If g(�) = const in the high{likelihood region, this is just the
maximum likelihood estimate advocated by Fisher.

In this result we see �nally just what maximum likelihood accomplishes, and under what

circumstances it is the appropriate method to use. The maximum likelihood criterion is the one in

which we care only about the chance of being exactly right; and if we are wrong, we don't care how
wrong we are. This is just the situation we have in shooting at a small target, where \a miss is as

good as a mile". But it is clear that there are few other situations where this would be a rational
way to behave; almost always, the amount of error is of some concern to us, and so maximum

likelihood is not the best estimation criterion.

Note that in all these cases it was the posterior pdf , f(�jx1 : : : xnI) that was involved. That
this will always be the case is easily seen by noting that our \fundamental integral equation" (13{24)

is not so profound after all. It can be written equally well as

@

@�

Z
d� g(�)L(�; �)f(x1 : : : xnj�) = 0: (13{33)

But if we interpret g(�) as a prior probability density, this is just the statement that we are indeed
to minimize the expectation of L(�; �); but it is not the expectation over the sampling pdf for �;

it is always the expectation over the Bayesian posterior pdf for �!

We have here an interesting case of \chickens coming home to roost". If a sampling theorist will
think his estimation problems through to the end, he will �nd himself obliged to use the Bayesian

mathematical algorithm even if his ideology still leads him to reject the Bayesian rationale for it.
But in arriving at these inevitable results, the Bayesian rationale has the advantages that (1) it leads

us to this conclusion immediately; (2) it makes it obvious that its range of validity and usefulness
is far greater than supposed by the sampling theorist. The Bayesian mathematical form is required

for simple logical reasons, independently of all philosophical hangups over \which quantities are

random?" or the \true meaning of probability."

Wald's complete class theorem led him to essentially the same conclusion: if the �j are discrete
and we agree not to include in our enumeration of states of Nature any �j that is known to be

impossible, then the class of admissible strategies is just the class of Bayes strategies [i.e., those that
minimize expected loss over a posterior pdf ]. If the possible �j form a continuum, the admissible
rules are the proper Bayesian ones; i.e., Bayes rules from proper (normalizable) prior probabilities.
But few people have ever tried to follow his proof of this; Berger (1985) does not attempt to present

it, and gives instead a number of isolated special results.

There is a great deal of mathematical nit{picking, also noted by Berger, over the exact situation

when one tries to jump into an improper prior in in�nite parameter spaces without considering
any limit from a proper prior. But for us such questions are of no interest, because the concept of
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admissibility is itself awed when stretched to such extreme cases. Because of its refusal to consider
any prior information whatsoever, it must consider all points of an in�nite domain equivalent; the

resulting singular mathematics is only an artifact that corresponds to no singularity in the real
problem, where prior information always excludes the region at in�nity.

For a given sampling distribution and loss function, we are content to say simply that the

defensible decision rules are the Bayes rules characterized by the di�erent proper priors, and their
well{behaved limits. This is the conclusion that was shocking to sampling theorists { including Wald

himself, who had been one of the proponents of the von Mises `collective' theory of probability { and
was psychologically perhaps the main spark that touched o� our present `Bayesian Revolution' in

statistics. To his everlasting credit, AbrahamWald had the intellectual honesty to see the inevitable
consequences of this result, and in his �nal work (1950), he termed the admissible decision rules,

\Bayes strategies".

E�ect of Varying Loss Functions

Since the new feature of the theory being expounded here lies only in the introduction of the
loss function, it is important to understand how the �nal results depend on the loss functions by

some numerical examples. Suppose that the prior information I and data D lead to the following

posterior pdf for a parameter �:

f(�jDI) = ke�k� ; 0 � � <1: (13{34)

The n'th moment of this pdf is

h�ni =

Z 1

0

�n f(�jDI) d� = n! k�n : (13{35)

With loss function (�� �)2, the best estimator is the mean value

� = h�i = k�1: (13{36)

With the loss function j�� �j, the best estimator is the median, determined by

1

2
=

Z
�

0

f(�jDI) d� = 1� e�k� (13{37)

or

� = k�1 log
e
(2) = 0:693h�i : (13{38)

To minimize h(���)4i, we should choose � to satisfy (13{30), which becomes y3�3y2+6y�6 = 0

with y = k�. The real root of this is at y = 1:59, so the optimal estimator is

� = 1:59 h�i: (13{39)

For the loss function (�� �)s+1 with s an odd integer, the fundamental equation (13{33) is

Z 1

0

(�� �)s e�k� d� = 0 (13{40)

which reduces to
sX

m=0

(�k�)m

m!
= 0 (13{41)



1317 Chap. 13: DECISION THEORY { HISTORICAL BACKGROUND 1317

The case s = 3 leads to (13{39),while in the case s = 5, loss function (�� �)6, we �nd

� = 2:025 h�i: (13{42)

As s ! 1; � also increases without limit. But the maximum-likelihood estimate, which corre-

sponds to the loss function L(�; �) = ��(� � �), or equally well to

lim
k!0

j�� �jk (13{43)

is � = 0. These numerical examples merely illustrate what was already clear intuitively; when the
posterior pdf is not sharply peaked, the best estimate of � depends very much on which particular

loss function we use.

One might suppose that a loss function must always be a monotonically increasing function of

the error j�� �j. In general, of course, this will be the case; but nothing in this theory restricts us
to such functions. You can think of some rather frustrating situations in which, if you are going to

make an error, you would rather make a large one than a small one. William Tell was in just that
�x. If you study our equations for this case, you will see that there is really no very satisfactory

decision at all (i.e., no decision has small expected loss); and nothing can be done about it.

Note that the decision rule is invariant under any proper linear transformation of the loss
function; i.e., if L(Di; �j) is one loss function, then the new one

L0(Di; �j) � a+ bL(Di; �j)
�1 < a <1

0 < b <1
(13{44)

will lead to the same decision, whatever the prior probabilities and data. Thus, in a binary decision

problem, given the loss matrix

Lij =

�
10 19
100 10

�

we can equally well use

L0
ij
=

�
0 1

10 0

�

corresponding to a = �10=9; b = 1=9. This may simplify the calculation of expected loss quite a
bit.

General Decision Theory

In the foregoing, we examined decision theory only in terms of one particular application; parameter

estimation. But we really have the whole story already; the criterion (13{33) for constructing the
optimal estimator generalizes immediately to the criterion for �nding the optimal decision of any

kind. The �nal rules are simple; to solve the problem of inference, there are four steps:

(1) Enumerate the possible states of nature �j , discrete or continuous, as the case may

be.

(2) Assign prior probabilities p(�j jI) which represent whatever prior information I you

have about them.

(3) Assign sampling probabilities p(Eij�j) which represent your prior knowledge about

the mechanism of the measurement process yielding the possible data sets Ei.

(4) Digest any additional evidence E = E1E2 � � � by application of Bayes' theorem, thus
obtaining the posterior probabilities p(�j jEI).
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That is the end of the inference problem, and p(�j jEI) expresses all the information about the �j
that is contained in the prior information and data. To solve the problem of decision there are

three more:

(5) Enumerate the possible decisions Di.

(6) Assign the loss function L(Di; �j) that tells what you want to accomplish.

(7) Make that decision Di which minimizes the expected loss over the posterior

probabilities for �j

After all is said and done, the �nal rules of calculation to which the theorems of Cox, Wald, and

Shannon lead us are just the ones which had been given already by Laplace and Daniel Bernoulli in
the 18'th century on intuitive grounds, except that the entropy principle generalizes the principle

of indi�erence in step (2).

Theoretically, these rules are now determined uniquely by elementary qualitative desiderata
of rationality and consistency. Some protest that they do not have any prior probability or loss

function. The theorem is that rationality and consistency require you to behave as if you had them;
for every strategy that obeys the desiderata, there is a prior probability and loss function which

would have led to that strategy; conversely, if a strategy is derived from a prior probability and
loss function, it is guaranteed to obey the desiderata.

Pragmatically, these rules either include, or improve upon, practically all known statistical

methods for hypothesis testing and point estimation of parameters. If you have mastered them,
then you have just about the entire �eld at your �ngertips. The outstanding thing about them is

their intuitive appeal and simplicity { if we sweep aside all the polemics and false starts that have
cluttered up this �eld in the past and consider only the constructive arguments that lead directly

to these rules, it is clear that the underlying rationale could be developed fully in a one{semester
undergraduate course.

However, in spite of the formal simplicity of the rules themselves, really facile application of

them in nontrivial problems involves intricate mathematics, and �ne subtleties of concept; so much
so that several generations of workers in this �eld misapplied them and concluded that the rules

were all wrong. So, we still need a good deal of leading by the hand in order to develop facility in

using this theory. It is like learning how to play a musical instrument { anybody can make noise
with it, but to play this instrument well requires years of practice.

COMMENTS

\Objectivity" of Decision Theory: Decision Theory occupies a unique position in discussion of
the logical foundations of statistics, because, as we have seen in (13{24) and (13{33), its procedures

can be derived from either of two diametrically opposed viewpoints about the nature of probability

theory. While there appears to be universal agreement as to the actual procedures that should be
followed, there remains a fundamental disagreement as to the underlying reason for them, having
its origin in the old issue of frequency vs. non{frequency de�nitions of probability.

From a pragmatic standpoint, such considerations may seem at �rst to be unimportant. How-

ever, in the attempt to apply decision{theory methods in real problems one learns very quickly

that these questions intrude in the initial stage of setting up the problem in mathematical terms.
In particular, our judgment as to the generality and range of validity of decision{theory methods

depends on how these conceptual problems are resolved. Our aim is to expound the viewpoint
according to which these methods have the greatest possible range of application.

Now we �nd that the main source of controversy here is on the issue of prior probabilities; on

the sampling theory viewpoint, if the problem involves use of Bayes' theorem then these methods
are just not applicable unless the prior probabilities are known frequencies. But to maintain this
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position consistently would imply an enormous restriction on the range of legitimate applications;
indeed, we doubt whether there has ever been a real problem in which the prior probabilities were,

in fact, known frequencies. But can the mathematical form of our �nal equations shed any light on
this issue?

Notice �rst that only the product g(�)L(�; �) is involved in (13{24) or (13{33); thus we could

interpret the problem in three di�erent ways:

(1) Prior Probability g(�), loss function L(�; �) = (�� �)2

(2) Uniform prior probability, loss function L(�; �) = g(�) (�� �)2

(3) Prior probability h(�), loss function g(�)(�� �)2=h(�),

but the optimal decision is just the same. This is equally true for any loss function.

We emphasize this rather trivial mathematical fact because of a curious psychological phenom-

enon. In expositions of decision theory written from the sampling theory viewpoint [for example,

Cherno� and Moses (1959)], the writers are reluctant to introduce the notion of prior probability.
They postpone it as long as possible, and �nally give in only when the mathematics forces them

to recognize that prior probabilities are the only basis for choice among the di�erent admissible
decision rules. Even then, they are so unhappy about the use of prior probabilities that they feel it

necessary always to invent a situation { often highly arti�cial { which makes the prior probabilities
appear to be frequencies; and they will not use this theory for any problem where they do not see

how to do this.

But these same writers do not hesitate to pull a completely arbitrary loss function out of thin
air without any basis at all, and proceed with the calculation! The equations show that if the �nal

decision depends strongly on which particular prior probability assignment we use, it is going to
depend just as strongly on which particular loss function we use. If one worries about arbitrariness

in the prior probabilities, then in order to be consistent, he ought to worry just as much about
arbitrariness in the loss functions. If one claims (as sampling theorists did for decades and as some

still do) that uncertainty as to the proper choice of prior probabilities invalidates the Laplace{Bayes
theory, then in order to be consistent, one must claim also that uncertainty as to the proper choice

of loss functions invalidates Wald's decision theory.

The reason for this strange lopsided attitude is closely connected with a certain philosophy
variously called behavioristic, or positivistic, which wants us to restrict our statements and concepts

to objectively veri�able things. Therefore the observable decision is the thing to emphasize, while
the process of plausible reasoning and the judgment described by a prior probability must be

deprecated and swept under the rug. But we see no need to do this, because it seems to us obvious

that rational action can come only as the result of rational thought.

If we refuse to consider the problem of rational thought merely on the grounds that it is not

\objective", the result will not be that we obtain a more \objective" theory of inference or decision.
The result will be that we have lost the possibility of getting any satisfactory theory at all, because
we have denied ourselves any way of describing what is actually going on in the decision process.

And, of course, the loss function is just the expression of a purely subjective value judgment, which
can in no way be considered any more \objective" than the prior probabilities.

In fact, prior probabilities are usually far more \objective" than loss functions, both in the

mathematical theory and in the everyday decision problems of \real life". In the mathematical
theory we have general formal principles { maximum entropy, transformation groups, marginaliza-

tion { that remove the arbitrariness of prior probabilities for a large class of important problems,
which includes most of those discussed in textbooks. But we have no such principles for determining

loss/utility functions.

This is not to say that the problem has not been discussed. de Groot (1970) notes the very weak
abstract conditions (transitivity of preferences, etc.) su�cient to guarantee existence of a utility
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function. Long ago, L. J. Savage considered construction of utility functions by introspection. This
is described by Cherno� & Moses (1959); suppose there are two possible rewards r1 and r2; then

for what reward r3 would you be indi�erent between (r3 for sure), or (either r1 or r2 as decided
by the ip of a coin)? Presumably, r3 is somewhere between r1 and r2. If one makes enough such

intuitive judgments and manages to correct all intransitivities, a crude utility function emerges.
Berger (1985, Chapter 2) gives a scenario in which this happens.

However, this is hardly a practical procedure, much less a formal principle; and the result is

just as arbitrary as if one simply drew a curve freehand. Indeed, the latter is much easier and cannot
get one into intransitivity di�culties. One can, of course, invent a crude prior in the same way,

as L. J. Savage often demonstrated. Such constructions, if one can transfer them into a computer,
will be better than nothing; but they are clearly desperation moves in lieu of a really satisfactory

formal theory such as we have in the principles of maximum entropy and transformation groups
for priors.

Noting that the decision depends only on the product of loss function and prior suggests what

seems at �rst an attractive possibility; could we simplify the foundations of this theory so as to make
it obvious that we need only a single function, not two? The writer pondered this for some time,

but decided �nally that this is not the right direction for future development, because (1) priors
and loss functions have very di�erent { almost opposite { roles to play, both in the mathematical

theory and in \real life", and (2) the theory of inference involving priors is more fundamental than
that of loss functions; the latter would need to be developed much further before it would be �t to

join with priors into a single mathematical quantity.

Some authors get themselves into strange problems in approaching decision theory. L. J. Savage
(1954) faces many inexplicable di�culties. He thinks (p. 16) that the proverbs \Look before you

leap" and \You can cross that bridge when you come to it" are contradictory. We feel that we
routinely obey both, and see no conict between them. That is, we do not act without cousidering

the likely consequences; but at the same time we do not waste time and e�ort planning for future
contingencies that may never happen.

But the original formulaion of Wald contemplates, following the orthodox line of thought, that

before seeing the data one will plan in advance for every possible contingency and list the decision
to be made after getting every conceivable data set. The problem with this is that the number of

such data sets is usually astronomical. The Bayesian formulation saves us from this; whatever data
set is actually observed, we enter it into the computer program and it calculates the appropriate

response for that data set. It is wasteful and irrelevant to calculate the response to any data set
that is not observed. So carrying this observation a bit further, we �ll out our proverb list with:

\Never make an irrevocable decision until you have to."

Loss Functions in Human Society: We note the sharp contrast between the roles of prior
probabilities and loss functions in human relations. People with similar prior probabilities get

along well together, because they have about the same general view of the world and philosophy
of life. People with radically di�erent prior probabilities cannot get along { this has been the root
cause of all the religious wars and most of the political repressions throughout history.

Loss functions operate in just the opposite way. People with similar loss functions are after the
same thing, and are in contention with each other. People with di�erent loss functions get along
well because each is willing to give something that the other wants. Amicable trade or business
transactions, advantageous to all, is possible only between parties with very di�erent loss functions.

We illustrated this by the example of insurance above.

In \real life" decision problems, each man knows, pretty well, what his prior probabilities are;
and because his beliefs are based on all his past experience, they are not easily changed by one
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more experience, so they are fairly stable. But in the heat of argument he may lose sight of his loss
function.

Thus the labor mediator must deal with parties with sharply opposing ideologies; policies

considered good by one are considered evil by the other. The successful mediator realizes that
mere talk will not alter prior beliefs; and so his role must be to turn the attention of both parties

away from this area, and explain clearly to each what his loss function is. In this sense, we can
claim that in real life decision problems, the loss function is often far more \subjective" (in the

sense of being less well �xed in our minds) than the prior probabilities.

Indeed, failure to judge one's own loss function correctly is one of the major dangers that

humans face. Having a little intelligence, one can invent myths out of his own imagination, and
come to believe them. Worse, one person may persuade thousands of others to believe his private

myths, as the sordid history of religious, political, and military disasters shows.

We think that these considerations have a bearing on other social problems. For example,

some psychologists never tire of trying to explain criminal behavior in terms of early childhood
experiences. It is conceivable that these may generate a certain general `propensity' to crime; but

the fact that the vast majority of people with the same experiences do not become criminals, shows
that a far more important and immediate cause must exist. Perhaps criminal behavior has a much

simpler explanation: poor reasoning, leading to a wrongly perceived loss function. Whatever our
early childhood experiences, law abiding citizens have just the same motivations as do criminals; all

of us have felt the urge to commit robbery, assault, and murder. The di�erence is that the criminal
does not think ahead far enough to appreciate the predictable consequences of his actions; we are

not surprised to learn that most violent criminals have very low intelligence.

Inability to perceive one's own loss function can have disastrous personal consequences in other

ways. Consider the case of Ramanujan, whom many would consider to be, in one particular area,
the greatest mathematical genius who ever lived. His death at age 32 was probably the result of

his own ridiculous dietary views. He refused to eat the food served in Hall at Trinity College,
Cambridge (although it was undoubtedly more wholesome than any food he had ever eaten before

coming to England) and tried to subsist on rotten fruit shipped from India without refrigeration.

A strikingly similar case is that of Kurt G�odel, whom many would consider the greatest {
certainly the best known { of all logicians. He died of starvation in a hospital with the �nest food
facilities, because he became obsessed with the idea that the doctors were trying to poison him. It

is curious that the greatest intellectual gifts sometimes carry with them the inability to perceive
simple realities that would be obvious to a moron.

However, we stress that the real world is vastly more complicated than supposed in Wald's

theory, and many real decision problems are not covered by it. For example, the state of Nature
tomorrow might be inuenced by our decision today (as when one decides to get an education).

Recognizing this is a step in the direction of game theory, or dynamic programming. But to treat
such problems does not require any departure from the principles of probability theory as logic;
only a generalization of what we did above.

Actually, human intuition, in making decisions with seemingly no rational basis, does surpris-

ingly well; persons with no mathematical comprehension whatsoever may still make good decisions.
However, \intuition" may make use of facts and memories so deeply buried in the subconscions

that one is not aware of them.

A New Look at the Je�reys Prior: Our noting that the optimal decision depends only on the
product of prior probability and loss function sets o� several other lines of thought. As we noted

in Chapter 12, Je�reys (1939) proposed that, in the case of a continuous parameter � known to
be positive, we should express prior ignorance by assigning, not uniform prior density, but a prior
density proportional to (1=�). The theoretical justi�cation of this rule was long unclear; but it
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yields very sensible{looking results in practice, which led Je�reys to adopt it as fundamental in
his signi�cance tests. We learned that, in the case that � is a scale parameter, the Je�reys prior

is uniquely determined by invariance under the scale transformation group; but now we can see
a quite di�erent justi�cation for it. If we use the absolute error loss function j� � �j when � is

known to be positive, then to assign g(�) = const. in (13{24) and (13{33) amounts to saying that
we demand an estimator which yields, as nearly as possible, a constant absolute accuracy for all

values of � in 0 < � <1. That is clearly asking for too much in the case of large �; and we must
pay the price in a poor estimate for small �. But the median of Je�reys' posterior distribution

is mathematically the same thing as the optimal estimator for uniform prior and loss function
j� � �j=�; we ask for, as nearly as possible, a constant percentage accuracy over all values of �.

This is, of course, what we do want in most cases where we know that 0 < � <1. Another reason

for the superior performance of Je�reys' rule is thus made apparent, if we re{interpret it as saying
that the (1=�) factor is part of the loss function.

Decision Theory is not Fundamental

What parts of the theories expounded here will be a permanent part of human thinking, what

parts may evolve on into di�erent forms in the future? We can only speculate, but it seems clear
to the writer that there is something necessary and timeless in the methods of inference developed

here; not only their compelling theoretical basisy explained in Chapters 1 and 2, but equally well,

the beautiful way they work out in practice in all the later Chapters { always giving us the right
answer to whatever question we ask of them, while orthodox methods yield sense and nonsense

about equally often { convinces us that these methods cannot be altered in any substantive way in
the future.

However, views as to the foundation of those methods may change; for example, instead of

our desiderata of logical consistency, future workers may prefer desiderata of optimal information
processing, as suggested by the work of Zellner (1988). Indeed, many advantages would result

from more common recognition that inference has fundamentally nothing to do with `randomness'
or `chance' but is concerned rather with optimal processing of information. We noted at the end

of Chapter 2 how G�odel's theorem appears as a platitude rather than a paradox, as soon as we
recognize the information processing aspect of mathematics.

But we can feel no such certainty about the decision theory addendum to inference. In the

�rst place, many present applications already require an extension to, or beyond, game theory
or dynamic programming. The State of Nature may be chosen by another person; or it may

be inuenced by our decision without the intervention of a conscious second agent. There may be
more than two agents involved. They might be either adversaries or helpful friends. Those are more

complicated situations than the ones we have considered here. We do not think such extensions

appropriate to our present topic of Scienti�c Inference, because we do not think of ourselves as
playing an adversary game against Nature. However, future scientists may �nd good reasons to

consider the more general theory.

For all the reasons noted in this Chapter, it now appears that from a fundamental standpoint
loss functions are less �rmly grounded than are prior probabilities. This is just the opposite of the

view that propelled the Wald{inspired development of decision theory in the 1950's, when priors
were regarded as vague and ill{de�ned, but nobody seemed to notice that loss functions are far more
so. For reasons we cannot explain, loss functions appeared to workers at that time to be \real" and
de�nite, although no principles for determining them were ever given, beyond the platitude that

any function with a continuous derivative appears linear if we examine a su�ciently small piece of
it.

y Of course, better proofs than those we were able to give in Chapter 2 will be found.
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In the meantime, there have been several advances in the technique for assigning priors by
logical analysis of the prior information; but to the best of our knowledge we have as yet no formal

principles at all for assigning numerical values to loss functions; not even when the criterion is
purely economic, because the utility of money remains ill{de�ned.

Another Dimension?

There is another respect in which loss functions are less �rmly grounded than are prior probabilities.

We consider it an important aspect of \objectivity" in inference { almost a principle of morality {
that we should not allow our opinions to be swayed by our desires; what we believe should be

independent of what we want. But the converse need not be true; on introspection, we would
probably agree that what we want depends very much on what we know, and we do not feel guilty

of any inconsistency or irrationality on that account.z

Indeed, it is clear that the act of assigning a loss function is itself only a means of describing

certain prior information about the phenomena of interest, which now notes not just their plau-
sibilities, but also their consequences. Thus a change in prior information which a�ects the prior

probabilities could very well induce a change in the loss function as well.

But then, having admitted this possibility, it appears that value judgments need not be intro-

duced in the form of loss functions at all. Already at the end of Chapter 1 we noted the possibility
of future `multi{dimensional' models of human mental activity. In view of the above considerations,

the doors now seem wide open for new developments in that direction; representing a mental state
about a proposition or action not by one coordinate (plausibility) as in present probability theory;

but by two coordinates (plausibility and value). Thus, while the principles of `one{dimensional'
inference seem permanent, the future can still bring many kinds of change in the representation of

value judgments, which need not resemble present decision theory at all. But this in turn reacts
back on the question of foundations of probability theory.

Thomas Bayes (1763) thought it necessary to explain the notion of probability in terms of
that of expectation;y and this persisted to modern times in the work of both de Finetti (1972,

1974) and Wald (1950). At �rst glance, it appears that the work of de Finetti on foundations of
probability theory could hardly be more di�erent in outlook from Wald's decision theory; yet these

two avenues to Bayesianity shared the common premise that value judgments are in some way
primary to inference.

de Finetti would base probability theory on the notion of \coherence", which means roughly
that in betting one should behave as if he assigned probabilities to the events (dice tosses, etc.)

being betted on; but those probabilities should be chosen so that he cannot be made a sure loser,
whatever the �nal outcome of those events.

It has always seemed objectionable to some, including this writer, to base probability theory
on such vulgar things as betting, expectation of pro�t, etc. Somehow, we think that the principles

of logic ought to be on a higher plane. But that was only an aesthetic feeling; now in recognizing
the inde�nite and provisional nature of loss functions we have a more cogent reason for not basing

probability theory on decisions or betting. Any rules which were found to be coherent but not
consistent, would be unusuable in practice because a well{posed question would have more than

one \right" answer with nothing to choose between them. This is, in our view, still another aspect

z Quasimodo, condemned by an accident of Nature to be something intermediate between man and gar-

goyle, wished that he had been made a whole man; but after learning about the behavior of men, he wished

instead that he had been made a whole gargoyle: \Oh, why was I not made of stone like these?"
y The di�culty of reading Bayes today can be appreciated from the bewildering sentence in which he states

this: \The probability of any event is the ratio between the value at which an expectation depending on the

happening of the event ought to be computed, and the value of the thing expected upon its happening."
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of the superiority of Richard Cox's approach, which stresses logical consistency instead and, just
for that reason, is more likely to have a lasting place in probability theory.
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CHAPTER 14

SIMPLE APPLICATIONS OF DECISION THEORY

We now examine in detail two of the simplest applications of the general decision theory just
formulated, and compare the �rst with the older Neyman{Pearson procedure. The problem of
detection of signals in noise is really the same as Laplace's old problem of detecting the presence of
unknown systematic inuences in celestial mechanics, and Shewhart's (1931) more recent problem
of detecting a systematic drift in machine characteristics, in industrial quality control. Statisticians
would call the procedure a \signi�cance test." It is unfortunate that the basic identity of all these
problems was not more widely recognized, because it forced workers in several di�erent �elds to
rediscover the same things, with varying degrees of success, over and over again.

As is clear by now, all we really have to do to solve this problem is to take the principles of
inference developed in Chapters 2 and 4; and supplement them with the loss function criterion
for converting �nal probabilities into decisions (and, if needed, the maximum entropy principle for
assigning priors). However, the literature of this �eld has been created largely from the standpoint
of the original decision theory before this was realized. The existing literature therefore uses a
di�erent sort of vocabulary and set of concepts than we have been using up to now. Since it exists,
we have no choice but to learn these terms and viewpoints if we want to read the literature of the
�eld. This material appeared in the papers of Middleton and van Meter (1955, 1956), and later in
the monumental treatise of Middleton (1960), in an enormously expanded form where a beginner
can get lost for months without ever �nding the real underlying principles. So we need a very
rapid, condensed review of the literature of the 1950's on these problems. To have a complete,
self{contained summary, we repeat a little from previous chapters as a way of introducing this
di�erent language.

De�nitions and Preliminaries

Notation:

p(AjB) = Conditional probability of A, given B

p(ABjCD) = Joint conditional probability of A and B, given D and C : : : etc.

For our purposes, everything follows from the product rule:

p(ABjC) = p(AjBC) p(BjC) = p(BjA) p(AjC): (14{1)

If the propositions B and C are not mutually contradictory, this may be rearranged to give the rule
of \learning by experience," Bayes' theorem:

p(AjBC) = p(AjC) p(BjAC)
p(BjC) = p(AjB) p(CjAB)

p(CjB) : (14{2)

If there are several mutually exclusive and exhaustive propositions Bi , then by summing (14{1)
over them, we obtain the chain rule

p(AjC) =
X
i

p(AjBiC) p(BijC) (14{3a)
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or, in a simple skeleton notation,

p(AjC) =
X
B

p(AjBC) p(BjC): (14{3b)

Now let

X = prior knowledge, of any kind whatsoever

S = signal

N = noise

V = V (S;N) = observed voltage

D = decision about the nature of the signal
Thus we have

p(SjX) = prior probability of the particular signal S

p(N jX) = W (N) = prior probability of the particular sample of noise N .

We understand that the prior information X is always built into the right{hand side of all our
probability symbols, whether or not we write it explicitly. Thus, in a linear system, V = S +N ,
and

p(V jS) � p(V jSX) = W (V � S): (14{4)

The reader may be disturbed by the absence of density functions, dS 's, dN 's, etc., which might be
expected in the case of continuous S; N . Note, however, that our equations are homogeneous in
these quantities, so they cancel out anyway. We are trying only to convey the broad ideas, without
bothering with �ne details which would make the notation very intricate. Thus by

P
A we mean

ordinary summation over some previously agreed set of possible values if A is discrete, integration
with appropriate density functions if A is continuous.

A decision rule p(DijVj) , or for brevity just p(DjV ) , represents the process of drawing in-
ferences about the signal from the observed voltage. If it is always made in a de�nite way, then
p(DjV ) has only the value 0, 1 for any choice of D and V ; however we may also have a \random-
ized" decision rule according to which p(DjV ) is a true probability distribution. Maintaining this
more general view turns out to be a help in formulating the theory.

The essence of any decision rule, and in particular, any one which can be built into automatic
equipment, is that the decision must be made on the basis of V alone; V is, by de�nition, the
quantity which contains all the information actually used (in addition to the ever-present X ) in
arriving at the decision. Thus, if Y 6= D is any other proposition, we have

p(DjV ) = p(DjV Y ): (14{5)

The fact that Y is to be ignored in the presence of V might appear a departure from our previous
exhortations that the robot is always to take into account all the relevant information it has.
However, if we consider that the property (14{5) is a part of the prior information X there is no
di�culty. To put it di�erently, (14{5) expresses the prior knowledge that there is a direct logical
relation by which D is determined by V alone. If this relation was a known law of physics, there
would be nothing strange in (14{5). The only di�erence is that in the present case this relation
does not express any law of Nature, but rather our own design of the apparatus. In either case, Y
is ignored not because the robot has relaxed its rules, but because Y is irrelevant.

An equivalent statement is that the probability of reaching a decision D depends on any
proposition Y only through the intermediate inuence of Y on V :

p(DjY ) =
X
V

p(DjV ) p(V jY ): (14{6)
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which is a kind of \Huygens principle" for logic. To see the analogy, think of Y as a light source
which cannot be seen from D , but it illuminates various points V . Then the resulting light
arriving at D is the sum of the Huygens wavelets p(DjV ) with amplitudes p(V jY ) . The almost
exact mathematical analogy between conditional information ow and the ow of light according
to the Huygens principle of optics will appear in detail when we consider the statistical mechanics
of irreversible processes.

Su�ciency and Information

Equation (14{5) has interesting consequences; suppose we wish to judge the plausibility of some
proposition Y , on the basis of knowledge of V and D . From the product rule (14{1),

p(DY jV ) = p(Y jVD) p(DjV ) = p(DjV Y ) p(Y jV )

and using (14{5), this reduces to

p(Y jVD) = p(Y jV ): (14{7)

Thus, if V is known, knowledge of D is redundant and cannot help us in estimating any other
quantity. The reverse is not true, however; we could equally well use (14{5) in another way:

p(V Y jD) = p(Y jV D) p(V jD) = p(Y jD) p(V jY D):

Combining this with (14{7), there results the

Theorem: Let D be a possible decision, given V . Then p(V jD) 6= 0, and

p(Y jV ) = p(Y jD) if and only if p(V jD) = p(V jY D).
(14{8)

In words: knowledge of D is as good as knowledge of V for judgments about Y if and only if Y
is irrelevant for judgments about V , given D . Stated di�erently: in the \environment" produced
by knowledge of D , the probabilities of Y and V are independent, i.e.,

p(Y V jD) = p(Y jD) p(V jD): (14{9)

In this case, in the literature of this �eld D is said to be a su�cient statistic for judgments about
Y . We shall want to see whether this is in agreement with our earlier de�nitions of su�ciency,
made from a quite di�erent point of view in Chapter 8.

Evidently, a decision rule which makes D a su�cient statistic for judgments about the signal
S is superior to one without this property, in that it tells us more about the signal. However, such
a rule does not necessarily exist. Equation (14{9) is a very restrictive condition, since it must be
satis�ed for all values of Y; V; and all D for which p(DjV ) 6= 0 .

As you might guess from this, the concept of su�ciency is closely related to that of information.
The above de�nition of su�ciency could be stated equally well as: D is a su�cient statistic for
judgments about Y if it contains all the information about Y which V contains. Since D is
determined from V , if it is not a su�cient statistic, it seems intuitively that is necessarily contains
less information about Y than does V . In this statement, the term \information" was used in a
loose, intuitive sense; does it remain true if we adopt Shannon's measure of information?

Imagine that there are several mutually exclusive propositions Yi , one of which must be true.
For brevity we use, as above, the notation

P
Y f(Y ) �

P
i f(Yi) . With a speci�c value of D given,

the entropy which measures our information about the propositions Yi is

HD(Y ) = �
X
Y

p(Y jD) log p(Y jD)

and its average over all values of D is
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HD(Y ) =
X
D

p(DjX)HD(Y ): (14{11)

If

HC(Y ) < HD(Y ) (14{12)

we say that C contains, on the average, more information about Y than does D . Note, however,
that it may be otherwise for speci�c values of C and D .

Acquisition of new information can never increase H ; let fZig be, for the moment, any set
of propositions and form the expression

HV (Z)�HDV (Z) =
X
DV Z

p(DV jX) p(ZjDV ) log p(ZjDV )�
X
V Z

p(V jX) p(ZjV ) log p(ZjV )

=
X
DV Z

p(CV jX) p(ZjDV ) log
�
p(ZjDV )
p(ZjV )

�
:

Using the fact that on the positive real line log x � (1� x
�1) , with equality if and only if x = 1 ,

this becomes

HV (Z)�HDV (Z) �
X
DV Z

p(DV jX)[p(ZjDV )� p(ZjV )] = 0 (14{13)

Thus, HDV (Z) � HV (Z) , with equality if and only if Eq. (14{7) holds for all D , V , and Z for
which p(DV jX) 6= 0 .

But now, since (14{13) holds regardless of the meaning of D and V , we can conclude equally
well that for all D , V , Z ,

HD(Y ) � HDV (Z) � HV (Z):

Choosing Z = Y , we have in consequence of (14{7) HV (Y ) = HDV (Y ) , so that

HV (Y ) � HD(Y ) (14{14)

with equality if and only if Eq. (14{9) holds, i.e., if and only if D is a su�cient statistic as
just de�ned. Thus, if by \information" we mean minus the average entropy of Y over the prior
distribution of D or V; zero information loss in going from V to D is equivalent to su�ciency of
D .

Note that inequality (14{13) holds only for the averages H , not for the H . Acquisition of a
speci�c piece of information (that an event previously considered improbable had in fact occurred)
may in some cases increase the entropy of Y . However, this is an improbable situation and on
the average the entropy can only be lowered by additional information. This shows again that the
term \information" is not a happy choice of words to describe entropy expressions. In spite of the
entropy increases, the situation just described could hardly be called one of less information in the
colloquial sense of that word; but rather one of less certainty.

Loss Functions and Criteria of Optimum Performance

In order to say that one decision rule is better than another, we need some speci�c criterion of
what we want our detection system to accomplish. The criterion will vary with the application,
and obviously no single decision rule can be best for all purposes. But our discussion in Chapter 13
will apply, almost unchanged, in this slightly di�erent language. A very general type of criterion is
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obtained by assigning a loss function L(D;S) which represents our judgment of how serious it is
to make decision D when signal S is in fact present.

In case there are only two possible signals, S0 = 0 (i.e., no signal), and S1 > 0 , and con-
sequently two possible decisions D0 , D1 about the signal, there are two types of error, the false
alarm A = (D1; S0) and the false rest R = (D0; S1) . In some applications, one type of error might
be much more serious than the other.

Suppose that a false rest is considered ten times as serious as is a false alarm, while a correct
decision of either type represents no \loss." We could then take L(D0; S0) = L(D1; S1) = 0 ,
L(D0; S1) = 10 , L(D1; S0) = 1 . Whatever the possible signals and the possible decisions form
discrete sets, the loss function becomes a loss matrix. In the above example,

Lij =

�
0 10
1 0

�

Instead of assigning arbitrary a certain loss value to each possible type of detection error, we may
consider information loss by the assignment L(D;S) = � log p(SjD) . This is somewhat more
di�cult to manipulate, because now L(D;S) depends on the decision rule. A decision rule which
minimizes information loss is one which makes the decision in some sense as close as possible to
being a su�cient statistic for judgments about the signal. In exactly what sense seems never to
have been clari�ed.

The conditional loss L(S) is the average loss incurred when the speci�c signal S is present

L(S) =
X
D

L(D;S) p(DjS) (14{15)

which may in turn be expressed in terms of the decision rule and the properties of the noise by
using (14{6). The average loss is the expected value of this over all possible signals:

hLi =
X
S

L(S) p(SjX): (14{16)

Two di�erent criteria of optimum performance now suggest themselves:

The Minimax Criterion. For a given decision rule p(DjV ) , consider the conditional loss
L(S) for all possible signals, and let [L(S)]max be the maximum value attained by L(S) . We
seek that decision rule for which [L(S)]max is as small as possible. As we noted in Chapter 13,
this criterion concentrates attention on the worst possible case regardless of the probability of
occurrence of this case, and it is thus in a sense too conservative. It has, however, for some the
psychological advantage that it does not involve the prior probabilities of the di�erent signals,
p(SjX) , and therefore it can be applied by persons who, under the handicap of orthodox
training, have a mental hangup against prior probabilities.

The Bayes Criterion. We seek that decision rule for which the average loss hLi is minimized.
In order to apply this, a prior distribution p(SjX) must be available.

Other criteria were proposed before the days of Wald's decision theory. In the Neyman{Pearson
theory, we �x the probability of occurrence of one type of error at some small value � , and then
minimize the probability � of the other type of error subject to this constraint.y Arnold Siegert's
\Ideal Observer" minimizes the total probability of error (�+ �) .

y For example, we suspect that at an Early Warning Radar Installation, the primary constraint might be

that the Commanding O�cer shall not be roused out of bed by a false alarm more often than once per

month, and subject to that requirement, we minimize the probablity of a false rest.
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After having invented many di�erent such ad hoc criteria from various viewpoints, and arguing
their relative merits on philosophical grounds, the basic mathematical identity of all these criteria
came as quite a surprise to the early workers in this �eld. We shall see below that all of them are
special cases of the Bayes criterion.

Let us �nd the Bayes solution, as it was rationalized in decision theory. Substituting in
succession equations (14{15), (14{6), and (14{3) into (14{16), we obtain for the average loss

hLi =
X
DV

"X
S

L(D;S) p(VSjX)

#
p(DjV ): (14{17)

If L(D;S) is a de�nite function independent of p(DjV ) (this assumption excludes for the moment
the information loss function), there is no function p(DjV ) for which this expression is stationary
in the sense of calculus of variations. We then minimize hLi merely by choosing for each possible
V that decision D1(V ) for which

K(D1; S) �
X
S

L(D1; S) p(VSjX) (14{18)

is a minimum. Thus, we adopt the decision rule

p(DjV ) = �(D;D1): (14{19)

In general there will be only one such D1 , and the best decision rule is nonrandom. However, in
case of \degeneracy," K(D1; V ) = K(D2; V ) , any randomized rule of the form

p(DjV ) = a�(D;D1) + b�(D;D2); a+ b = 1 (14{20)

is just as good by the criterion being used. This degeneracy occurs at \threshold" values of V;
where we change from one decision to another.

A Discrete Example

Consider the case already mentioned, where there are two possible signals S0 , and S1 , and a loss
matrix

Lij =

�
L00 L10

L10 L11

�
=

�
0 Lr

La 0

�

where Ls , Lr are the losses incurred by a false alarm and a false rest, respectively. Then

K(D0; V ) = L01 p(V S1jX) = Lr p(V S1jX)

K(D1; V ) = L10 p(V S0jX) = La p(V S0jX)
(14{21)

and the decision rule that minimizes hLi is

Choose D1 if
p(V S1jX)

p(V S0jX)
>
La

Lr

Choose D0 if
p(V S1jX)

p(V S0jX)
<
La

Lr

Choose either at random in case of equality.

(14{22)

If the prior probabilities of signal and no signal are

p(S1jX) = p; p(S0jX) = q = 1� p (14{23)

respectively, the decision rule becomes
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Choose D1 if
p(V jS1)
p(V jS0)

>
qLa

pLr
; etc: (14{24)

The left{hand side of (14{24) is a likelihood ratio, which depends only on the pdf assigned to the
noise, and is the quantity which should be computed by the optimum receiver according to the
Bayes criterion.

This same quantity is essential one regardless of the assumed loss function and regardless of the
probability of occurrence of the signal; these a�ect only the threshold of detection. Furthermore, if
the receiver merely computes this likelihood ratio and delivers it at the output without making any
decision, it provides us with all the information we need to make optimum decisions in the Bayes
sense. Note particularly the generality of this result, which is one of the most important ones for
our applications; no assumptions are needed as to the type of signal, linearity of the system, or
properties of the noise.

We now work out, for purposes of illustration, the decision rules and their degree of reliability,
for several of the above criteria, in the simplest possible problem. We have a linear system in which
the voltage is observed at a single instant, and we are to decide whether a signal, which can have
only amplitude S1 , is present in noise, to which we assign a gaussian pdf with mean square value
�
2 :

W (N) =
1p
2��2

exp

�
�N

2

2�2

�
: (14{25)

The likelihood ratio in (14{24) then becomes

p(V jS1)
p(V jS0)

=
W (V � S1)

W (V )
= exp

�
2V S1 � S

2
1

2h�2i

�
(14{26)

and since this is a monotonic function of V , the decision rule can be written as

Choose

�
D1

D0

�
when V

�
>

<

�
Vb (14{27)

with

Vb

�
=

1

2s

�
2 log

�
qLa

pLr

�
+ s

2

�
= vb (14{28)

in which

s � S1

�
is the voltage signal-to-noise ratio, and

v � V

�
is the normalized voltage.

Now we �nd for the probability of a false rest:

p(RjX) = p(D0S1jX) = p

X
V

p(D0jV ) p(V jS1) = p

Z Vb

�1

dVW (V � S1)

= p�(vb � s)

(14{29)

and for a false alarm,
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p(AjX) = p(D1S0jX) = q

X
V

p(D1jV ) p(V jS0) = q

Z
1

Vb

dVW (V )

= q[1� �(vb)]:

(14{30)

Here �(x) is the cumulative normal distribution function, calculated and tabulated in Appendix
I:

�(x) =
1p
2�

Z x

�1

e
�t2=2

dt : (14{31)

For x > 2 , a good approximation is

1� �(x) � e
�x2=2

x
p
2�

(14{32)

As a numerical example, if Lr = 10La , q = 10p , these expressions reduce to

p(AjX) = 10p(RjX) =
10

11

h
1� �

�
s

2

�i
: (14{33)

The probability of a false alarm is less than 0.027, and of a false rest less than 0.0027 for s > 4 .
For s > 6 , these numbers become 1:48� 10�3 , 1:48� 10�4 respectively.

Let us see what the minimax criterion would give in this problem. The conditional losses are

L(S0) = La

X
V

p(D1jV ) p(V jS0) = La

Z
1

�1

p(D1jV )W (V )dV

L(S1) = Lr

X
V

p(D0jV ) p(V jS1) = Lr

Z
1

�1

p(D0jV )W (V � S1)dV

(14{34)

Writing f(V ) � p(D1jV ) = 1 � p(D0jV ) , the only restriction on f(V ) is 0 � f(V ) � 1 . Since
La , Lr , and W (V ) are all positive, a change �f(V ) in the neighborhood of any given point V

will always increase one of the quantities (14{34) and decrease the other. Thus when the maximum
L(S) has been made as small as possible, we will certainly have L(S0) = L(S1) , and the problem
is thus to minimize L(S0) subject to this constraint.

Suppose that for some particular p(SjX) the Bayes decision rule happened to give L(S0) =
L(S1) . Then this particular solution must be identical with the minimax solution, for with the
above constraint, hLi = [L(S)]max , and if the Bayes solution minimizes hLi with respect to all
variations �f(V ) in the decision rule, it a fortiori minimizes it with respect to the smaller class
of variations which keep L(S0) = L(S1) . Therefore the decision rule will have the same form as
before: There is a minimax threshold Vm such that

f(V ) =

(
0; V < Vm

1; V > Vm

)
: (14{36)

Any change in Vm from the value which makes L(S0) = L(S1) necessarily increases one or the
other of these quantities. The equation determining Vm is therefore

La

Z
1

Vm

W (V )dV = Lr

Z Vm

�1

W (V � S1)dV
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or, in terms of normalized quantities,

La[1� �(vm)] = Lr�(vm � s): (14{37)

Note that (14{30), (14{31) give the conditional probabilities of false rest and false alarm for any
decision rule of type (14{36), regardless of whether the threshold was determined from (14{28) or
not; for the arbitrary threshold V0

p(RjS1) = p(V < V0jS1) = �(v0 � s)

p(AjS0) = p(V > V0jS0) =
1

2
[1� �(v0)]:

(14{38)

From (14{28) we see that there is always a particular ratio (p=q) which makes the Bayes threshold
Vb equal to the minimax threshold Vm . For values of (p=q) other than this worst value, the Bayes
criterion gives a lower average loss than does the minimax, although one of the conditional losses
L(S0) , L(S1) will be greater than the minimax value.

These relations and several previous remarks are illustrated in Figure 14.1, in which we plot
the conditional losses L(S0) , L(S1) and the average loss hLi as functions of the threshold V0 , for
the case La = (3=2)Lr; p = q = 1=2 . The minimax threshold is at the common crossing{point of
these curves, while the Bayes threshold occurs at the lowest point of the hLi curve.

One sees how the Bayes threshold moves as the ratio (p=q) is varied, and in particular that the
value of (p=q) which makes Vb = Vm also leads to the maximum value of the hLimin obtained by
the Bayes criterion. Thus we could also de�ne a \maximin" criterion; �rst �nd the Bayes decision
rule which gives minimum hLi for a given p(SjX) , then vary the prior probability p(SjX) until
the maximum value of hLimin is attained. The decision rule thus obtained is identical with the
one resulting from the minimax criterion; this is the worst possible prior probability, in the sense
that the most pessimistic rule is the best that can be done.

The Neyman{Pearson criterion is easily discussed in this example: Suppose the conditional
probability of a false alarm p(D1jS0) is held �xed at some value � , and we wish to minimize the
conditional probability p(D0jS1) of a false rest, subject to this constraint. Now the Bayes criterion
minimizes the average loss

hLi = pLr(D0jS1) + qLr(D1jS0)

with respect to any variation �p(DjV ) in the decision rule. In particular, therefore, it minimizes
it with respect to the smaller class of variations which hold p(D1jS0) constant at the value �nally
obtained. Thus it minimizes p(D0jS1) with respect to these variations and solves the Neyman{
Pearson problem; we need only choose the particular value of the ratio (qLa=pLr) which results in
the assumed value of � according to (14{28), (14{30).

We �nd for the Neyman-Pearson threshold, from (14{38)

�(vnp) = 1� � (14{39)

and the conditional probability of detection is

p(D1jS1) = 1� p(D0jS1) = �(s� vnp): (14{40)

If � = 10�3 , a detection probability of 99 percent or better is attained for s > 6 .

It is important to note that these numerical examples depend critically on our noise pdf

assignment. If we have prior information about the noise beyond its �rst and second moments, the
noise pdf expressing this may not be gaussian, and the actual situation may be either more or less
favorable than indicated by the above relations.
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It is well known that in one sense noise with a gaussian frequency distribution is the worst
possible kind; because of its maximum entropy properties, it can obscure a weak signal more
completely than can any other noise of the same average power. On the other hand, gaussian noise
is a very favorable kind from which to extract a fairly strong signal, because the probability that the
noise will exceed a few times the RMS value � =

p
hN2i becomes vanishing small. Consequently,

the probability of making an incorrect decision on the presence or absence of a signal goes to zero
very rapidly as the signal strength is increased. The high reliability of operation found above for
s > 6 would not be found for noise possessing a probability distribution with wider tails.

The type of noise frequency distribution to be expected in any particular case depends, of
course, on the physical mechanism which gives rise to the noise. When the noise is the result of
a large number of small, independent e�ects, the Landon derivation of Chapter 7 and the Central
Limit Theorem both tell us that a gaussian frequency distribution for the total noise is by far the
most likely to be found, regardless of the nature of the individual sources.

All of these apparently di�erent decision criteria lead, when worked out, to a probability ratio
test. In the case of a binary decision, it took the simple form (14{22). Of course, any decision
process can be broken down into successive binary decision, so this case really has the whole story
in it. All the di�erent criteria amounted, in the �nal analysis, only to di�erent philosophies about
how you choose the threshold value at which you change your decision.

How Would Our Robot Do It?

Now let's see how this problem appears from the viewpoint of our robot. The rather long arguments
we had to go through above (and even they are very highly condensed from the original literature) to
get the result are due only to the orthodox view which insists on looking at the problem backwards,
i.e., on concentrating attention on the �nal decision rather than on the inference process which
logically has to precede it.

To the robot, if our job is to make the best possible decision as to whether the signal is present,
the obvious thing we must do is to calculate the probability that the signal is present, conditional
on all the evidence at hand. If there are only two possibilities, S0 , S1 , to be taken into account,
then after we have seen voltage V; the posterior odds on S1 are from (4{7),

O(S1jV X) = O(S1jX)
p(V jS1)
p(V jS0)

: (14{41)

If we give the robot the loss function (14{21) and ask it to make the decision which minimizes the
expected loss, it will evidently use the decision rule

choose D1 if O(S1jV ) = p(S1jV )
p(S0jV )

>
La

Lr

; (14{42)

etc. But from the product rule, p(V S1jX) = p(S1jV ) p(V jX) , p(V S0jX) = p(S0jV ) p(V jX) , and
(14{42) is identical with (14{22). So, just from looking at this problem the other way around, our
robot obtains the same �nal result in just two lines!

You see that all this discussion of strategies, admissibility, conditional losses, etc., was com-
pletely unnecessary. Except for the introduction of the loss function at the end, there is nothing
in the actual functional operation of Wald's decision theory that isn't contained already in basic
probability theory, if we will only use it in the full generality given to it by James Bernoulli and
Laplace.
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Historical Remarks

This comparison shows why the development of decision theory has, more than any other single
factor, provoked our `Bayesian Revolution' in statistical thought. For some �fty years, Harold
Je�reys tried valiantly to explain the great advantages of the Laplace methods to statisticians, and
his e�orts met only with a steady torrent of denials and ridicule. It was then a real irony that the
work of one of the most respected of \orthodox" statisticians (Abraham Wald), which was hailed,
very properly, as a great advance in statistical practice, turned out to give, after very long and
complicated arguments, exactly the same �nal results that the despised Laplace methods give you
immediately. Wald showed in great generality what we have just illustrated by one simple example.

The only proper conclusion, as a few recognized at once, is that the supposed distinction be-
tween statistical inference and probability theory was entirely arti�cial { a tragic error of judgment
which has wasted perhaps a thousand man{years of our best mathematical talent in the pursuit of
false goals.

In the works cited, addressed to electrical engineers, the viewpoint of Middleton and van Meter
was that of the Neyman{Pearson and Wald decision theories. At about the same time, Herbert
Simon expounded the Neyman{Pearson viewpoint to economists. The writer collaborated with
David Middleton for a short time while he was writing his large work, and tried to persuade him of
the superiority of the straight Bayesian approach to decision theory. The success of the e�ort may
be judged by comparing Middleton's Chapter 18 { particularly its length { with our exposition. It
seems that persons with orthodox training had received such strong anti{Bayesian indoctrination
that we were in an in�nite regress situation; although they could not deny the results that Bayesians
got on any speci�c problem, they could never believe that Bayesian methods would work on the
next problem until that next solution was also presented to them.

The Classical Matched Filter A funny thing happened in the history of this subject. In the
1930's, Electrical Engineers knew nothing whatsoever about probability theory; they knew about
signal to noise ratios. Receiver input circuits were designed for many years on the basis that signal
to noise ratio was maximized by empirical trial and error. Then a general theoretical result was
found: if you take the ratio of (peak signal) 2 to mean square noise, and �nd, as a variational
principle, the design of input stages of the receiver which will maximize it, this turned out to have
an analytically neat and useful solution. It is now called the classical matched �lter, and it has
been discovered independently by dozens of people.

To the best of our knowledge, the �rst person to derive this matched �lter solution was the late
Professor W. W. Hansen of Stanford University. The writer was working with him, beginning in
May 1942, on problems of radar detection. Shortly before then, Hansen had circulated a little mem-
orandum dated 1941, in which he gave this solution for the design of the optimum response curve for
the receiver �rst stage. Years later I was thinking about an entirely di�erent problem (an optimum
antenna pattern for a radar system to maximize the ratio (signal)=(ground clutter response) , and
when I �nally got the solution, I recognized it as the same result that Bill Hansen had shown me
many years before. This theory is considered later, under \Optimum Antenna and Filter Design."

Throughout the 1950's, almost every time one opened a journal concerned with these problems,
somebody else had a paper announcing the discovery of the same solution. The situation was
satirized in a famous editorial by Peter Elias (1958), entitled \Three Famous Papers". He suggested
that it was high time that people stopped rediscovering the easiest solution, and started to think
about the many harder problems still in need of solution.

But also, in the 1950's people got more sophisticated about the way they handled their detec-
tion problems, and they started using this wonderful new tool, statistical decision theory, to see if
there were still better ways of handling these design problems. The strange thing happened that in
the case of a linear system with gaussian noise, the optimum solution which decision theory leads



1412 14: The Widget Problem 1412

you to, turns out to be exactly the same old classical matched �lter. At �rst glance, it was very
surprising that two approaches so entirely di�erent conceptually should lead to the same solution.
But, note that our robot represents a viewpoint from which it is obvious that the two lines of
argument would have to give the same result.

To our robot it is obvious that the best analysis you can make of the problem will always be
one in which you calculate the probabilities that the various signals are present by means of Bayes'
theorem (but to those with orthodox training this was not obvious; it was vehemently denied). But
let us apply Bayes' theorem in the Logarithmic form of Chapter 4. If we now let S0 and S1 stand
for numerical values giving the amplitude of two possible signals, as a function of V the evidence

for S1 is increased by

log
p(V jS1)
p(V jS0)

=
(V � S0)

2 � (V � S1)
2

2h�2i = const. +
(S1 � S0)

h�2i V : (14{43)

In the case of a linear system with gaussian noise, the observed voltage is itself just a linear
function of the posterior probability measured in db . So, they are essentially just two di�erent
ways of formulating the same problem. Without recognizing it, we had essentially solved this
problem already in the Bayesian hypothesis testing discussion of Chapter 4.

In England, P. M. Woodword had perceived much of this correctly in the 1940's { but he
was many years ahead of his time. Those with conventional statistical training were unable to see
any merit in his work, and simply ignored it. His book (Woodword, 1953) is highly recommended
reading; although it does not solve any of our current problems, its thinking is still in advance of
some current literature and practice.

We have seen that the other non{Bayesian approaches to the theory all amounted to di�erent
philosophies of how you choose the threshold at which you change your decision. Because of the
fact that they all lead to the same probability ratio test, they must necessarily all be derivable from
Bayes' theorem.

The problem just examined by several di�erent decision criteria is, of course, the simplest pos-
sible one. In a more realistic problem we will observe the voltage V (t) as a function time, perhaps
several voltages V1(t); V2(t); � � � in several di�erent channels. We may have many di�erent possible
signals Sa(t); Sb(t); � � � to distinguish and corresponding many possible decisions. We may need to
decide not only whether a given signal is present, but also to make the best estimates of one or more
signal parameters (such as intensity, starting time, frequency, phase, rate of frequency modulation,
etc.). Therefore, just as in the problem of quality control discussed in Chapter 4, the details can
become arbitrarily complicated. But these extension are, from the Bayesian viewpoint, straight-
forward in that they require no new principles beyond those already given, only mathematical
generalization.

We shall return to some of these more complicated problems of detection and �ltering when we
take up frequency/shape estimation; but for now let's look at another elementary kind of decision
problem. In the ones just discussed, we needed Bayes' theorem, but not maximum entropy. Now
we examine a kind of decision problem where we need maximum entropy, but not Bayes' theorem.

The Widget Problem

This problem was �rst propounded at a symposium held at Purdue University in November, 1960 {
at which time, however, the full solution was not known. This was worked out later (Jaynes,
1963c), and some numerical approximations were improved in the computer work of Tribus and
Fitts (1968).

The widget problem has proved to be interesting in more respects than originally realized.
It is a decision problem in which there is no occasion to use Bayes' theorem, because no \new"
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information is acquired. Thus it would be termed a \no data" decision problem in the sense of
Cherno� and Moses (1959). However, at successive stages of the problem we have more and more
prior information; and digesting it by maximum entropy leads to a sequence of prior probability
assignments, which lead to di�erent decisions. Thus it is an example of the \pure" use of maxi-
mum entropy, as in statistical mechanics. It is hard to see how the problem could be formulated
mathematically at all without use of maximum entropy, or some other device [like the method of
Darwin & Fowler (1928) in Statistical Mechanics, or the `method of the most probable distribution'
dating back to Boltzmann (1871)] which turns out in the end to be mathematically equivalent to
maximum entropy.

The problem is interesting also in that we can see a continuous gradation from decision prob-
lems so simple that common sense tells us the answer instantly with no need for any mathematical
theory, through problems more and more involved so that common sense has more and more di�-
culty in making a decision, until �nally we reach a point where nobody has yet claimed to be able
to see the right decision intuitively, and we require the mathematics to tell us what to do.

Finally, it turns out to be very close to an important real problem faced by oil prospectors.
The details of the real problem are shrouded in proprietary caution; but it is not giving away any
secrets to report that, a few years ago, the writer spent a week at the research laboratories of one of
our large oil companies, lecturing for over 20 hours on the widget problem. We went through every
part of the calculation in excruciating detail { with a room full of engineers armed with calculators,
checking up on every stage of the numerical work.

Here is the problem: Mr. A is in charge of a Widget factory, which proudly advertises that it
can make delivery in 24 hours on any size order. This, of course, is not really true, and Mr. A's
job is to protect, as best he can, the Advertising Manager's reputation for veracity. This means
that each morning he must decide whether the day's run of 200 widgets will be painted red, yellow
or green. (For complex technological reasons, not relevant to the present problem, only one color
can be produced per day.) We follow his problem of decision through several stages of increasing
knowledge.

Stage 1. When he arrives at work, Mr. A checks with the stock room and �nds that they now
have in stock 100 red widgets, 150 yellow, and 50 green. His ignorance lies in the fact that he
does not know how many orders for each type will come in during the day. Clearly, in this state of
ignorance, Mr. A will attach the highest signi�cance to any tiny scrap of information about orders
likely to come in today; and if no such scraps are to be had, we do not envy Mr. A his job. Still,
if a decision must be made here and now on no more information that this, his common sense will
probably tell him that he had better build up that stock of green widgets.

Stage 2. Mr. A, feeling the need for more information, calls up the front o�ce and asks, \Can
you give me some idea of how many orders for red, yellow, and green widgets are likely to come in
today?" They reply, \Well, we don't have the breakdown of what has been happening each day,
and it would take us a week to compile that information from our �les. But we do have a summary
of the total sales last year. Over the last year, we sold a total of 13,000 red, 26,000 yellow, and
2600 green. Figuring 260 working days, this means that last year we sold an average of 50 red, 100
yellow, and 10 green each day." If Mr. A ponders this new information for a few seconds I think
he will change his mind, and decide to make yellow ones today.

Stage 3. The man in the front o�ce calls Mr. A back and says, \It just occurred to me that we
do have a little more information that might possibly help you. We have at hand not only the total
number of widgets sold last year, but also the total number of orders we processed. Last year we
got a total of 173 orders for red, 2600 for yellow, and 130 for green. This means that the customers
who use red widgets order, on the average, 13000/173 = 75 widgets per order, while the average
order for yellow and green were 26000/2600=10, and 2600/130=20 respectively." These new data
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do not change the expected daily demand; but if Mr. A is very shrewd and ponders it very hard, I
think he may change his mind again, and decide to make red ones today.

Stage 4. Mr. A is just about to give the order to make red widgets when the front o�ce calls
him again to say, \We just got word that a messenger is on his way here with an emergency order
for 40 green widgets." Now, what should he do? Up to this point, Mr. A's decision problem has
been simple enough so that reasonably good common sense will tell him what to do. But now, he
is in trouble; qualitative common sense is just not powerful enough to solve his problem, and he
needs a mathematical theory to determine a de�nite optimum decision.

Let's summarize all the above data in a table:

Table 14.1 Summary of Four stages of the Widget Problem

R Y G Decision
1. In stock 100 150 50 G
2. Avg. Daily Order Total 50 100 10 Y
3. Avg. Individual Order 75 10 20 R
4. Speci�c Order 40 ?

In the last column we give the decision that seemed intuitively to be the best ones before we had
worked out the mathematics. Do other people agree with this intuitive judgment? Professor Myron
Tribus has put this to a test by giving talks about this problem, and taking votes from the audience
before the solution is given. We quote his �ndings as given in their paper (M. Tribus and G. Fitts,
1968). They use D1; D2; D3; D4 to stand for the optimum decisions in stages 1, 2, 3, 4 respectively:

\Before taking up the formal solution, it may be reported that Jaynes' widget problem has been
presented to many gatherings of engineers who have been asked to vote on D1; D2; D3; D4 . There
is almost unanimous agreement about D1 . There is about 85 percent agreement on D2 . There
is about 70 percent agreement on D3 , and almost no agreement on D4 . One conclusion stands
out from these informal tests; the average engineer has remarkably good intuition in problems of
this kind. The majority vote for D1; D2; and D3 has always been in agreement with the formal
mathematical solution. However, there has been almost universal disagreement over how to defend
the intuitive solution. That is, while many engineers could agree on the best course of action, they
were much less in agreement on why that course was the best one."

Solution For Stage 2

Now, how are we to set up this problem mathematically? In a real life situation, evidently, the
problem would be a little more complicated than indicated so far, because what Mr. A does today
also a�ects how serious his problem will be tomorrow. That would get us into the subject of
dynamic programming. But for now, just to keep the problem simple, we shall solve only the
truncated problem in which he makes decisions on a day to day basis with no thought of tomorrow.

We have just to carry out the steps enumerated under \General Decision Theory" at the end
of the last Chapter. Since Stage 1 is almost too trivial to work with, consider the problem of Stage
2. First, we de�ne our underlying hypothesis space by enumerating the possible \states of nature"
�j that we will consider. These correspond to all possible order situations that could arise; if Mr. A
knew in advance exactly how many red, yellow, and green widgets would be ordered today, his
decision problem would be trivial. Let n1 = 0; 1; 2; : : : be the number of red widgets that will be
ordered today, and similarly n2 , n3 for yellow and green respectively. Then any conceivable order
situation is given by specifying three non{negative integers fn1; n2; n3g . Conversely, every ordered
triple of non{negative integers represents a conceivable order situation.
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Next, we are to assign prior probabilities p(�j jX) = p(n1n2n3jX) to the states of nature,
which maximize the entropy of the distribution subject to the constraints of our prior knowledge.
We solved this problem in general in Chapter 11, Equations (11{27){(11{35); and so we just have
to translate the result into our present notation. The index i on xi in Chapter 11 now corresponds
to the three integers n1; n2; n3 ; the function fk(xi) also corresponds to the ni , since the prior
information at this stage will be used to �x the expectations hn1i; hn2i; hn3i of orders for red,
yellow, and green widgets as 50, 100, 10 respectively. With three constraints we will have three
Lagrange multipliers �1; �2; �3 , and the partition function (11{31) becomes

Z(�1; �2; �3) =

1X
n1=0

1X
n2=0

1X
n3=0

exp(��1n1 � �2n2 � �3n3) =

3Y
i=1

(1� e
��j )�1: (14{44)

The �i are determined from (11{32):

hnii = � @

@�i
logZ =

�
1

e�i � 1

�
:

The maximum entropy probability assignment (11{28) for the states of nature �j = fn1n2n3g
therefore factors:

p(n1n2n3) = p1(n1)p2(n2)p3(n3) (14{46)

with

pi(ni) = (1� e
��i)e��ini ; ni = 1; 2; 3 : : :

=
1

hnii+ 1

� hnii
hnii+ 1

�ni
:

(14{47)

Thus in Stage 2, Mr. A's state of knowledge about today's orders is given by three exponential
distributions:

p1(n1) =
1

51

�
50

51

�n1
; p2(n2) =

1

101

�
100

101

�n2
; p3(n3) =

1

11

�
10

11

�n3
: (14{48)

Applications of Bayes' theorem to digest new evidence E is absent because there is no new evidence.
Therefore, the decision must be made directly from the prior probabilities (14{48), as is always the
case in statistical mechanics.

So, we now proceed to enumerate the possible decisions. These are D1 � make red ones
today, D2 � make yellow ones, D3 � make green ones, for which we are to introduce a loss
function L(Di; �j) . Mr. A's judgment is that there is no loss if all orders are �lled today; otherwise
the loss will be proportional to { and in view of the invariance of the decision rule under proper
linear transformations that we noted at the end of Chapter 13, we may as well take it equal to { the
total number of un�lled orders.

The present stock of red, yellow, and green widgets is S1 = 100 , S2 = 150 , S3 = 50 respec-
tively. On decision D1 (make red widgets) the available stock S1 will be increased by the day's
run of 200 widgets, and the loss will be

L(D1;n1n2n3) = g(n1 � S1 � 200) + g(n2 � S2) + g(n3 � S3) (14{49)

where g(x) is the ramp function
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g(x) �
(
x; x � 0

0; x � 0
: (14{50)

Likewise, on decisions D2 , D3 the loss will be

L(D2;n1n2n3) = g(n1 � S1) + g(n2 � S2 � 200) + g(n3 � S3); (14{51)

L(D3;n1n2n3) = g(n1 � S1) + g(n2 � S2) + g(n3 � S3 � 200): (14{52)

So, if decision D1 is made, the expected loss will be

hLi1 =
X
Ni

p(n1n2n3)L(D1;n1n2n3)

=

1X
n1=0

p1(n1)g(n1 � S1 � 200) +

1X
n2=0

p2(n2)g(n2 � S2) +

1X
n3=0

p3(n3)g(n3 � S3)

and similarly for D2 , D3 . The summations are elementary, giving

hLi1 = hn1ie��1(S1+200) + hn2ie��2S2 + hn3ie��3S3 ;
hLi2 = hn1ie��1S1 + hn2ie��2(S2+200) + hn3ie��3S3 ;
hLi3 = hn1ie��1S1 + hn2ie��2S2 + hn3ie��3(S3+200)

(14{54)

or, inserting numerical values

hLi1 = 0:131 + 22:48 + 0:085 = 22:70

hLi2 = 6:902 + 3:073 + 0:085 = 10:6

hLi3 = 6:902 + 22:48 + 4� 10�10 = 39:38

(14{55)

showing a strong preference for decision D2 � \make yellow ones today," as common sense had
already anticipated.

Physicists will recognize that Stage 2 of Mr. A's decision problem is mathematically the same
as the theory of harmonic oscillators in quantum statistical mechanics. There is still another
engineering application of the harmonic oscillator equations, in some problems of message encoding,
to be noted when we take up communication theory. We are trying to emphasize the generality of
this theory, which is mathematically quite old and well known, but which has been applied in the
past only in some specialized problems in physics. This general applicability can be seen only after
we are emancipated from the orthodox view that all probability distributions must be interpreted
in the frequency sense.

Solution For Stage 3

In Stage 3 of Mr. A's problem we have some additional pieces of information given the average
individual orders for red, yellow, and green widgets. To take account of this new information, we
need to go down into a deeper hypothesis space; set up a more detailed enumeration of the states of
nature in which we take into account not only the total orders for each type, but also the breakdown
into individual orders. We could have done this also in Stage 2, but since at that stage there was
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no information available bearing on this breakdown, it would have added nothing to the problem
(the subtle di�erence that this makes after all will be noted later).

In Stage 3, a possible state of nature can be described as follows. We receive u1 individual
orders for 1 red widget each, u2 orders for 2 red widgets each, : : : ; ur individual orders for r red
widgets each. Also, we receive vy orders for y yellow widgets each, and wg orders for g green
widgets each. Thus a state of nature is speci�ed by an in�nite number of non-negative integers

� = fu1u2 : : : ; v1v2 : : : ;w1w2 : : :g (14{56)

and conversely every such set of integers represents a conceivable state of nature, to which we assign
a probability p(u1u2 : : : ; v1v2 : : : ;w1w2 : : :) .

Today's total demands for red, yellow and green widgets are, respectively

n1 =

1X
r=1

rur; n2 =

1X
y=1

yvy ; n3 =

1X
g=1

gwg ;

the expectations of which were given in Stage 2 as hn1i = 50 , hn2i = 100 , hn3i = 10 . The total
number of individual orders for red, yellow, and green widgets are respectively

m1 =
1X
r=1

ur; m2 =
1X
y=1

vy ; m3 =
1X
g=1

wg ;

and the new feature of Stage 3 is that hm1i , hm2i , hm3i are also known. For example, the
statement that the average individual order for red widgets is 75 means that hn1i = 75hm1i .

With six average values given, we will have six Lagrange multipliers f�1�1;�2�2;�3�3g . The
maximum entropy probability assignment will have the form

p(u1u2 : : : ; v1v2 : : : ;w1w2 : : :) = exp(��0 � �1n1 � �1m1 � �2n2 � �2m2 � �3n3 � �3m3)

which factors:

p(u1u2 : : : ; v1v2 : : : ;w1w2 : : :) = p1(u1u2 : : :)p2(v1v2 : : :)p3(w1w2 : : :) : (14{59)

The partition function also factors:

Z = Z1(�1�1)Z2(�2�2)Z(�3�3) (14{60)

with

Z1(�1�1) =

1X
u1=1

1X
u2=1

� � �exp[��1(u1 + 2u2 + 3u3 + : : :)� �1(u1 + u2 + u3 + : : :)]

=

1Y
r=1

1

1� e�r�1��

(14{61)

and similar expressions for Z2 , Z3 . To �nd �1 , �1 we apply the general rule, Eq. (10{32):

hn1i =
@

@�1

1X
r=1

log(1� e
�r�1��1 ) =

1X
r=1

r

er�1+�1 � 1
; (14{62)
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hm1i =
@

@�1

1X
r=1

log(1� e
�r�1��1) =

1X
r=1

1

er�1+�1 � 1
: (14{63)

Combining with Eqs. (14{57), (14{58), we see that

huri =
1

er�1+�1 � 1
(14{64)

and now the secret is out { stage 3 of Mr. A's decision problem is just the theory of the ideal
Bose{Einstein gas in quantum statistical mechanics!

If we treat the ideal Bose{Einstein gas by the method of the Gibbs grand canonical ensemble,
we obtain just these equations, in which the number r corresponds to the r 'th single{particle
energy level, ur to the number of particles in the r 'th state, �1 and �1 to the temperature and
chemical potential.

In the present problem it is clear that for all r , huri � 1 , and that huri cannot decrease
appreciably below hu1i until r is of the order of 75, the average individual order. Therefore,
�1 will be numerically large, and �1 numerically small, compared to unity. This means that the
series (14{62), (14{63) converge very slowly and are useless for numerical work unless you write a
computer program to do it. However, we can do it analytically if we transform them into rapidly
converging sums as follows:

1X
r=1

1

e�r+� � 1
=

1X
r=1

1X
n=1

e
�n(�r+�) =

1X
n=1

e
�n�

1� e�n�
: (14{65)

The �rst term is already an excellent approximation. Similarly,

1X
r=1

r

e�r+� � 1
=

1X
n=1

e
�n(�r+�)

(1� e�n�)2
(14{66)

and so (14{62) and (14{63) become

hn1i =
e
��1

�
2
1

(14{67)

hm1i =
e
��1

�1
(14{68)

�1 =
hm1i1
hn1i

=
1

75
= 0:0133; (14{69)

e
�1 =

hn1i1
hm1i

= 112:5; (14{70)

�1 = 4:722: (14{71)

Tribus and Fitts, evaluating the sums by computer, get �1 = 0:0131 , �1 = 4:727 ; so our approxi-
mations (14{67), (14{68) are very good, at least in the case of red widgets.

The probability that ur has a particular value is, from (14{59) or (14{61),

p(ur) = (1� e
�r�1��)e(�r�1+�1)ur (14{72)
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which has the mean value (14{64) and the variance

var(ur) = hu2ri � huri2 =
e
r�1+�1

er�1+�1 � 1
: (14{73)

The total demand for red widgets

n1 =
1X
r=1

rur (14{74)

is expressed as the sum of a large number of independent terms. The pdf for n1 will have the
mean value (14{67) and the variance

var(n1) =

1X
r=1

r
2var(ur) =

1X
r=1

r
2
e
r�1+�1

(er�1+�1 � 1)2
(14{75)

which we convert into the rapidly convergent sum

1X
r;n=1

nr
2
e
�n(r�+�) =

1X
n=1

n
e
�n(�+�) + e

�n(2�+�)

(1� e�n�)3
(14{76)

or, approximately

var(n1) =
2e��1

�31

=
2

�1
hn1i: (14{77)

At this point we can use some mathematical facts concerning the Central Limit Theorem. Because
n1 is the sum of a large number of small terms to which we have assigned independent probabilities,
our probability distribution for n1 will be very nearly gaussian:

p(n1) � A exp

�
��1(n1 � hn1i)2

4hn1i

�
(14{78)

for those values of n1 which can arise in many di�erent ways. For example, the case n = 2 can
arise in only two ways: u1 = 2 , or u2 = 1 , all others uk being zero. On the other hand, the case
n1 = 150 can arise in an enormous number of di�erent ways, and the \smoothing" mechanism of
the central limit theorem can operate. Thus, Eq. (14{78) will be a good approximation for the
large values of n1 of interest to us, but not for small n1 .

Then how accurately can Mr. A predict today's orders n1 for red widgets? The (mean) �
(standard deviation) estimate from (14{78) is

(n1)est = hn1i �
s

2hn1i
�1

= 50� 86:6 (14{79)

It was apparent from the start that his information is too meager to determine n1 to any accuracy;
yet the distribution does place a useful upper bound on the probable value. But this is a case where
the probability distribution is so broad and skewed that the (mean) � (standard deviation) is not
a good criterion. The quartiles of (14{78) would tell us something more useful.
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CHAPTER 15

PARADOXES OF PROBABILITY THEORY

\I protest against the use of in�nite magnitude as something accomplished, which

is never permissible in mathematics. In�nity is merely a �gure of speech, the

true meaning being a limit."

| C. F. Gauss

The term \paradox" appears to have several di�erent common meanings. Sz�ekely (1986)
de�nes a paradox as anything which is true but surprising. By that de�nition, every scienti�c fact
and every mathematical theorem quali�es as a paradox for someone. We use the term in almost
the opposite sense; something which is absurd or logically contradictory, but which appears at �rst
glance to be the result of sound reasoning. Not only in probability theory, but in all mathematics,
it is the careless use of in�nite sets, and of in�nite and in�nitesimal quantities, that generates most
paradoxes.

In our usage, there is no sharp distinction between a paradox and an error. A paradox is
simply an error out of control; i.e. one that has trapped so many unwary minds that it has gone
public, become institutionalized in our literature, and taught as truth. It might seem incredible
that such a thing could happen in an ostensibly mathematical �eld; yet we can understand the
psychological mechanism behind it.

How do Paradoxes Survive and Grow?

As we stress repeatedly, from a false proposition { or from a fallacious argument that leads to a
false proposition { all propositions, true and false, may be deduced. But this is just the danger; if
fallacious reasoning always led to absurd conclusions, it would be found out at once and corrected.
But once an easy, short{cut mode of reasoning has led to a few correct results, almost everybody
accepts it; those who try to warn against it are not listened to.

When a fallacy reaches this stage it takes on a life of its own, and develops very e�ective
defenses for self{preservation in the face of all criticisms. Mathematicians of the stature of Henri
Poincar�e and Hermann Weyl tried repeatedly to warn against the kind of reasoning used in in�nite
set theory, with zero success. For details, see Appendix B and Kline (1980). The writer was also
guilty of this failure to heed warnings for many years, until absurd results that could no longer be
ignored �nally forced him to see the error in an easy mode of reasoning.

To remove a paradox from probability theory will require, at the very least, detailed analysis
of the result and the reasoning that leads to it, showing that:

(1) The result is indeed absurd.

(2) The reasoning leading to it violates the rules of inference developed in Chapter 2.

(3) When one obeys those rules, the paradox disappears and we have a reasonable result.

There are too many paradoxes contaminating the current literature for us to analyze separately.
Therefore we seek here to study a few representative examples in some depth, in the hope that the
reader will then be on the alert for the kind of reasoning which leads to them.
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Summing a Series the Easy Way

As a kind of introduction to fallacious reasoning with in�nite sets, we recall an old parlor game by
which you can prove that any given in�nite series S =

P
i ai converges to any number x that your

victim chooses. The sum of the �rst n terms is sn = a1 + a2 + : : :+ an. Then, de�ning s0 � 0, we
have

an = (sn � x) � (sn�1 � x) ; 1 � n <1

so that the series becomes

S = (s1 � x) + (s2 � x) + (s3 � x) + : : :

� (s0 � x)� (s1 � x)� (s2 � x)� : : :
(15{1)

The terms (s1 � x); (s2 � x); : : : all cancel out, so the sum of the series is

S = �(s0 � x) = x QED: (15{2)

The reader for whom this reasoning appears at �rst glance to be valid has a great deal of company,
and is urged to study this example carefully. Such fallacious arguments are avoided if we follow
this advice, repeated from Chapter 2:

Apply the ordinary processes of arithmetic and analysis only to expressions with a �nite

number n of terms. Then after the calculation is done, observe how the resulting �nite

expressions behave as the parameter n increases inde�nitely.

Put more succinctly, passage to a limit should always be the last operation, not the �rst. In case of
doubt, this is the only safe way to proceed. Our present theory of convergence of in�nite series could
never have been achieved if its founders { Abel, Cauchy, d'Alembert, Dirichlet, Gauss, Weierstrasz,
and others { had not followed this advice meticulously. In pre{Bourbakist mathematics (such as
Whittaker and Watson, 1927) this policy was considered so obvious that there was no need to stress
it. The results thus obtained have never been found defective.

Had we followed this advice above, we would not have tried to cancel out an in�nite number
of terms in a single stroke; we would have found that at any �nite (n'th) stage, instead of the
si's cancelling out and one x remaining, the x's would have cancelled out and the last s remains,
leading to the correct summation of the series.

Yet today, reasoning essentially equivalent to what we did in (15{1) is found repeatedly where
in�nite sets are used in probability theory. As an example, we examine another of the consequences
of ignoring this advice, which has grown into far more than a parlor game.

Nonconglomerability

If (C1 � � �Cn) denote a �nite set of mutually exclusive, exhaustive propositions on prior information
I , then for any proposition A the sum and product rules of probability theory give

P (AjI) =
nX
i=1

P (ACijI) =
nX
i=1

P (AjCiI)P (CijI) (15{3)

in which the prior probability P (AjI) is written as a weighted average of the conditional probabilities
P (AjCiI). Now it is a very elementary theorem that a weighted average of a set of real numbers
cannot lie outside the range spanned by those numbers; if
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L � P (AjCiI) � U ; (1 � i � n) (15{4)

then necessarily

L � P (AjI) � U ; (15{5)

a property which de Finetti (1972) called \conglomerability" or more precisely, \conglomerability
in the partition fCig", although it may seem too trivial to deserve a name. Obviously, noncon-
glomerability cannot arise from a correct application of the rules of probability theory on �nite
sets. It cannot, therefore occur in an in�nite set which is approached as a well{de�ned limit of a
sequence of �nite sets.

Yet nonconglomerability has become a minor industry, with a large and growing literature.
There are writers who believe that it is a real phenomenon, and that they are proving theorems
about the circumstances in which it occurs, which are important for the foundations of probability
theory. Nonconglomerability has become, quite literally, institutionalized in our literature and
taught as truth.

In spite of its mathematical triviality, then, we need to examine some cases where noncon-
glomerability has been claimed. Rather than trying to cite all of this vast literature, we draw upon
a single recent reference (Kadane, Schervish, & Seidenfeld, 1986), hereafter denoted by KSS, where
several examples and references to other work may be found.

Example 1: Rectangular Array : First we note the typical way in which nonconglomerability is
manufactured, and the illustrative example most often cited. We start from a two-dimensional
(M �N) set of probabilities:

p(i; j); 1 � i �M; 1 � j � N (15{6)

and think of i plotted horizontally, j vertically so that the sample space is a rectangular array of
MN points in the �rst quadrant. It will su�ce to take some prior information I for which these
probabilities are uniform: p(i; j) = (1=MN). Then the probability of the event (A : i < j) is found
by direct counting to be:

P (AjI) =
(
(2N �M � 1)=2N; M � N

(N � 1)=2M; N �M

)
(15{7)

Let us resolve this in the manner of (15{3), into probabilities conditional on the set of propositions
(C1 � � �CM), where Ci is the statement that we are on the i 'th column of the array: then P (CijI) =
(1=M) and

P (AjCiI) =

8><
>:
(N � i)=N; 1 � i �M � N

(N � i)=N; 1 � i � N �M

0; N � i �M

9>=
>; : (15{8)

These conditional probabilities reach the upper and lower bounds

U = (N � 1)=N; all M;N

L =

(
1�R; M � N

0; N �M

)
;

(15{9)
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where R denotes the ratio R = M=N . Substituting (15{7) and (15{9) into (15{5), it is evident that
the condition for conglomerability is always satis�ed, as it must be, whatever the values of (M;N).
How, then can one possibly create a nonconglomerability out of this?

Just pass to the limit M !1; N !1, and ask for the probabilities P (AjCiI) for i = 1; 2; � � �.
But instead of examining the limiting form of (15{8), which gives the exact values for all (M;N),
we try to evaluate these probabilities directly on the in�nite set.

Then it is argued that, for any given i, there are an in�nite number of points where A is true
and only a �nite number where it is false. Ergo, the conditional probability P (AjCiI) = 1 for all i;
yet P (AjI) < 1. We see here the same kind of reasoning that we used in (15{1); we are trying to
carry out very simple arithmetic operations (counting), but directly on an in�nite set.

Now consider the set of propositions (D1; : : : ; DN), where Dj is the statement that we are on
the j'th row of the array, counting from the bottom. Now, by the same argument, for any given j,
there are an in�nite number of points where A is false, and only a �nite number where A is true.
Ergo the conditional probability P (AjDjI) = 0 for all j; yet P (AjI) > 0. By this reasoning, we
have produced two nonconglomerabilities, in opposite directions, from the same model (i.e., the
same in�nite set).

But it is even more marvelous than that. In (15{7) it is true that if we pass to the limit holding
i �xed, the conditional probability P (AjCiB) tends to 1 for all i; but if instead we hold (N � i)
�xed, it tends to 0 for all i. Therefore, if we consider the cases (i = 1; i = 2; :::) in increasing order,
the probabilities P (AjCiB) appear to be 1 for all i. But it is equally valid to consider them in
decreasing order (i = N; i = N � 1; : : :); and then by the same reasoning they would appear to
be 0 for all i. [Note that we could rede�ne the labels by subtracting N + 1 from each one, thus
numbering them (i = �N; : : : ; i = �1) so that as N !1 the upper indices stay �xed; this would
have no e�ect on the validity of the reasoning.]

Thus to produce two opposite nonconglomerabilities we need not introduce two di�erent par-
titions fCig; fDjg; they can be produced by two equally valid arguments from a single partition.
What produces them is that one supposes the in�nite limit already accomplished before doing the
arithmetic, reversing the policy of Gauss which we recommended above. But if we follow that
policy and do the arithmetic �rst, then an arbitrary rede�nition of the labels fig has no e�ect; the
counting for any N is the same.

Once one has understood the fallacy in (15{1), then whenever someone claims to have proved
some result by carrying out arithmetic or analytical operations directly on an in�nite set, it is hard
to shake o� a feeling that he could have proved the opposite just as easily and by an equally sound
argument, had he wished to. Thus there is no reason to be surprised by what we have just found.

Suppose that instead we had done the calculation by obeying our rules strictly, doing �rst
the arithmetic operations on �nite sets to obtain the exact solution (15{7); then passing to the
limit. However the in�nite limit is approached, the conditional probabilities take on values in a
wide interval whose lower bound is 0 or 1�R, and whose upper bound tends to 1. The condition
(15{4) is always satis�ed, and a nonconglomerability could never have been found.

The reasoning leading to this nonconglomerability contains another fallacy. Clearly, one cannot
claim to have produced a nonconglomerability on the in�nite set until the `unconditional' probability
P (AjI) has also been calculated on that set, not merely bounded by a verbal argument. But as M
and N increase, from (15{7) the limiting P (AjI) depends only on the ratio R = M=N :

P (AjI)!
(
1� R=2; R � 1

1=(2R); R � 1

)
: (15{10)
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If we pass to the in�nite limit without specifying the limiting ratio, the unconditional probability
P (AjI) becomes indeterminate; we can get any value in [0; 1] depending on how the limit is ap-
proached. Put di�erently, the ratio R contains all the information relevant to the probability of
A; yet it was thrown away in passing to the limit too soon. The unconditional probability P (AjI)
could not have been evaluated directly on the in�nite set, any more than could the conditional
probabilities.

Thus nonconglomerability on a rectangular array, far from being a phenomenon of probability
theory, is only an artifact of failure to obey the rules of probability theory as developed in Chapter 2.
But from studying a single example we cannot see the common feature underlying all claims of
nonconglomerability.

Strong Inconsistency

We now examine a claim that nonconglomerability can occur even in a one{dimensional in�nite set
n ! 1 where there does not appear to be any limiting ratio like the above M=N to be ignored.
Also we now consider a problem of inference, instead of the above sampling distribution example.
The scenario has been called the \Strong Inconsistency Problem" (Stone, 1970). We follow the
KSS notation for the time being { until we see why we must not.

A regular tetrahedron with faces labelled e+ (positron), e� (electron), �+ (muon), �� (anti-
muon), is tossed repeatedly. A record is kept of the result of each toss, except that whenever a
record contains e+ followed immediately by e� (or e� by e+, or �+ by ��, or �� by �+), the
particles annihilate each other, erasing that pair from the record. At some arbitrary point in the
sequence the player (who is ignorant of what has happened to date) calls for one more toss, and
then is shown the �nal record x 2 X , after which he must place bets on the truth of the proposition
A � \Annihilation occurred at the �nal toss". What probability P (Ajx) should he assign?

When we try to answer this by application of probability theory, we come up immediately
against the di�culty that in the problem as stated, the solution depends on a nuisance parameter,
the unspeci�ed length n of the original sequence of tosses. This was pointed out by B. Hill (1980),
but KSS take no note of it. In fact. they do not mention n at all except by implication, in a passing
remark that the die is \rolled a very large number of times." We infer that they meant the limit
n!1, from later phrases such as `the countable set S' and `every �nite subset of S'.

In other words, once again an in�nite set is supposed to be something already accomplished,
and one is trying to �nd relations between probabilities by reasoning directly on the in�nite set.
Nonconglomerability enters through asking whether the prior probability P (A) is conglomerable in
the partition x, corresponding to the equation

P (A) =
X
x�X

P (Ajx)P (x): (15{11)

KSS denote by � � S the record just before the �nal toss (thought of as a `parameter' not known by
the player), where S is the set of all possible such records, and conclude by verbal arguments that:

(a) 0 � p(Aj�) � 1=4 ; all ��S

(b) 3=4 � p(Ajx) � 1 ; all x�X:

It appears that another violent nonconglomerability has been produced; for if P (A) is conglomerable
in the partition fxg of �nal records, it must be true that 3=4 � P (A) � 1, while if it is conglomerable
in the partition f�g of previous records, we require 0 � P (A) � 1=4; it cannot be conglomerable in
both. So where is the error this time?

We accept statement (a); indeed, given the independence of di�erent tosses, knowing anything
whatsoever about the earlier tosses gives us no information about the �nal one, so the uniform prior
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assignment 1/4 for the four possible results of the �nal toss still holds. Therefore, p(Aj�) = 1=4
except when the record � is blank, in which case there is nothing to annihilate, and so p(Aj�) = 0.
But this argument does not hold for statement (b); since the result of the �nal toss a�ects the �nal
record x, it follows that knowing x must give some information about the �nal toss, invalidating
the uniform 1/4 assignment.

Also, the argument that KSS gave for statement (b) supposed prior information di�erent from
that used for statement (a). This was concealed from view by the notation p(Aj�); p(Ajx) which
fails to indicate prior information I . Let us repeat (15{11) with adequate notation:

P (AjI) =
X
x�X

P (AjxI)P (xjI): (15{12)

Now as I varies, all these quantities will in general vary. By `conglomerability' we mean, of course,
`conglomerability with some particular �xed prior information I . Recognizing this, we repeat state-
ments (a) and (b) in a notation adequate to show this di�erence:

(a) 0 � p(Aj�; Ia) � 1=4 ; � 2 S

(b) 3=4 � p(Ajx; Ib) � 1 ; x 2 X

From reading KSS we �nd that prior information Ia, in e�ect, assigned uniform probabilities on the
set T of 4n possible tosses, as is appropriate for the case of `independent repetitions of a random
experiment' assumed in the statement of the problem. But Ib assigned uniform probabilities on the
set S of di�erent previous records �. This is very di�erent; an element of S (or X) may correspond
to one element of T ; or to many millions of elements of T , so a probability assignment uniform on
the set of tosses is very nonuniform on the set of records. Therefore it is not evident whether there
is any contradiction here; they are statements about two quite di�erent problems.

Exercise 15.1 In n = 40 tosses there are 4n = 1:21� 1024 possible sequences of results in the
set T . Show that, if those tosses give the expected number m = 10 of annihilations leading to a
record x 2 X of length 20, the speci�c record x corresponds to about 1014 elements of T . On
the other hand, if there are no annihilations, the resulting record x of length 40 corresponds to
only one element of T .

Perhaps this makes clearer the reason for our seemingly fanatical insistence on indicating the
prior information I explicitly in every formal probability symbol P (AjBI). Those who fail to do
this may be able to get along without disaster for a while, judging the meaning of an equation from
the surrounding context rather than from the equation as written. But eventually they are sure to
�nd themselves writing nonsense, when they start inadvertently using probabilities conditional on
di�erent prior information in the same equation or the same argument; and their notation conceals
that fact. We shall see presently a more famous and more serious error (the Marginalization
Paradox) caused by failure to indicate the fact that two probabilities are conditional on di�erent
prior information.

To show the crucial role that n plays in the problem, let I agree with Ia in assigning equal
prior probabilities to each of the 4n outcomes of n tosses. Then if n is known, calculations of
p(AjnI), p(xjnI), p(AjnxI) are determinate combinatorial problems on �nite sets (i.e. in each case
there is one and only one correct answer), and the solutions obviously depend on n. So let us try
to calculate P (AjxI); denoting summation over all n in (0 � n < 1) by �, we have for the prior
probabilities
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p(AjI) = � p(AnjI) = � p(AjnI) p(njI)
p(xjI) = � p(xnjI) = � p(xjnI) p(njI) (15{13)

and for the conditional one

p(AjxI) = � p(AjnxI) p(njxI) = � p(AjnxI) p(xjnI) p(njI)
� p(xjnI) p(njI) (15{14)

where we expanded p(njxI) by Bayes' theorem. It is evident that the problem is indeterminate until
the prior probabilities p(njI) are assigned. Quite generally, failure to specify the prior information
makes a problem of inference just as ill{posed as does failure to specify the data.

Passage to in�nite n then corresponds to taking the limit of prior probabilities p(njI) that are
nonzero only for larger and larger n. Evidently, this can be done in many di�erent ways, and the
�nal results will depend on which limiting process we use unless p(AjnI), p(xjnI), p(AjnxI) all
approach limits independent of n.

The number of di�erent possible records x is less than 4n (asymptotically, about 3n) because
many di�erent outcomes with annihilation may produce the same �nal record, as the above exercise
shows. Therefore for any n < 1 there is a �nite set X of di�erent possible �nal records x, and
a fortiori a �nite set S of previous records �, so the prior probability of �nal annihilation can be
written in either of the forms:

p(AjnI) =
X
x�X

p(AjxnI) p(xjnI) =
X
��S

p(Aj�nI) p(�jnI) (15{15)

and the general theorem on weighted averages guarantees that nonconglomerability cannot occur
in either partition for any �nite n, or for an in�nite set generated as the limit of a sequence of these
�nite sets.

A few things about the actual range of variability of the conditional probabilities p(AjnxI)
can be seen at once without any calculation. For any n, there are possible records of length n for
which we know that no annihilation occurred; the lower bound is always reached for some x, and
it is p(AjnxI) = 0, not 3=4. The lower bound in statement (b) could never have been found for
any prior information, had the in�nite set been approached as a limit of a sequence of �nite sets.
Furthermore, for any even n there are possible records of length zero for which we know that the
�nal toss was annihilated; the upper bound is always reached for some x and it is p(AjnxI) = 1.

Likewise, for even n it is not possible for � to be blank, so from (15{15) we have p(AjnI) =
p(Aj�nI) = 1=4 for all ��S. Therefore, if n is even, there is no need to invoke even the weighted
average theorem; there is no possibility for nonconglomerability in either the partition fxg or f�g.

At this point it is clear that the issue of nonconglomerability is disposed of in the same way
as in our �rst example; it is an artifact of trying to calculate probabilities directly on an in�nite
set without considering any limit from a �nite set. Then it is not surprising that KSS never found
any speci�c answer to their original question: \What we can infer about �nal annihilation from
the �nal record x?" But we would still like to see the answer (particularly since it reveals an even
more startling consequence of jumping directly into the in�nite set).

The Solution for Finite Number of Tosses

If n is known, we can get the exact analytical solution easily from valid application of our rules. It
is a straightforward Bayesian inference in which we are asking only for the posterior probability of
�nal annihilation A. But this enables us to simplify the problem; there is no need to draw inferences
about every detail of the previous record �.
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If there is annihilation at the n'th toss, then the length of the record decreases by one: y(n) =
y(n � 1) � 1. If there is no annihilation at the n'th toss, the length increases by one: y(n) =
y(n� 1) + 1. The only exception is that y(n) is not permitted to become negative; if y(n� 1) = 0
then the n'th toss cannot give annihilation. Therefore, since the available record x tells us the
length y(n) but not y(n� 1), any reasoning about �nal annihilation may be replaced immediately
by reasoning about � � y(n� 1), which is the sole parameter needed in the problem.

Likewise, any permutations of the symbols fe�; ��g in x(n) which keep the same y(n) will
lead to just the same inferences about A. But then n and y � y(n) are su�cient statistics; all
other details of the record x are irrelevant to the question being asked. Thus the scenario of the
tetrahedrons is more complicated than it needs to be in order to de�ne the mathematical problem
(in fact, so complicated that it seems to have prevented recognition that it is a standard textbook
random walk problem).

At each (n'th) toss we have the sampling probability 1/4 of annihilating, independently of what
happened earlier (with a trivial exception if y(n� 1) = 0). Therefore if we plot n horizontally, y(n)
vertically, we have the simplest random walk problem in one dimension, with a perfectly reecting
boundary on the horizontal axis y = 0. At each horizontal step, if y > 0 there is probability 3/4 of
moving up one unit, 1/4 of moving down one unit; if y = 0, we can move only up. Starting with
y(0) = 0, annihilation cannot occur on step 1, and immediately after the n'th step, if there have
been m annihilations, the length of the record is y(n) = n� 2m.

After the n'th step we have a prior probability distribution for y(n) to have the value i:

p
(n)
i � p(ijnI) ; 0 � i � n (15{16)

with the initial vector

p
(0)

i =

0
BB@
1
0
0
...

1
CCA (15{17)

and successive distributions are connected by the Markov chain relation

p
(n)
i =

n�1X
j=0

Mij p
(n�1)
j ;

0 � i � n

1 � n <1 (15{18)

with the transition matrix (number the rows and columns starting with zero):

M �

0
BBBBBB@

0 1=4 0 0 0 : : :

1 0 1=4 0 0 : : :

0 3=4 0 1=4 0 : : :

0 0 3=4 0 1=4 : : :

0 0 0 3=4 0 : : :
...

...
...

...
...

. . .

1
CCCCCCA

(15{19)

The reecting boundary at y = 0 is indicated by the element M10 = 1, which would be 3/4 without
the reection.

The matrix M is in principle in�nite dimensional, but for the n'th step only the �rst n + 1

rows and columns are needed. The vector p(n) is also in principle in�nite dimensional, but p(n)i = 0

when i > n. Then the exact solution for the prior probabilities p
(n)
i is the �rst column of Mn:
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p
(n)
i = Mn

i;0 (15{20)

[note that this is intended to represent (Mn)i;0, not (Mi;0)
n]. The short computer program RAND-

WALK in Appendix I prints out this solution.

Now let us see how this prior is to be used in our Bayesian inference problem. Denote the data
and the hypothesis being tested by

D � \y(n) = i" ; H � \y(n� 1) = �" ;

which are the only parts of the data x and the parameter � that are relevant to our problem. From
the above their prior probabilities are

p(DjI) = Mn
i;0; p(H jI) = Mn�1

�;0 (15{21)

The sampling distribution is

p(DjH; I) =
(
3=4 �(i; �+ 1) + 1=4 �(i; �� 1) ;

�(i; 1) ;

� > 0

� = 0

)
(15{22)

So Bayes' theorem gives the posterior probability for �:

p(H jD; I) = p(H jI) p(DjH; I)
p(DjI) =

Mn�1
�;0

Mn
i;0

(
3=4 �(i; �+ 1) + 1=4 �(i; �� 1) ;

�(i; 1) ;

� > 0

� = 0

)
(15{23)

Now �nal annihilation A occurs if and only if � = i+ 1, so the exact solution for �nite n is

p(AjD; n; I) = Mn�1
i+1;0

4Mn
i;0

(15{24)

in which i = y(n) is a su�cient statistic. Another way of writing this is to note that the denominator
of (15{24) is

4Mn
i:0 = 4

X
j

Mi;j M
n�1
j;0 = 3Mn�1

i�1;0 +Mn�1
i+1;0

and so the posterior odds on A are

o(AjDnI) � p(AjxnI)
p(AjxnI) =

1

3

Mn�1
i+1;0

Mn�1
i�1;0

; (15{25)

and it would appear, from their remarks, that the exact solution to the problem that KSS had in
mind is the limit of (15{24) or (15{25) as n!1.

This solution for �nite n is complicated because of the reecting boundary. Without it, the
aforementioned matrix element M1;0 would be 3/4 and the problem would reduce to the simplest
of all random walk problems. That solution gives us a very good approximation to (15{24), which
actually yields the exact solution to our problem in the limit. Let us examine this alternative
formulation because its �nal result is very simple and the derivation is instructive about a point
that is not evident from the above exact solution.

The problem where at each step there is probability p to move up one unit, q = 1� p to move
down one unit, is de�ned by the recursion relation in which f(ijn) is the probability to move a total
distance i in n steps:
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f(ijn+ 1) = p f(i� 1jn) + q f(i+ 1jn) (15{26)

With initial conditions f(ijn = 0) = �(i; 0), the standard textbook solution is the binomial for r
successes in n trials; f0(ijn) = b(rjn; p) with r = (n+i)=2. In our problem we know that on the �rst
step we necessarily move up: y(1) = 1, so our initial conditions are f(ijn = 1) = �(i; 1), and using
the binomial recursion (15{26) after that the solution would be f(ijn) = f0(i�1jn�1) = b(rjn�1; p)
with again r = (n+ i)=2.

But with p = 3=4, this is not exactly the same as (15{18) because it neglects the reecting
boundary. If too many `failures' (i.e., annihilations) occur early in the sequence, this could reduce
the length of the record to zero, forcing the upward probability for the next step to be 1 rather
than 3/4; and (15{18) is taking all that into account. Put di�erently, in the solution to (15{26),
when n is small some probability drifts into the region y < 0; but if p = 3=4 the amount is almost
negligibly small and it all returns eventually to y > 0.

But when n is very large the solution drifts arbitrarily far away from the reecting boundary,
putting practically all the probability into the region (�pn < y�ŷ < p

n) where ŷ � (p�q)n = n=2,
so conclusions drawn from (15{26) become highly accurate (in the limit, exact).

The sampling distribution (15{22) is unchanged, but we need binomial approximations to the
priors for i and �. The latter is the length of the record after n�1 steps, or tosses. No annihilation
is possible at the �rst toss, so after n � 1 tosses we know that there were n � 2 tosses at which
annihilation could have occurred, with probability 1/4 at each, so the prior probability for m
annihilations in the �rst n� 1 tosses is the binomial b(mjn� 2; 1=4):

f(m) � p(mjn) =
�
n � 2

m

� �
1

4

�m �
3

4

�n�2�m
; 0 � m � n � 2 (15{27)

Then the prior probability for �, replacing the numerator in (15{25), is

p(�jn) = f

�
n � 1� �

2

�
(15{28)

from which we �nd the prior expectation E(�jI) = n=2. Likewise in the denominator we want the
prior for y(n) = i. This is just (15{28) with the replacements n� 1! n; �! i.

Given y, the possible values of � are � = y� 1, so the posterior odds on �nal annihilation are,
writing m � (n� y)=2,

o =
p(Ajy; n)
p(Ajy; n) =

p(� = y + 1jy; n)
p(� = y � 1jy; n) =

1
4
� �n�2

m�1

� �
1
4

�m�1 �3
4

�n�1�m
3
4
� �n�2

m

� �
1
4

�m �
3
4

�n�2�m : (15{29)

But, at �rst sight astonishing, the factors (1/4), (3/4) cancel out, so the result depends only on
the factorials:

o =
m! (n� 2�m)!

(m� 1)! (n� 1�m)!
=

n� y

n� 2 + y
(15{30)

and the posterior probability of �nal annihilation reduces simply to

p(Ajy; n) = o

1 + o
=

n� y

2(n� 1)
; (15{31)

which does not bear any resemblance to any of the solutions proposed by those who tried to solve
the problem by reasoning directly on in�nite sets. The sampling probabilities p = 3=4, q = 1=4
that �gured so prominently in previous discussions, do not appear at all in this solution.
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But now think about it: Given n and y(n), we know that annihilation might have occurred
in any of n � 1 tosses, but that in fact it did occur in exactly (n � y)=2 tosses. But we have no
information about which tosses, so the posterior probability for annihilation at the �nal toss (or at
any toss after the �rst) is, of course,

n� y

2(n� 1)
: (15{32)

We derived (15{31) directly from the principles of probability theory by a rather long calculation;
but with a modicum of intuitive understanding of the problem, we could have reasoned it out in
our heads without any calculation at all!

In Fig. 15.1 we compare the exact solution (15{24) with the asymptotic solution (15{31). The
di�erence is negligible numerically when n > 20.

But then, why did so many people think the answer should be 1/4? Perhaps it helps to note that
the prior expectation for y is E(yjI) = (n+ 1)=2, so the predictive probability of �nal annihilation
is

p(AjnI) = n� E(yjI)
2(n� 1)

=
1

4
: (15{33)

Then the posterior probability of �nal annihilation is indeed 1/4, if the observed record length y is

the expected value. Quite generally in probability theory, if our new information is only what we
already expected, that does not change any of our estimates; it only makes us more con�dent of
them. But if y is observed to be di�erent from its prior expectation, this tells us the actual number

of annihilations, and of course this information takes precedence over whatever initial probability
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assignments (1/4, 3/4) we might have made. That is why they cancelled out in the posterior odds.y

In spite of our initial surprise, then, Bayes' theorem is doing exactly the right thing here; and the
exact solution of the problem originally posed is given also by the limit of (15{32) as n!1:

p(AjxI) = 1

2
(1� z) (15{34)

where z � lim y(n)=n.

In summary, the common feature of these two claims of nonconglomerability is now apparent.
In the �rst scenario, there was no mention of the existence of the �nite numbers M; N whose ratio
M=N is the crucial quantity on which the solution depends. In the second scenario, essentially the
same thing was done; failure to introduce the length n of the sequence { and, incredibly, even the
length y(n) of the observed record { likewise causes one to lose the crucial thing (in this case, the
su�cient statistic y=n) on which the solution depends. In both cases, by supposing the in�nite
limit as something already accomplished at the start, one is throwing away the very information

required to �nd the solution.

This has been a very long discussion, but it is hard to imagine a more instructive lesson in
how and why one must carry out probability calculations where in�nite sets are involved, or a more
horrible example of what can happen if we fail to heed the advice of Gauss.

Finite vs. Countable Additivity

At this point, the reader will be puzzled and asking, \Why should anybody care about noncon-
glomerabiity? What di�erence does it make?" Nonconglomerability is, indeed, of little interest in
itself; it is only a kind of red herring that conceals the real issue. A follower of de Finetti would
say that the underlying issue is the technical one of �nite additivity. To which we would reply that
`�nite additivity' is also a red herring, because it is used for a purpose almost the opposite of what
it sounds like.

In Chapter 2 we derived the sum rule (2{64) for mutually exclusive propositions: if as a
statement of Boolean algebra, A � A1 + A2 + : : : + An is a disjunction of a �nite number of
mutually exclusive propositions, then

p(AjC) =
nX
i=1

p(AijC)

Then it is a trivial remark that our probabilities have \�nite additivity". As n! 1 it seems rather
innocuous to suppose that the sum rule goes in the limit into a sum over a countable number of
terms, forming a convergent series; whereupon our probabilities would be called countably additive.
Indeed (although we do not see how it could happen in a real problem), if this should ever fail to
yield a convergent series we would conclude that the in�nite limit does not make sense, and we
would refuse to pass to the limit at all. In our formulation of probability theory, it is di�cult to
see how one could make any substantive issue out of this perfectly straightforward situation.

However, the conventional formulations, reversing our policy, suppose the in�nite limit already
accomplished at the beginning, before such questions as additivity are raised; and then are con-
cerned with additivity over propositions about intervals on in�nite sets. To quote Feller (1971, p.
107):

Let F be a function assigning to each interval I a �nite value FfIg. Such a function
is called (�nitely) additive if for every partition of an interval I into �nitely many non-
overlapping intervals I1; : : : ; In; FfIg = FfI1g+ : : :+ FfIng:

y This cancellation is the thing that is not evident at all in the exact solution (15{24), although it is still

taking place out of sight.
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Then (p. 108) he gives an example showing why he wishes to replace �nite additivity by countable
additivity:

In R1 put FfIg = 0 for any interval I = (a; b) with b <1 and FfIg = 1 when I = (a;1).
This interval function is additive but weird because it violates the natural continuity
requirement that Ff(a; b)g should tend to Ff(a;1)g as b!1.

This last example shows the desirability of strengthening the requirement of �nite
additivity. We shall say that an interval function F is countably additive, or �-additive, if

for every partitioning of an interval I into countably many intervals I1; In; : : : ;

FfIg = �FfIkg.
Then he adds that the condition of countable additivity is \manifestly violated" in the above weird
example (let it be an exercise for the reader to explain clearly why this is manifest).

What is happening in that weird example? Surely, the weirdness does not lie in lack of conti-
nuity (since continuity is quite unnecessary in any event), but in something far worse. Supposing
those intervals occupied by some variable x and the interval function FfIg to be the probability
p(x�I), one is assigning zero probability to any �nite range of x, but unit probability to the in�nite
range. This is almost impossible to comprehend when we suppose the in�nite interval already
accomplished, but we can understand what is happening if we heed the advice of Gauss and think
in terms of passage to a limit. Suppose we have a properly normalized pdf :

p(xjr) =
(
1=r;

0

0 � x < r

r � x <1

)
(15{35)

As long as 0 < r <1 there is nothing strange, and we could describe this by an interval function

F (a; b) �
Z b

a

p(xjr) dx =

8><
>:
(b� a)=r;

(r� a)=r;

0;

0 � a � b � r <1
0 � a � r � b <1
0 � r � a � b <1

9>=
>; (15{36)

which is, rather trivially, countably additive and a fortiori �nitely additive. As r increases, the
density function becomes smaller and spread over a wider interval; but as long as r < 1 we have
a well{de�ned and non{paradoxical mathematical situation.

But if we try to describe the limit of p(xjr) as something already accomplished before discussing
additivity, then we have created Feller's weird example. We are trying to make a probability density
that is everywhere zero, but which integrates to unity. But there is no such thing, according not
only to all the warnings of classical mathematicians from Gauss on, but according to our own
elementary common sense.

Invoking �nite additivity is a sneaky way of approaching the real issue. To see why the kind of
additivity matters in the conventional formulation, let us note what happens when one carries out
the order of operations corresponding to our advice above. We assign a continuous monotonic in-
creasing cumulative probability function G(x) on the real line, with the natural continuity property
that

G(x)!
(
1; x! +1
0; x! �1

)
(15{37)

then the interval function F for the interval I = (a; b) may be taken as FfIg = G(b)� G(a), and
it is `manifest' that this interval function is countably additive in the sense de�ned. That is, we
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can choose xk satisfying a < x1 < x2 < : : : < b so as to break the interval (a; b) into as many
nonoverlapping subintervals fI0; I1; : : : ; Ing = f(a; x1); (x1; x2); : : : (xn; b)g as we please, and it
will be true that FfIg =PFfIkg. If G(x) is di�erentiable, then its derivative f(x) � G0(x) may
be interpreted as a normalized probability density:

R
f(x) dx = 1.

We see, �nally, what the point of all this is: \�nite additivity" is a euphemism for \reversing
the proper order of approaching limits, and thereby getting into trouble with non{normalizable
probability distributions". Feller saw this instantly, warned the reader against it, and proceeded
to develop his own theory in a way that avoids the many useless and unnecessary paradoxes that
arise from it.y

As we saw in Chapter 6, passage to the limit r!1 at the end of a calculation can yield useful
results; some other probability derived from p(xjr) might approach a de�nite, �nite, and simple
limiting value. We have now seen that trying to pass to the limit at the beginning of a calculation
can generate nonsense because crucial information is lost before we have a chance to use it.

The real issue here is: do we admit such things as uniform probability distributions on in�nite
sets into probability theory as legitimate mathematical objects? Do we believe that an in�nite
number of zeroes can add up to one? In the strange language in which these things are discussed,
to advocate `�nite additivity' as de Finetti and his followers do, is a devious way of answering `yes'
without seeming to do so. To advocate `countable additivity' as Kolmogorov and Feller did, is an
equally devious way to answer `no' in the spirit of Gauss.

The terms are red herrings because `�nite additivity' sounds colloquially as if were a cautious
assumption, `countable additivity' a bit more adventurous. de Finetti does indeed seem to think
that �nite additivity is the weaker assumption; and he rails against those who, as he sees it, are
intellectually dishonest when they invoke countable additivity only for \mathematical convenience",
instead of for a compelling reason. As we see it, jumping directly into an in�nite set at the very
beginning of a problem is a vastly greater error of judgment, which has far worse consequences for
probability theory; there is a little more than just `mathematical convenience' at stake here.

We noted the same psychological phenomenon in Chapter 3, when we introduced the binomial
distribution for sampling with replacement; those who commit the sin of throwing away relevant
information, invented the term `randomization' to conceal that fact and make it sound like they
were doing something respectable. Those who commit the sin of doing reckless, irresponsible things
with in�nity often invoke the term `�nite additivity' to make it sound as if they are being more

careful than others with their mathematics.

The Borel{Kolmogorov Paradox

For the most part, the transition from discrete to continuous probabilities is uneventful, proceeding
in the obvious way with no surprises. However, there is one tricky point concerning continuous
densities that is not at all obvious, but can lead to erroneous calculations unless we understand it.
The following example continues to trap many unwary minds.

Suppose I is prior information according to which (x; y) are assigned a bivariate normal pdf
with variance unity and correlation coe�cient �:

p(dx dyjI) =
p
1� �2

2�
exp

�
� 1

2
(x2 + y2 � 2�xy)

�
dx dy (15{38)

y Since we disagree with Feller so often on conceptual issues, we are glad to be able to agree with him

on nearly all technical ones. He was, after all, a very great contributor to the technical means for solving

sampling theory problems, and practically everything he did is useful to us in our wider endeavors.
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We can integrate out either x or y to obtain the marginal pdf 's [to prepare for integrating out x,
write x2 + y2 � 2�xy = (x� �y)2 + (1� �2) y2, etc.]:

p(dxjI) =
�
1� �2

2�

�1=2

exp

�
�1

2
(1� �2) x2

�
dx (15{39)

p(dyjI) =
�
1� �2

2�

�1=2

exp

�
�1

2
(1� �2) y2

�
dy (15{40)

Thus far, all is routine. But now, what is the conditional pdf for x, given that y = y0? We might
think that we need only set y = y0 in (15{38) and renormalize:

p(dxjy = y0; I) = A exp

�
�1

2
(x2 + y20 � 2�xy0)

�
dx (15{41)

where A is a normalizing constant. But there is no guarantee that this is valid, because we have
obtained (15{41) by an intuitive ad hoc device; we did not derive it from (15{38) by applying the
basic rules of probability theory, which we derived in Chapter 2 for the discrete case:

p(ABjX) = p(AjBX) p(BjX) (15{42)

from which a discrete conditional probability is given by the usual rule

p(AjBX) =
p(ABjX)

p(BjX)
(15{43)

often taken as the de�nition of a conditional probability. But we can do the calculation by strict
application of our rules if we de�ne the discrete propositions:

A � \x in dx"

B � \y in (y0 < y < y0 + dy)"

Then we should write instead of (15{41), using (15{38) and (15{40),

p(AjBI) = p(dxjdy I) = p(dx dyjI)
p(dyjI) =

1p
2�

exp

�
�1

2
(x� �y0)

2

�
dx (15{44)

Since dy cancels out, taking the limit dy ! 0 does nothing.

Now on working out the normalizing constant in (15{41) we �nd that (15{41) and (15{44) are
in fact identical. So, why all this agony? Didn't the quick argument leading to (15{41) give us the
right answer?

This is a good example of our opening remarks that a fallacious argument may lead to correct
or incorrect results. The reasoning that led us to (15{41) happened to give a correct result here; but
it can equally well yield any result we please instead of (15{41). It depends on the particular form
in which you or I choose to write our equations. To show this, and therefore generate a paradox,
suppose that we had used instead of (x; y) the variables (x; u), where

u � y

f(x)
(15{45)
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with 0 < f(x) <1 [for example, f(x) = 1 + x2 or f(x) = cosh x, etc.]. The Jacobian is

@(x; u)

@(x; y)
=

�
@u

@y

�
x

=
1

f(x)
(15{46)

so the pdf (15{38), expressed in the new variables, is

p(dx dujI) =
p
1� �2

2�
exp

�
�1

2
(x2 + u2f2(x)� 2�uf(x))

�
f(x)dx du : (15{47)

Again, we can integrate out u or x, leading to a marginal distribution p(dxjI) which is easily seen
to be identical with (15{39); and p(dujI) which is found to be identical with (15{40) transformed
to the variable u, as it should be; so far, so good.

But now, what is the conditional pdf for x, given that u = 0? If we follow the reasoning that
led us to (15{41) [i.e., simply set u = 0 in (15{47) and renormalize], we �nd

p(dxj u = 0; I) = A exp

�
�1

2
x2
�
f(x)dx (15{48)

Now from (15{45) the condition u = 0 is the same as y = 0; so it appears that this should be the
same as (15{41) with y0 = 0. But (15{48) di�ers from that by an extra factor f(x) which could be
arbitrary!

Many �nd this astonishing and unbelievable; they repeat over and over: \But the condition
u = 0 is exactly the same condition as y = 0; how can there be a di�erent result?" We warned
against this phenomenon briey, and perhaps too cryptically, in Chapter 4; but there it did not
actually cause error because we had only one parameter in the problem. Now we need to examine
it carefully to see the error and the solution.

We noted already in Chapter 1 that we shall make no attempt to de�ne any probability
conditional on contradictory premises; there could be no unique solution to such a problem. We
start each problem by de�ning a `sample space' or `hypothesis space' which sets forth the range of
conditions we shall consider in that problem. In the present problem our discrete hypotheses were
of the form `a � y � b', placing y in an interval of positive measure b � a. Then what could we
mean by the proposition \y = 0", which has measure zero? We could mean only the limit of some
sequence of propositions referring to positive measure, such as

A� � \jyj < �"

as � ! 0. The propositions A� con�ne the point (x; y) to successively narrower horizontal strips,
but for any � > 0, A� is a discrete proposition with a de�nite positive probability, so by the product
rule the conditional probability of any hypothesis H � \x 2 dx",

p(H jA� I) =
p(H;A�jI)
p(A�jI)

(15{49)

is well{de�ned, and the limit of this as �! 0 is also a well{de�ned quantity. Perhaps that limit is
what one meant by p(H jy = 0; I).y

y Note again what we belabor constantly: the rules of probability theory tell us unambiguously that it

is the limit of the ratio, not the ratio of the limits, that is to be taken in (15{49). The former quantity

remains �nite and well{behaved in conditions where the latter does not exist.
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But the proposition \y = 0" may be de�ned equally well as the limit of the sequence

B� � \jyj < �jxj"
of successively thinner wedges, and p(H jB�I) is also unambiguously de�ned as in (15{49) for all
� > 0. Yet although the sequences fA�g; fB�g tend to the same limit y = 0, the conditional
densities tend to di�erent limits:

lim p(H jA�) / g(x);

lim p(H jB�) / jxj g(x) (15{50)

and in place of jxj we could put an arbitrary non{negative function f(x). As we see from this, merely
to specify \y = 0" without any quali�cations is ambiguous; it tells us to pass to a measure{zero
limit, but does not tell us which of any number of limits is intended.

We have here one more example showing why the rules of inference derived in Chapter 2
must be obeyed strictly, in every detail . Intuitive shortcuts have a potential for disaster, which is
particularly dangerous just because of the fact that it strikes only intermittently. An intuitive ad

hockery that violates those rules will probably lead to a correct result in some cases; but it will
surely lead to disaster in others. Whenever we have a probability density on one space and we wish
to generate from it one on a subspace of measure zero, the only safe procedure is to pass to an
explicitly de�ned limit by a process like (15{49). In general, the �nal result will and must depend
on which limiting operation was speci�ed. This is extremely counter{intuitive at �rst hearing; yet
it becomes obvious when the reason for it is understood.

A famous puzzle based on this paradox concerns passing from the surface of a sphere to
a great circle on it. Given a uniform probability density over the surface area, what is the
corresponding conditional density on any great circle? Intuitively, everyone says immediately
that, from geometrical symmetry, it must be uniform also. But if we specify points by latitude
(��=2 � � � �=2) and longitude (�� < � � �), we do not seem to get this result. If that
great circle is the equator, de�ned by (j�j < �; � ! 0), we have the expected uniform distribution
[p(�) = (2�)�1; �� < � � �]; but if it is the meridian of Greenwich de�ned by (j�j < �; � ! 0),
we have [p(�) = (1=2) cos�; ��=2 � � � �=2] with density reaching a maximum on the equator
and zero at the poles.

Many quite futile arguments have raged { between otherwise competent probabilists { over
which of these results is `correct'. The writer has witnessed this more than once at professional
meetings of scientists and statisticians. Nearly everybody feels that he knows perfectly well what
a great circle is; so it is di�cult to get people to see that the term `great circle' is ambiguous until
we specify what limiting operation is to produce it. The intuitive symmetry argument presupposes
unconsciously the equatorial limit; yet one eating slices of an orange might presuppose the other.

The Marginalization Paradox

The `Strong Inconsistency' problem (Stone, 1970) ared up into an even more spectacular case
of probability theory gone crazy, with the work of Dawid, Stone, & Zidek (1973), hereafter de-
noted by DSZ, which for a time seemed to threaten the consistency of all probability theory. The
marginalization paradox is more complicated than the ones discussed above, because it arises not
from a single error, but from a combination of errors of logic and intuition, insidious because they
happened to support each other. When �rst propounded it seems to have fooled every expert in
the �eld, with the single exception of D. A. S. Fraser, who as discussant of the DSZ paper saw
that the conclusions were erroneous and put his �nger correctly on the cause of this; but was not
listened to.

The marginalization paradox also di�ers from the others in that it received the immediate,
enthusiastic endorsement of the Establishment, and therefore it has been able to do far more
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damage to the cause of Scienti�c Inference than any other; yet when properly understood, the
phenomenon has useful applications in Scienti�c Inference. Marginalization as a potentially useful
means of constructing uninformative priors is discussed incompletely in Jaynes (1980); this rather
deep subject still has the status of ongoing research, in which the main theorems are probably not
yet known.

In the present Chapter we are concerned with the marginalization story only as a weird episode
of history which forced us to revise some easy, shortcut inference procedures. We illustrate the
original paradox by the scenario of DSZ, again following their notation until we see why we must
not. It starts as a conventional, and seemingly harmless, nuisance parameter problem.

A conscientious Bayesian B1 studies a problem with data x � (x1 � � �xn) and a multidimen-
sional parameter � which he partitions into two components, � = (�; �), being interested only in
inferences about �. Thus his model is de�ned by some speci�ed sampling distribution p(xj��) sup-
posed given in the statement of the problem, and � is a nuisance parameter to be integrated out.
With a prior �(�; �), B1 thus obtains the marginal posterior pdf for �:

p(�jx) =
Z

p(�; �jx) d�=
R
p(xj�; �) �(�; �) d�R R
p(xj�; �) �(�; �) d�d� ; (15{51)

the standard result, which summarizes everything B1 knows about �. The issue now turns on what
class of priors �(�; �) we may assign for this purpose. Our answer is, of course:

\Any proper prior, or any limit of a sequence of such priors such that the ratio of integrals
in (15{51) converges to yield a proper posterior pdf for �, may be admitted into our theory
as representing a conceivable state of prior knowledge about the parameters. Eq. (15{51)
will then yield the correct conclusions that follow from that state of knowledge."

This need not be quali�ed by any special circumstances of the particular problem; we believe that
this policy, followed strictly, cannot generate ambiguities or contradictions. But failure to follow it
can lead to almost anything.

However, DSZ did not see it that way at all. They concentrate on a special circumstance,
noting that in many cases the data x may be partitioned into two components: x = (y; z) in such
a way that the sampling distribution for z is independent of the nuisance parameter �:

p(zj�; �) =
Z

p(y; zj�; �) dy = p(zj�) (15{52)

which, by itself, would appear rather generally possible, but without any very deep signi�cance.
For example, if � is a location parameter, then any function z(x) of the data that is invariant under
rigid translations will have a sampling distribution independent of �. If � is a scale parameter, then
any function z(x) invariant under scale changes will have this property. If � is a rotation angle,
then any component of the data that is invariant under those rotations will qualify.

DSZ proceed to discover cases in which, when (15{52) holds and B1 assigns an improper prior
to �, he �nds that his marginal posterior pdf for � \is a function of z only", which property they
write as

p(�jy; z) = p(�jz) : (15{53)

At this point there enters a lazy Bayesian B2, who \always arrives late on the scene of inference"
and the combination of (15{52) and (15{53) sets o� for him a curious train of thought. From
(15{53) as written it appears that the component y of the data can be discarded as irrelevant to
inferences about �. The appearance of (15{52) then suggests that � might also be removed from
the model as irrelevant. So he proposes to simplify the calculation; his intuitive judgment is that,
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given (15{52) and (15{53), we should be able to derive the marginal pdf for � more easily by direct
application of Bayes' theorem in a reduced model p(zj�) in which (y; �) do not appear at all. Thus
if B2 assigns the prior �(�), he obtains the posterior distribution

p(�jz) = p(zj�) �(�)R
p(zj�) �(�) d� : (15{54)

But he �nds to his dismay that he cannot reproduce B1's result (15{51) whatever prior he assigns
to �. What conclusions should we draw from this?

For DSZ, the reasoning of B2 seemed compelling; on grounds of this intuitive `reduction prin-
ciple' they considered it obvious that B1 and B2 ought to get the same results, and therefore that
one of them must be guilty of some transgression. They point the accusing �nger at B1 thus: \B2's
intervention has revealed the paradoxical unBayesianity of B1's posterior distribution for �". They
place the blame on his use of an improper prior for �.

For us, the situation appears very di�erent; B2's result was not derived by application of
our rules. Eq. (15{54) was only an intuitive guess; as the reader may verify, it does not follow
mathematically from (15{51), (15{52) and (15{53). Therefore (15{54) is not a valid application

of probability theory to B1's problem. If intuition suggests otherwise, then that intuition needs
educating { just as it did in the other paradoxes.

But already at this stage we are faced, not just with one confusion, but with three. The
notation used above conceals from view some crucial points:

(1) While the result (15{53) is \a function of z only" in the sense that y does not appear explicitly
in (15{53), it is a di�erent function of z for di�erent �{priors. That is, it is still a functional of
the �{prior, as is clear from a glance at (15{51); through this dependence, probability theory
is telling us that prior information about � still matters. As soon as we realize this, we see
that B2 comes to a di�erent conclusion than B1 not because B1 is committing a transgression,
but for just the opposite reason: B1 is taking into account relevant prior information that B2

is ignoring.

(2) But the real trouble starts farther back than that. We need to be aware that current orthodox
notation has a more basic ambiguity that makes the meaning of (15{52) and (15{53) unde�ned,
and this is corrected only by the notation introduced by Harold Je�reys (1939) and expounded
in our Chapter 2 and Appendix B. Thus, we understand that the symbol p(y; zj�; �) stands
for the joint probability (density) for y; z conditional on speci�c numerical values for the
two parameters �; � that are present in our model. But then what does p(zj�) stand for?
Presumably this is not intended to say that � has no numerical value at all!

Indeed, if he wished to refer to a di�erent model in which � is not present, the orthodoxian
would use the same notation p(zj�). So it seems that, strictly speaking, we should always
interpret the symbol p(zj�) as referring to that di�erent model. But that is not the intention
in (15{52); reference is being made to a model in which � is present, but the intention is to
say that the probability for z is independent of its numerical value. It seems that the only way
this could be expressed in orthodox notation is to rewrite (15{52) as

@

@�
p(zj�; �) = 0 : (15{52a)

(3) This ambiguity and still another one, is present in (15{53); here the intention is only to
indicate that p(�jy; z) is independent of the numerical value of y; but the symbol p(�jz),
strictly speaking, must be held to refer to a di�erent model in which the datum y was not
given at all. Now we have the additional ambiguity that any posterior probability depends
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necessarily on the prior information; yet the notation in (15{53) makes no reference to any
prior information.y We begin to see why marginalization was so confusing!

There is a better way of looking at this, which avoids all the above confusions while using the
mathematics that was intended by DSZ; we may take a more charitable view of B2 if we put these
equations in a di�erent scenario. He was introduced �rst merely as a lazy fellow who invents a
short{cut method that violates the rules of probability theory. But we may suppose equally well
that, through no fault of his own, he is only an uninformed fellow who was given only the reduced
model p(zj�) in which � is not present; and he is unaware of the existence of (�; y). Then (15{54)
is a valid inference for the di�erent state of knowledge that B2 has; and it is valid whether or not
the separation property (15{53) holds.z Although the equations are the same because we de�ned
B2's model by B1's marginal sampling distribution p(zj�), this avoids much confusion; viewed in
this way, B1 and B2 are both making valid inferences, but about two di�erent problems.

Now both of these new ambiguities arise from the fact that orthodox notation fails to indicate
which model is being considered. But both are corrected by including the prior information symbol
I , understood to be a proposition de�ned somewhere in the surrounding context, that includes full
speci�cation of the model. If we follow the example of Je�reys and write the right{hand sides of
(15{51) and (15{54) correctly as p(�jy; z; I1) and p(�jz; I2), thereby making this di�erence in the
problems clear, there can be no appearance of paradox. The prior information I1 speci�es the
full sampling distribution p(y; zj�; �), while I2 speci�es a model only by p(zj�), which makes no
reference to (�; y). That B1 and B2 came to di�erent conclusions from di�erent prior information
is no more strange than if they had come to di�erent conclusions from di�erent data.

Exercise 15.2. Consider the intermediate case of a third Bayesian B3, who has the same prior
information as B1 about �; � but is not given the data component y. Then y never appears in
B3's equations at all; his model is the marginal sampling distribution p(zj�; �; I3). Show that,
nevertheless, if (15{52) still holds [in the interpretation intended, as indicated by (15{52a)], then
B2 and B3 are always in agreement; p(�jz; I3) = p(�jz; I2); and to prove this it is not necessary
to appeal to (15{53). Merely withholding the datum y automatically makes any prior knowledge
about � irrelevant to inference about �. Ponder this until you can explain in words why it is,
after all, intuitively obvious.

On to Greater Disasters: Up to this point, we had only a misreading of equations through
inadequate notation; but now a comedy of mutually reinforcing errors commenced. In support

y Yet as we have stressed repeatedly, if you fail to specify the prior information, a problem of inference

is in principle just as ill{posed as if you had failed to specify the data. In practice, orthodoxy is able to

function in spite of this in some problems, by the tacit assumption that an uninformative prior is to be

used. Of course, the dedicated orthodoxian will deny vehemently that any such assumption is being made;

nevertheless it is a mathematical fact that in the simple problems (a su�cient statistic but no nuisance

parameters, etc.) where orthodox methods are usable, the orthodox conclusions are what a Bayesian would

obtain from an uninformative prior. This was demonstrated already by Je�reys (1939).
z The fact that (15{53) is not essential to the problem was not yet clearly seen in Jaynes (1980); the

marginalization problem was more subtle than any that Bayesians had faced up to that time. Because DSZ

laid so much stress on (15{53), we followed them in concentrating on �nding conditions for its validity.

Today, with another decade of hindsight, it is clear that there is in general no reason to expect (15{53) to

hold, so it loses its supposed importance. This deeper understanding enables us to �nd useful solutions to

current problems of inference far more subtle than marginalization, as demonstrated by Bretthorst (1988).

But the secret of success here is, as always, simply: absolutely strict adherence to the rules of conduct

derived in Chapter 2. As these paradoxes show, the slightest departure from them can generate gross

absurdities.
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of their contention that B1 is the guilty party, DSZ o�ered a proof that this paradox (i.e., the
discrepancy in the results of B1 and B2) \could not have arisen if B1 had employed proper prior
distributions". Let us examine their proof of this, still using their notation. With a general joint
proper prior �(�; �) the integrals in (15{51) are separately convergent and positive, so if we multiply
through by the denominator, we are neither multiplying nor dividing by zero. Then

p(xj�; �) = p(y; zj�; �) = p(yjz; �; �) p(zj�; �) = p(yjz; �; �) p(zj�) (15{55)

where we used the product rule and (15{52). Then (15{51) becomes

p(�jy; z)
Z Z

p(yjz; �; �) p(zj�) �(�; �) d�d� =
Z

p(yjz; �; �) p(zj�)�(�; �)d� (15{56)

But now we assume that (15{53) still holds; then we may [since the integrals are absolutely conver-
gent] integrate out y from both sides of (15{56), whereupon

R
�(�; �)d� = �(�) and (15{56) reduces

to

p(�jz)
Z
p(zj�)�(�) d� = p(zj�) �(�) (15{57)

which is identical with (15{54). DSZ concluded that, if B1 uses a proper prior, then B1 and B2

are necessarily in agreement { from which it would follow again, in agreement with their intuition,
that the paradox must be caused by B1's use of improper priors.

But this proof of (15{57) has used mutually contradictory assumptions. As Fraser recognized,
if B1 uses a proper prior, then in general (15{53) cannot be true and (15{57) does not follow; it is
no accident that DSZ had found (15{53) only with improper priors. This is easiest to see in terms
of a speci�c example, after which it will become obvious why it is true in general. In the following
we use the full notation of Je�reys so that we always distinguish between the two problems.

Example 1: The Change{Point Problem. Observations have been made of n successive,
independent, positive real, `exponentially distributed' [to use mind{projecting orthodox jargon]
quantities fx1 � � �xng. It is known (de�nition of the model) that the �rst � of these have expectations
1=� and the remaining n � � have expectations 1=(c�), where c is known and c 6= 1, while � and
� are unknown. From the data we want to estimate at what point in the sequence the change
occurred. The sampling density for x � (x1 � � �xn) is

p(xj�; �; I1) = cn�� �n exp

8<
:��

0
@ �X

i=1

xi + c

nX
i=�+1

xi

1
A
9=
; ; 1 � � � n (15{58)

If � = n, then there is no change, the last sum in (15{58) is absent, and c disappears from the model.
Since � is a scale parameter, the sampling distribution for ratios of observations zi � xi=x1 should
be independent of �. Indeed, separating the data x = (y; z) into y � x1 which sets the scale and the
ratios (z2 � � �zn) and noting that the volume element transforms as dx1 � � �dxn = yn�1dydz2 � � �dzn,
we �nd that the joint sampling distribution for z � (z2 � � �zn) depends only on �:

p(z2 � � �znj�; �; I1) =
Z
1

0

cn�� �n exp
��� y Q(�; z)�yn�1 dy = cn�� (n� 1)!

Q(�; z)n
= p(zj�; I1) (15{59)

where z1 � 1 and

Q(�; z) �
�X
1

zi + c

nX
�+1

zi (15{60)
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is a function that is known from the data. Let B1 choose a properly normalized discrete prior �(�)
in (1 � � � n), and independently a prior �(�) d� in (0 < � < 1). Then B1's marginal posterior
distribution for � is, from (15{58):

p(�jy; z; I1) / �(�) cn��
Z

1

0

exp(��yQ) �(�) �n d� (15{61)

and, from (15{59), B2's posterior pdf (15{54) for � is now

p(�jz; I2) / �(�) p(zj�) = �(�) c��

[Q(�; z)]n
(15{62)

which takes no note of �(�). But, as expected from the above discussion, not only does B1's
knowledge about � depend on both y and z; it depends just as strongly on what prior �(�) he
assigned to the nuisance parameter.

On meditation we see that a little common sense would have anticipated this result at once.
For if we know absolutely nothing about � except that it is positive, then the only evidence we can
have about the change point � must come from noting the relative values of the xi; for example, at
which i does the ratio xi=x1 appear to change? On the other hand, suppose that we knew � exactly;
then clearly not only the ratios xi=x1, but also the absolute values of the xi would be relevant to
inference about � [because then, whether xi is closer to 1=� or to 1=(c�) tells us something about
whether (i < �) or (i > �) that the ratio xi=x1 does not tell us], and this extra information would
enable us to make better estimates of �. If we had only partial prior knowledge of �, then knowledge
of the absolute values of the xi would be less helpful, but still relevant, so as Fraser noted, (15{53)
could not be valid.

But now B1 discovers that use of the improper prior

�(�) = ��k ; 0 < � <1 (15{63)

where k is any real number for which the integral (15{61) converges, leads to the separation property
(15{53), and to the posterior pdf

p(�jz; I1) /
�(�) c��

[Q(�; z)]n�k+1
(15{64)

which still depends, through k, on the prior assigned to �.We see that for no prior �(�) can B2

agree with B1, except when k = 1, in which case B2 and B1 �nd themselves in agreement after all,
and with the same prior �(�). But this result is not peculiar to the change{point model; it holds
quite generally, as the following Exercise shows.

Exercise 15.3. Prove that the k = 1 prior is always uninformative in this sense whenever � is
a scale parameter for y. That is, if the sampling distribution has the functional form

p(y; zj�; �) = ��1 h(z; �; y=�) ;

then (15{52) follows at once and B1 and B2 agree if and only if we use a prior �(�) / ��1.

It seems to us that this is an eminently satisfactory result without any trace of paradox. For the
case k = 1 is just the Je�reys prior, which we have already seen to be `completely uninformative'
about any scale parameter �, by several di�erent criteria. Then of course, with this prior B1 has
no extra information after all and they should, indeed, �nd themselves in agreement.

But again, DSZ did not see it that way at all, and persisted in their intuitive judgment that
there is a serious paradox and B1 was at fault for using an improper prior; so the story continues.
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DSZ proceed to exhibit many more examples in which this `paradox' appears { invariably when
an improper prior was used. The totality of all these demonstrations appeared to mount up into
overwhelming evidence that to use any improper prior is to generate inconsistencies. But, in the
belief that their proof of (15{57) had already dealt with it, they failed to examine what happens
in those examples in the case of proper priors, and so they managed to get through a long string
of examples without discovering the error in that proof.?

To correct this omission, and reveal the error in (15{57) clearly, we need only to examine
any of the DSZ examples, to see what happens in the case of proper priors �(�). In the change{
point problem, whatever this prior, B1's result (15{61) depends on y and z through a function of
the product yQ(�; z). Then for what functions f(yQ) will the separation property (15{53) hold?
Evidently, the necessary and su�cient condition for this is that y and � appear in separate factors:
in the case where the integrals in (15{51) converge, we require the integral to have the functional
form

Z
1

0

exp(��yQ) �(�) �n d� = f(yQ) = g(y; z) h(�; z) ; (15{65)

for then and only then will y cancel out upon normalization of p(�jy; z). The answer is obvious:
if a function of (log y + logQ(�)) has the form (log g(y) + log h(�)), the only possibility is a linear
function: log f(yQ) = a[log y + logQ] or f(yQ) = (yQ)a, where a(z; n) may depend on z and n.
But then, noting that the Laplace transform is uniquely invertible and that

Z
1

0

exp(��yQ) �a�1 d� = (a� 1)!

(yQ)a
(15{66)

we see that, contrary to assumption of DSZ, (15{53) cannot hold unless the prior is of the improper

form �(�) = ��k; 0 < � <1.

Exercise 15.4. Show that this result is also general; that is, not only in the change{point
problem, but in any problem like that of Exercise 15.3 where � is a scale parameter for y, a prior of
the form �(�) = ��k will lead to a factorization of the form

R
p(y; zj�; �) �(�)d� = g(y; z) h(�; z)

for some functions g; h, whereupon (15{53) will hold. For this reason, the many later examples
of DSZ are essentially repetitious; they are only making the same point over and over again.

Evidently, any value of k which makes the integral (15{65) converge will lead to a well{behaved
posterior distribution for �; but a still wider class of values of k may do so if the improper prior is
approached, as it should be, as the limit of a sequence of proper priors, as explained previously.

But use of a proper prior �(�) necessarily means that the separation property (15{53) cannot
hold. For example, choose the prior �(�)/ �a e�b�. Then (15{61) becomes

? Another reason for this was their tendency to write the priors in terms of the `wrong' parameters. Usually,

a model was de�ned initially with certain parameters �; � . The parameters �; � for which the relations

(5{52), (15{53) held were certain functions of them: � = �(�; �) , etc. But DSZ continued to write the

priors in terms of �; � , which made it seem that the Je�reys prior has no particular signi�cance; a wide

variety of di�erent priors appeared to `avoid the paradox' in various di�erent problems. In Jaynes (1980)

we showed that, had they transformed their parameters to the relevant ones �; � , they would have found

in every such case except one that � was a scale parameter for y and the `paradox' disappeared for and

only for the Je�reys prior �(�) . Thus Exercise (15.3) includes, in e�ect, all their examples except the

infamous Example #5, which requires separate treatment given below.
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p(�jy; z; I1) / �(�) c��

(b+ yQ)n+a+1
(15{67)

and as long as the prior is proper (that is, b > 0), the datum y cannot be disentangled, but remains
relevant; and so (15{53) does not hold, as we expected from (15{66). The `paradox' disappears,
not because B1 and B2 agree, but because B2 cannot invoke his `reduction principle' at all. Indeed,
in any of the DSZ examples, inserting any proper prior �(�) for which we can do the integrals will
yield an equally good counter{example to (15{57); how could this have gone undetected for years?
We note some of the circumstances that led to this.

Discussion

Some have denied that there is any such thing as `complete ignorance', much less any `completely
uninformative' prior. From their introductory remarks, it appears that to demonstrate this was the
original goal of DSZ, and several discussants continued to emphasize the point in agreement with
them. But their arguments were verbal, expressing only intuitive feelings; the mathematical facts
con�rm the sense of the idea of `complete ignorance' after all. The Je�reys prior is doing here what
we should naturally suppose an uninformative prior ought to do, and it does this quite generally
(whenever � is a scale parameter).

Technically, the concurrence of many di�erent results like that of Exercise (15.3) shows us
that the notion of complete ignorance is consistent and useful; the fact that the same Je�reys prior
emerges uniquely from many di�erent and independent lines of reasoning shows how impossible it
would be to modify it or abandon it. As is invariably the case in this �eld, past di�culties with
the ideas of Je�reys signi�ed not any defects in his ideas, but only misapplications of probability
theory by his critics.

Exercise (15.3) shows another sense in which our previous conclusion (that the prior d�=�
is uninformative about a scale parameter �) is quite literally true; not as an intuitive judgment,
but now as a de�nite theorem that follows from the rules of probability theory. Of course, our
ultimate goal is always to represent honestly the prior information that we actually have. But both
conceptually and mathematically, the notion of `complete ignorance' is a valid and necessary part
of this program, as the starting point from which all inference proceeds; just as the notion of zero
is a necessary part of arithmetic.

In the discussion following the DSZ paper, nobody noticed that there was a counter{example
to their proof of (15{57) already in plain sight in the DSZ article (their Example #5, where it is
evident by inspection that B1 and B2 remain in disagreement for all priors, proper or improper),
and only Fraser expressed any doubts about the DSZ conclusions. He noted that DSZ

\ - - - propose that the confusion can be avoided by a restriction to proper priors. This is
a strange proposal as a resolution of the di�culties|for it means in the interesting cases
that one cannot eliminate a variable, and hence cannot go to the marginal likelihood."

But it seems that these words were, like the prophecies of Nostradamus, too cryptic for anyone to
understand until he had �rst located the error for himself. Fraser's point { and ours above { is that
when B1 uses a proper prior, then in general B2's `reduction principle' cannot be applied because
(15{53) ceases to be true. In other words, when B1 uses proper priors, this never brings B1 and
B2 into agreement. In (15{65), (15{66) we have demonstrated that in the change point problem,
agreement of B1 and B2 requires that B1 uses an improper prior; just the opposite of the DSZ
conclusion.

It is evident, to one who has understood the above analysis, that the situation found in the
change{point problem is actually quite general. For, if one knew both y and �, that information
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must be relevant to the inference about � unless the sampling distributions are completely inde-
pendent; that is, unless p(y; zj�; �) = p(yj�) p(zj�). Except in this trivial case, if one knows y, any
partial information about � must still be relevant for inference about � (or, if one knew �, any
partial information about y would be relevant).

But common sense should have told us that any proper prior �(�) is necessarily informative
about �, for it determines de�nite upper and lower bounds within which � is almost certain to lie.
Seen in this way, Fraser's cryptic remark becomes intuitively obvious { and in full generality.

In any event, what happened was that nearly everybody accepted the DSZ conclusions uncrit-
ically, without careful examination of their argument. Anti{Bayesians, who very much wanted the
DSZ conclusion to be true, seized upon it eagerly as sounding the death{knell of all Bayesianity.
Under this pressure the prominent Bayesian D. V. Lindley broke down and confessed to sins of
which he was not guilty, and the Royal Society bestowed a warm vote of thanks upon DSZ for this
major contribution to our understanding of inference.

As a result, since 1973 a ood of articles has appeared, rejecting the use of improper priors
under any and all circumstances, on the grounds that they have been proved by DSZ to generate
inconsistencies. Incredibly, the fact that proper priors never `correct' the supposed inconsistencies
never came out in all this discussion. Thus the marginalization paradox became, like nonconglom-
erability, quite literally institutionalized in the literature of this �eld, and taught as truth. Scienti�c
Inference thus su�ered a setback from which it will require decades to recover.

Nobody noted that this same `paradox' had been found and interpreted correctly long before
by Harold Je�reys (1939, x3.8) in connection with estimating the correlation coe�cient � in a
bivariate normal distribution, in which the location parameters are the uninteresting nuisance
parameters. He gives two examples of B1's result, corresponding to di�erent prior information
about the nuisance parameters, in his equations (10) and (24), their di�erence indicating the e�ect
of that prior information. Then he gives B2's result in (28), the agreement with (24) indicating
that a uniform prior for the location parameters is uninformative about �.

This was seen again independently by Geisser & Corn�eld (1963) in connection with priors
for multivariate normal distributions. They perceived that the di�erence between the results of B1

and B2 [their equations (3.10) and (3.26)] was not a paradox, because B2's result was not a valid
solution to the problem; they termed it, very properly, a \pseudoposterior distribution." DSZ refer
to this work, but when faced with this discrepancy they still place more con�dence in the `reduction
principle' than in the rules of probability theory, and conclude that Geisser and Corn�eld \do not
appear to have noticed its signi�cance." So things that had been understood correctly many years
before, now became non{understood; thus do we make progress in this �eld.

In all these examples except one { that Example #5 again { an interesting phenomenon
occurred. While the paradox was present for general improper priors in some in�nite class C, there
was always one particular improper prior in that class for which the paradox disappeared; B1 and
B2 found themselves in agreement after all. DSZ noted this curious fact, but do not appear to have
noticed its signi�cance. We suggest that this was by far the most important fact unearthed in all
the marginalization work.

Any prior �(�) which leaves B1 and B2 in agreement must be completely uninformative about
� (and, a fortiori , about �). This means that, far from casting doubt on the notion of complete
ignorance, in the marginalization phenomena we have for the �rst time a purely objective de�nition

of complete ignorance, that springs directly out of the product and sum rules of probability theory

without appeal to any extraneous notions like entropy or group invariance.

This is, again, an eminently satisfactory result; but why does it seem not to be true in Example
#5? There is still something new and important to be learned here.
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The DSZ Example #5

We have data D = fx1; : : : ; xng consisting of n observations from the standard normal sampling
distribution N(�; �). With prior information I described by the proper prior pdf

p(d�d�jI) = f(�; �) d�d� (15{68)

we have the usual joint posterior pdf for the parameters:

p(d�d�jDI) = g(�; �) d�d� (15{69)

with

g(�; �) =
f(�; �) � L(�; �)R R
d�d� f(�; �) � L(�; �) (15{70)

and the likelihood function

L(�; �) = ��n exp
n
� n

2�2
[s2 + (�� �x)2]

o
(15{71)

in which, as usual, �x � n�1
P

xi and s2 � n�1
P
(xi � �x)2 are the su�cient statistics. Although

we suppose the prior f(�; �) normalizable, it need not be actually normalized in (15{70), because
any normalization constant appears in both numerator and denominator, and cancels out.

As long as s2 > 0, the likelihood is bounded throughout the region of integration �1 < � <1,
0 � � < 1, and therefore with a proper prior the integral in (15{70) is guaranteed to converge,
leading to a proper posterior pdf . Furthermore, if the prior has moments of order m; k:

Z
1

�1

d�

Z
1

0

d��m�kf(�; �) <1 (15{72)

the posterior distribution is guaranteed to have moments of higher order (in fact, all orders for � and
at least as high as order k+ n for �). The solution is therefore very well{behaved mathematically.

But now we throw the proverbial monkey{wrench into this by declaring that we are interested
only in the quantity

� � �

�
: (15{73)

Making the change of variables (��) ! (�; �), the volume element transforms as d�d� = �d�d�,
so writing p(d�jDI1) = h1(�) d�, B1's marginal posterior pdf is

h1(�) =

Z
1

0

g(��; �) �d� ; (15{74)

and in view of the high moments of g there are no convergence problems here, as long as n > 1.
Thus far, there is no hint of trouble.

But now we examine the solution for a speci�c proper prior that can approach an improper
prior. Consider the conjugate prior probability element

f(�; �) d� d� / ���1 exp(��=� � ��2) d� d� (15{75)

which is proper when (�; �; ) > 0, and tends to the Je�reys uninformative prior d�d�=� as
(�; �; ) ! 0. This leads to the joint posterior pdf , p(d� d�jD; I) = g(�; �) d�d� with density
function
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g(�; �)/ ��n��1 � exp
�
��
�
� ��2 � n

2�2
[s2 + (�� �x)2]

�
(15{76)

from which we are to calculate the marginal posterior pdf for � alone by the integration (15{74).
The result depends on both su�cient statistics (�x; s), but is most easily written in terms of a
di�erent set. The quantities R; r, where

R2 � n(�x2 + s2) = �x2i ; r � n�x=R = �xi=
q
�x2i (15{77)

also form a set of jointly su�cient statistics, and from (15{76), (15{74), we �nd the functional form
p(d�jD; I1) = h1(�jr; R) d�, where

h1(�jr; R)/ exp

�
�n�

2

2

� Z
1

0

d! !n+�1 exp
��1=2!

2 + r�! � �R�1! � ��2R2!�2
�

(15{78)

As long as � or � is positive, the result depends on both su�cient statistics, as Fraser predicted;
but as �; � tend to zero and we approach an improper prior, the statistic R becomes less and less
informative about �, and when �; � both vanish the dependence on R drops out altogether:

h1(�jr; R)! h1(�jr) / exp

�
�n�

2

2

� Z
1

0

d! !n+�1 exp
��1=2!

2 + r�!
�

(15{79)

If then one were to look only at the limiting case � = � = 0 and not at the limiting process, it
might appear that just r alone is a su�cient statistic for �, as it did in (15{53). This supposition
is encouraged by noting that the sampling distribution for r in turn depends only on �, not on �

and � separately:

p(rj�; �)/ (n� r2)(n�3)=2
Z

1

0

d! !n�1 exp
�� 1=2!

2 + r�!
�

(15{80)

It might then seem that, in view of (15{79) and (15{80), we should be able to derive the same result
by applying Bayes' theorem to the reduced sampling distribution (15{80). But one who supposes
this �nds, to his dismay, that (15{80) is not a factor of (15{79); that is, the ratio h1(�jr)=p(rj�)
depends on r as well as �. The Je�reys uninformative prior  = 0 does indeed make the two integrals
equal, but there remains an uncompensated factor with (n � r2), and so even the uninformative
Je�reys prior for (�; �) cannot bring about agreement of B1 and B2. There is no prior p(�jI2) that
can yield B1's posterior distribution (15{79) from B2's sampling distribution (15{80).

Since the paradox is still present for a proper prior, this is another counter{example to (15{57);
but it has a deeper meaning for us. What is now the information being used by B1 but ignored
by B2? It is not the prior probability for the nuisance parameter; the new feature is that in this
model the mere qualitative fact of the existence of the nuisance parameter in the model already
constitutes prior information relevant to B1's inference, which B2 is ignoring.

But, recognizing this, we suddenly see the whole subject in a much broader light. We found
above that (15{53) is not essential to the marginalization phenomenon; now we see that concentra-
tion on the nuisance parameter � is not an essential feature either! If there is any prior information
whatsoever that is relevant to �, whether or not it refers to �, that B1 is taking into account but
B2 is not, then we are in the same situation and they come, necessarily, to di�erent conclusions.
In other words, DSZ considered only a very special case of the real phenomenon.
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This situation is discussed in Jaynes (1980; following Eq. 79), where the phenomenon is called
`� { overdetermination'. Reverting to our original notation in (15{51) and denoting B1's prior
information by I1, it is shown that the general necessary and su�cient condition for agreement of
B1 and B2 is that

Z
p(yjz��I1) �(�) d� = p(yjz�I1) (15{81)

shall be independent of � for all possible samples y; z. Denoting the parameter space and our
partitioning of into subspaces by S� = S� 
 S�, we may write this as

Z
S�

p(y; zj�; �) �(�)d� = p(yjzI1) p(zj�) ;
(
� 2 S�

all y; z

)
(15{82)

or, more suggestively, Z
S�

K(�; �) �(�)d�= � f(�) : (15{83)

This is a Fredholm integral equation in which the kernel is B1's likelihood, K(�; �) = p(y; zj�; �),
the `driving force' is B2's likelihood f(�) = p(zj�), and �(y; z)� p(yjzI1) is an unknown function to
be determined from (15{83). But now we see the meaning of `uninformative' much more deeply; for
every di�erent data set (y; z) there is a di�erent integral equation. Therefore, for a single prior �(�)
to qualify as `uninformative', it must satisfy many di�erent (in general, an uncountable number)
of these integral equations simultaneously.

At �rst glance, it seems almost beyond belief that any prior could do this; from a mathemat-
ical standpoint the condition seems hopelessly overdetermined, casting doubt on the notion of an
uninformative prior. Yet we have many examples where such a prior does exist. In Jaynes (1980)
we analyzed the structure of these integral equations in some detail, showing that it is the great
`incompleteness' of the kernel that makes this possible. The point is that the integral equation for
any one data set imposes only very weak conditions on �(�), determining its projection on only a
tiny part of the full Hilbert space of functions f(�).

More speci�cally, the set of all L2 functions on S� forms a Hilbert space H�. For any speci�ed
data set y; z, as � ranges over S� the functions K(�; �), in their dependence on �, span a certain
subspace H 0

�(y; z) � H� . The kernel is said to be complete if H 0

� = H� . If there is any data set
(y; z) for which f(�) does not lie in H 0

� , there can be no solution of (15{83). In such cases, the
mere qualitative fact of the existence of the components (y; �) { irrespective of their numerical
values { already constitutes prior information relevant to B1's inference, because introducing them
into the model restricts the space of B1's possible likelihood functions (from di�erent data sets y; z)
from H� to H

0

�. In this case the shrinkage of H� cannot be restored by any prior on S�, and there
is no possibility for agreement of B1 and B2.

Summary: Looking at the above equations with all this in mind, we now see that there was never
any paradox or inconsistency after all; one should not have expected (15{79) to be derivable from
(15{80) by Bayes' theorem because they are the posterior distribution and sampling distribution
for two di�erent problems, in which the model has di�erent parameters. Eq. (15{79) is the correct
marginal posterior pdf for � in a problem P1 with two parameters (�; �); but although � is integrated
out to form the marginal pdf , the result still depends on what prior we have assigned to � { as it
should, since if � is known, it is highly relevant to the inference; if it is unknown, any partial prior
information we have about it must still be relevant.
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In contrast, (15{80) can be interpreted as a valid sampling distribution for a problem P2 in
which � is the only parameter present; the prior information does not even include the existence
of the parameter � which was integrated out in P1. With a prior density f2(�) it would yield a
posterior pdf

h2(�) / f2(�)

Z
d! !n�1 exp(�1=2!

2 + r�!) (15{84)

of a di�erent functional form than (15{79). In view of the earlier work of Je�reys and of Geisser &
Corn�eld, one could hardly claim that the situation was new and startling; much less paradoxical.
We had here a multiple confusion; improper priors were blamed for causing a paradox which they
did not cause and which was not a paradox.

Forty years earlier, Harold Je�reys was immune from such errors because (1) he perceived
that the product and sum rules of probability theory are adequate to conduct inference and they
take precedence over intuitive ad hoc devices like the reduction principle; (2) he had recognized
from the start that all inferences are necessarily conditional not only on the data, but also on the
prior information; therefore his formal probability symbols P (AjBI) always indicated the prior
information I , which included speci�cation of the model.

Today, it seems to us incredible that anyone could have examined even one problem of inference
without perceiving this necessary role of prior information; what kind of logic could they have been
using? Nevertheless, those trained in the `orthodox' tradition of probability theory did not recognize
it. They did not have a term for prior information in their vocabulary, much less a symbol for it
in their equations; and a fortiori no way of indicating when two probabilities are conditional on
di�erent prior information.y So they were helpless when prior information matters.

A Useful Result After All?

In most paradoxes there is something of value to be salvaged from the debris, and we think (Jaynes,
loc cit) that the marginalization paradox may have made an important and useful contribution to
the old problem of `complete ignorance'. How is the notion to be de�ned, and how is one to construct
priors expressing complete ignorance? We have discussed this from the standpoint of entropy and
symmetry (transformation groups) in previous Chapters; now marginalization suggests still another
principle for constructing uninformative priors.

Many cases are known, of which we have seen examples in DSZ, where a problem has a
parameter of interest � and an uninteresting nuisance parameter �. Then the marginal posterior
pdf for � will depend on the prior assigned to � as well as on the su�cient statistics. Now for certain
particular priors p(�jI) one of the su�cient statistics may drop out of the marginal distribution
p(�jD; I), as R did in (15{79). It is at �rst glance surprising that the sampling distribution for the
remaining su�cient statistics may in turn depend only on � as in (15{80).

y Indeed, in the period 1930 { 1960 nearly all orthodoxians, under the inuence of R. A. Fisher, scorned

Je�reys' work and some took a militant stand against prior information, teaching their students that it is

not only intellectually foolish, but also morally reprehensible { a deliberate breach of `scienti�c objectiv-

ity' { to allow one's self to be inuenced by prior information at all! This did little damage in the very

simple problems considered in the orthodox literature, where there was no signi�cant prior information any-

way. And it did relatively little damage in physical science where prior information is important, because

scientists ignored orthodox teaching and persisted in doing, qualitatively, the Bayesian reasoning using

prior information that their own common sense told them was the right thing to do. But we think it was

a disaster for �elds such as Econometrics and Arti�cial Intelligence, where adoption of the orthodox view

of probability had the automatic consequence that the signi�cant problems could not even be formulated,

much less solved, because they did not recognize probability as expressing information at all.
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Put di�erently, suppose a problem has a set of su�cient statistics (t1; t2) for the parameters
(�; �). Now if there is some function r(t1; t2) whose sampling distribution depends only on �, so
that p(rj�; �; I) = p(rj�; I), this de�nes a pseudoproblem with di�erent prior information I2, in
which � is never present at all. Then there may be a prior p(�jI) for which the posterior marginal
distribution p(�jD; I) = p(�jr; I) depends only on the component r of the su�cient statistic. This
happened in the example studied above; but now, more may be true. It may be that for that prior
on � the pseudoposterior pdf for � is identical with the marginal pdf in the original problem. If a
prior brings about agreement between the marginal posterior and the pseudoposterior distributions,
how should we interpret this?

Suppose we start from the pseudoproblem. It seems that if introducing a new parameter � and
using the prior p(�jI) makes no di�erence { it leads to the same inferences about � as before { then
it has conveyed no information at all about �. Then that prior must express `complete ignorance'
of � in a rather fundamental sense. Now in all cases yet found the prior p(�jI) which does this on
an in�nite domain is improper; this lends support to that conclusion because as noted, our common
sense should have told us that any proper prior on an in�nite domain is necessarily informative

about �; it places some �nite limits on the range of values that � could reasonably have, whether
we interpret `reasonably' as `with 99% probability' or `with 99.9% probability' � � � , and so on.

Can this observation be extended to a general technique for constructing uninformative priors
beyond the location / scale parameter case? This is at present an ongoing research project rather
than a �nished part of probability theory, so we defer it for the future.

How to Mass{Produce Paradoxes

Having examined a few paradoxes, we can recognize their common feature. Fundamentally, the
procedural error was always failure to obey the product and sum rules of probability theory. Usually,
the mechanism of this was careless handling of in�nite sets and limits, sometimes accompanied also
by attempts to replace the rules of probability theory by intuitive ad hoc devices like B2's `reduction
principle'. Indeed, paradoxes caused by careless dealing with in�nite sets or limits can be mass{
produced by the following simple procedure:

(1) Start from a mathematically well{de�ned situation, such as a �nite set or a normalized
probability distribution or a convergent integral, where everything is well behaved and
there is no question about what is the correct solution.

(2) Pass to a limit { in�nite magnitude, in�nite set, zero measure, improper pdf , or some
other kind { without specifying how the limit is approached.

(3) Ask a question whose answer depends on how the limit was approached.

This is guaranteed to produce a paradox in which a seemingly well{posed question has more than
one seemingly right answer, with nothing to choose between them. The insidious thing about it is
that, as long as we look only at the limit, and not the limiting process, the source of the error is
concealed from view.

Thus it is not surprising that those who persist in trying to evaluate probabilities directly on
in�nite sets have been able to study �nite additivity and nonconglomerability for decades { and
write dozens of papers of impressive scholarly appearance about it. Likewise, those who persist in
trying to calculate probabilities conditional on propositions of probability zero, have before them
an unlimited �eld of opportunities for scholarly looking research and publication { without hope of
any meaningful or useful results.

In our opening quotation, Gauss had a situation much like this in mind. Whenever we �nd
a belief that such in�nite sets possess some kind of \existence" and mathematical properties in
their own right, independent of any such limiting process, we can expect to see paradoxes of the
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above type. But note that this does not in any way prohibit us from using in�nite sets to de�ne
propositions. Thus the proposition

G � \1 � x � 2"

invokes an uncountable set, but it is still a single discrete proposition, to which we may assign
a probability P (GjI) de�ned on a sample space of a �nite number of such propositions without
violating our \probabilities on �nite sets" policy. We are not assigning any probability directly on
an in�nite set.

But then if we replace the upper limit 2 by a variable quantity z, we may (and nearly always
do) �nd that this de�nes a well{behaved function, f(z) � P (Gjz; I). In calculations, we are then
free to make use of whatever analytic properties this function may have, as we noted in Chapter
6. Even if f(z) is not an analytic function, we may be able to de�ne other analytic functions from
it, for example, by integral transforms. In this way, we are able to deal with any real application
that we have been able to imagine, by discrete algebraic or continuum analytical methods, without
losing the protection of Cox's theorems.

COMMENTS

In this Chapter and Chapter 5, we have seen two di�erent kinds of paradox. There are `conceptually
generated' ones like the Hempel paradox of Chapter 5, which arise from placing faulty intuition
above the rules of probability theory, and `mathematically generated' ones like nonconglomerability,
which arise mostly out of careless use of in�nite sets. Marginalization is an elaborate example of a
compound paradox, generated by both conceptual errors and mathematical errors, which happened
to reinforce each other. It seems that nothing in the mathematics can protect us against conceptual
errors, but we might ask whether there are better ways of protection against mathematical ones.

Back in Chapter 2, we saw that the rules of probability theory can be derived as necessary
conditions for consistency, as expressed by Cox's functional equations. The proofs applied to �nite
sets of propositions, but when the results of a �nite set calculation can be extended to an in�nite
set by a mathematically well{behaved passage to a limit, we also accept that limit.

It might be thought that it would be possible, and more elegant, to generalize Cox's proofs so
that they would apply directly to in�nite sets; and indeed that is what the writer believed and tried
to carry out for many years. However, since at least the work of Bertrand (1889), the literature
has been turning up paradoxes that result from attempts to apply the rules of probability theory
directly and indiscriminately on in�nite sets; we have just seen some representative examples and
their consequences. Since in recent years there has been a sharp increase in this paradoxing, one
must take a more cautious view of in�nite sets.

Our conclusion { based on some forty years of mathematical e�orts and experience with real
problems { is that, at least in probability theory, an in�nite set should be thought of only as the
limit of a speci�c (i.e. unambiguously speci�ed) sequence of �nite sets. Likewise, an improper
pdf has meaning only as the limit of a well{de�ned sequence proper pdf 's. The mathematically
generated paradoxes have been found only when we tried to depart from this policy by treating
an in�nite limit as something already accomplished, without regard to any limiting operation.
Indeed, experience to date shows that almost any attempt to depart from our recommended `�nite
sets' policy has the potentiality for generating a paradox, in which two equally valid methods of
reasoning lead us to contradictory results.

The paradoxes studied here stand as counter{examples to any hope that we can ever work with
full freedom on in�nite sets. Unfortunately, the Borel{Kolmogorov and marginalization paradoxes
turn up so seldom as to encourage overcon�dence in the inexperienced. As long as one works on
problems where they do not cause trouble, the psychological phenomenon: \You can't argue with
success!" noted at the beginning of this Chapter, controls the situation. Our reply to this is, of
course, \You can and should argue with success that was obtained by fraudulent means."
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Mea Culpa: For many years, the present writer was caught in this error just as badly as anybody
else, because Bayesian calculations with improper priors continued to give just the reasonable and
clearly correct results that common sense demanded. So warnings about improper priors went
unheeded; just that psychological phenomenon. Finally, it was the marginalization paradox that
forced recognition that we had only been lucky in our choice of problems. If we wish to consider
an improper prior, the only correct way of doing it is to approach it as a well{de�ned limit of a
sequence of proper priors. If the correct limiting procedure should yield an improper posterior pdf
for some parameter �, then probability theory is telling us that the prior information and data are
too meager to permit any inferences about �. Then the only remedy is to seek more data or more
prior information; probability theory does not guarantee in advance that it will lead us to a useful
answer to every conceivable question.

Generally, the posterior pdf is better behaved than the prior because of the extra information
in the likelihood function, and the correct limiting procedure yields a useful posterior pdf that is
analytically simpler than any from a proper prior. The most universally useful results of Bayesian
analysis obtained in the past are of this type, because they tended to be rather simple problems, in
which the data were indeed so much more informative than the prior information that an improper
prior gave a reasonable approximation { good enough for all practical purposes { to the strictly
correct results (the two results agreed typically to six or more signi�cant �gures).

In the future, however, we cannot expect this to continue because the �eld is turning to more
complex problems in which the prior information is essential and the solution is found by computer.
In these cases it would be quite wrong to think of passing to an improper prior. That would lead
usually to computer crashes; and even if a crash is avoided, the conclusions would still be, almost
always, quantitatively wrong. But, since likelihood functions are bounded, the analytical solution
with proper priors is always guaranteed to converge properly to �nite results; therefore it is always
possible to write a computer program in such a way (avoid underow, etc.) that it cannot crash
when given proper priors. So even if the criticisms of improper priors on grounds of marginalization
were unjusti�ed, it remains true that in the future we shall be concerned necessarily with proper
priors.
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Fig 15.1. Solution to the \Strong Inconsistency" Problem for n = 100 tosses.

Solid line = Approximation, Eq. (15{31). Dots = Exact Solution, Eq. (15{24).



c16v, 12/24/94

CHAPTER 16

ORTHODOX METHODS: HISTORICAL BACKGROUND

\With all this confounded tra�cking in hypotheses about invisible connections with all man-

ner of inconceivable properties, which have checked progress for so many years, I believe

it to be most important to open people's eyes to the number of superuous hypotheses they

are making, and would rather exaggerate the opposite view, if need be, than proceed along

these false lines ." | H. von Helmholtz (1868).

This Chapter and Chapter 13 are concerned with the history of the subject rather than its present
status. There is a complex and fascinating history before 1900, recounted by Stigler (1986), but

we are concerned now with more recent developments. In the period from about 1900 to 1970,
one school of thought dominated the �eld so completely that it has come to be called \orthodox

statistics". It is necessary for us to understand it, because it is what most working statisticians
active today were taught, and its ideas are still being taught, and advocated vigorously, in many

textbooks and Universities.

In Chapter 17 we want to examine the \orthodox" statistical practice thus developed and
compare its technical performance with that of the \probability as logic" approach expounded

here. But �rst, to understand this weird course of events we need to know something about the
problems faced then, the sociology that evolved to deal with them, the roles and personalities of

the principal �gures, and the general attitude toward scienti�c inference that orthodoxy represents.

The Early Problems

As we note repeatedly, the beginnings of scienti�c inference were laid in the 18'th and 19'th Cen-

turies out of the needs of astronomy and geodesy. The principal �gures were Daniel Bernoulli,
Laplace, Gauss, Legendre, Poisson and others, whom we would describe today as mathematical

physicists.

Transitions in the dominant mode of thinking take place slowly over a few decades, the working
lifetime of one generation. But the beginning of our period, 1900, marks roughly the time when
non{physicists moved in and proceeded to take over the �eld with quite di�erent ideas. The end,
1970, marks roughly the time when those ideas in turn came under serious, concerted attack in our

present \Bayesian Revolution".

During this period, as we analyzed in Chapter 10, the non{physicists thought that probability
theory was a physical theory of \chance" or \randomness", with no relation to logic, while \Statis-

tical Inference" was thought to be an entirely di�erent �eld, based on entirely di�erent principles.
But, having abandoned the principles of probability theory, it seemed that they could not agree
on what those new principles of inference were; or even on whether the reasoning of statistical
inference was deductive or inductive.

The �rst problems, dating back to the 18'th Century, were of course of the very simplest kind,

estimating one or more location parameters � from dataD = fx
1
: : : xng with sampling distributions

of the form p(xj�) = f(x� �). However, in practice this was not a serious limitation, because even

a pure scale parameter problem becomes approximately a location parameter one if the quantities
involved are already known rather accurately, as is generally the case in astronomy and geodesy.

Thus if the sampling distribution has the functional form f(x=�), and x and � are already

known to be about equal to x
0
and �

0
, we are really making inferences about the small corrections

q � x� x
0
and � � � � �

0
. Expanding in powers of � and keeping only the linear term, we have
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x

�
=

x
0
+ q

�
0
+ �

=
1

�
0

(x� � + � � �)

where � � x
0
�=�

0
. Thus we may de�ne a new sampling distribution function

h(x� �) / f(x=�)

and we are considering an approximately location parameter problem after all. In this way, almost

any problem can be linearized into a location parameter one if the quantities involved are already

known to fairly good accuracy. The 19'th Century astronomers took good advantage of this, as we
should also.

Only toward the end of the 19'th Century did practice advance to the problem of estimating
simultaneously both a location and scale parameter �; � from a sampling distribution of the form

p(xj�; �) = f

�
x� �

�

�
1

�

and to the marvelous developments by Galton associated with the bivariate gaussian distribution,

which we studied in Chapter 7. Virtually all of the development of orthodox statistics was concerned
with these three problems or their reverbalizations in hypothesis testing form, and most of it only

with the �rst. But even that seemingly trivial problem had the power to generate fundamental
di�erences of opinion and �erce controversy over matters of principle.

Sociology of Orthodox Statistics

During the aforementioned period, the average worker in physics, chemistry, biology, medicine,
economics with a need to analyze data could hardly be expected to understand theoretical principles

that did not exist, and so the approved methods of data analysis were conveyed to him in many
di�erent, unrelated ad hoc recipes in \cookbooks" which in e�ect told one to \Do this � � � then do

that � � � and don't ask why ."

R. A. Fisher's Statistical Methods for Research Workers was the most inuential of these

cookbooks. In going through 13 editions in the period 1925{1960 it acquired such an authority
over scienti�c practice that researchers in some �elds such as medical testing found it impossible

to get their work published if they failed to follow Fisher's recipes to the letter.

Fisher's recipes include Maximum Likelihood Parameter Estimation (MLE), Analysis of Vari-

ance (ANOVA), �ducial distributions, randomized design of experiments, and a great variety of

signi�cance tests, which make up the bulk of his book. The rival Neyman{Pearson school of
thought o�ered unbiased estimators, con�dence intervals, and hypothesis testing. The combined

collection of the ad hoc recipes of the two schools came to be known as orthodox statistics, although
arguments raged back and forth between them over �ne details of their respective ideologies. It
was just the absence of any unifying principles of inference that perpetuated this division; there
was no criterion acceptable to all for resolving di�erences of opinion.

Whenever a real scienti�c problem arose that was not covered by the published recipes, the
scientist was expected to consult a professional statistician for advice on how to analyze his data,

and often on how to gather them as well. There developed a statistician{client relationship rather
like the doctor{patient one, and for the same reason. If there are simple unifying principles (as

there are today in the theory we are expounding), then it is easy to learn them and apply them
to whatever problem one has; each scientist can become his own statistician. But in the absence

of unifying principles, the collection of all the empirical, logically unrelated procedures that a data

analyst might need, like the collection of all the logically unrelated medicines and treatments that
a sick patient might need, was too large for anyone but a dedicated professional to learn.
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Undoubtedly, this arrangement served a useful purpose at the time, in bringing about a sem-
blance of order into the way scientists analyzed and interpreted their data and published their

conclusions. It was workable as long as scienti�c problems were simple enough so that the cook-
book procedures could be applied and made some intuitive sense, even though they were not derived

from any �rst principles. Then, had the proponents of orthodox methods behaved with the profes-
sional standards of a good doctor (who notes that some treatments have been found to be e�ective,

but admits frankly that the real cause of a disorder is not known and welcomes further research to
supply the missing knowledge) there could be no criticism of the arrangement.

But that is not how they behaved; they adopted a militant attitude, each defending his own
little bailiwick against intrusion and opposing every attempt to �nd the missing unifying principles

of inference. R. A. Fisher (1956) and M. G. Kendall (1963) attacked Neyman and Wald for seeking
unifying principles in decision theory. R. A. Fisher (numerous articles), H. Cram�er (1946), R. von

Mises (1951), J. Neyman (1952), Wm. Feller (1950) { and even the putative Bayesian L. J. Savage
(1954, 1980) { accused Laplace and Je�reys of committing metaphysical nonsense for thinking that

probability theory was an extension of logic, and seeking the unifying principles of inference on
that basis.

We are at a loss to explain how they could have felt such a certainty about this, since they were
all quite competent mathematically and presumably understood perfectly well what does and what

does not constitute a proof. Yet they did not examine the consistency of probability theory as logic
(as R. T. Cox did); nor did they examine its qualitative correspondence with common sense (as G.

P�olya did). They did not even deign to take note of how it works out in practice (as H. Je�reys

had shown so abundantly in works which were there for their inspection). In fact, they o�ered
no demonstrative arguments or factual evidence at all in support of their position; they merely

repeated ideological slogans about \subjectivity" and \objectivity" which were quite irrelevant to
the issues of logical consistency and useful results.

We are equally helpless to explain why James Bernoulli and John Maynard Keynes (who

expounded essentially the same views as did Laplace and Je�reys) escaped their scorn. Evidently,

the course of events must have had something to do with personalities; let us examine a few of
them.

Ronald Fisher, Harold Je�reys, and Jerzy Neyman

Sir Ronald Aylmer Fisher (1890 { 1962) was by far the dominant personality in this �eld in the
period 1925 { 1960. A personal account of his life is given by his daughter (Joan Fisher Box, 1978).

On the technical side, he had a deep intuitive understanding and produced a steady stream of
important research in genetics. Sir Harold Je�reys (1891 { 1989) working in geophysics, wielded

no such inuence, and for most of his life found himself the object of scorn and derision from the

Fisherian camp.

Fisher's early fame (1915{1925) rested on his mathematical ability: given data D � fx
1
: : : xng

to which we assign a multivariate gaussian sampling probability p(Dj�) with parameters � �
f�

1
: : : �mg, how shall we best estimate those parameters from the data? Probability theory as

logic considers it obvious that in any problem of inference we are always to calculate the probabil-
ity of whatever is unknown and of interest, conditional on whatever is known and relevant; in this

case, p(�jD; I).

But the orthodox view rejects this on the grounds that p(�jD; I) is meaningless because it is
not a frequency; � is not a `random variable', only an unknown constant. Instead, we are to choose

some function of the data f(D) as our \estimator" of �. The merits of any proposed estimator are

to be determined solely from its sampling distribution p(f j�). The data are always supposed to be
obtained by `drawing from a population' urn{wise, and p(f j�) is always supposed to be a limiting
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frequency in many repetitions of that draw. A good estimator is one whose sampling distribution
is strongly concentrated in a small neighborhood of the true value of �.

But as we noted in Chapter 13, orthodoxy, having no general theoretical principles for con-
structing the `best' estimator, must in every new problem guess various functions f(D) on grounds

of intuitive judgment, and then test them by determining their sampling distributions, to see how
concentrated they are near the true value. Thus calculation of sampling distributions for estimators

is the crucially important part of orthodox statistics; without it one has no grounds for choosing
an estimator.

Now the sampling distribution for some complicated function of the data, such as the sample

correlation coe�cient, can become quite a di�cult mathematical problem; but Fisher was very
good at this, and found many of these sampling distributions for the �rst time. Technical details

of these derivations, in more modern language and notation, may be found in Feinberg & Hinkley
(1989).

Many writers have wondered how Fisher was able to acquire the multidimensional space intu-

ition that enabled him to solve these problems. We would point out that just before starting to
produce those results, Fisher spent a year (1912{1913) as assistant to the theoretical physicist Sir

James Jeans, who was then preparing the second edition of his book on kinetic theory and worked
daily on calculations with high{dimensional multivariate gaussian distributions (called Maxwellian

velocity distributions).

But nobody seemed to notice that Je�reys was able to bypass Fisher's calculations and derive

his parameter estimates in a few lines of the most elementary algebra. For Je�reys, using probability
theory as logic, in the absence of any cogent and detailed prior information, the best estimators

were always determined by the likelihood function, which can be written down by inspection of

p(Dj�). This automatically constructed the optimal estimator for him, with no need for intuitive
judgment and without ever calculating a sampling distribution for an estimator. Fisher's di�cult

calculations calling for all that space intuition, although interesting as mathematical results in their
own right, were quite unnecessary for the actual conduct of inference.

Fisher's later dominance of the �eld derives less from his technical work than from his am-
boyant personal style and the worldly power that went with his o�cial position, in charge of the

work and destinies of many students and subordinates. For 14 years (1919{1933) he was at the
Rothamsted agricultural research facility with an increasing number of assistants and visiting stu-

dents, then holder of the Chair of Eugenics at University College, London, and �nally in 1943
Balfour Professor of Genetics at Cambridge where he also became President of Caius College. He
was elected Fellow of the Royal Society in 1929, and was knighted in 1952.

Within his �eld of geophysics, Harold Je�reys also showed an outstandingly high competence,
was elected Fellow of the Royal Society in 1925, became Plumian Professor of Astronomy at Cam-
bridge in 1946, and was knighted in 1953. The treatise on mathematical physics by Sir Harold and
Lady Je�reys (1946) was for many years the standard textbook in the �eld, with far more advanced

and useful mathematics than is contained in all of Fisher's works. But Je�reys remained all his

life as a Fellow of St. John's College, Cambridge, working quietly and modestly, and hardly visible
outside his �eld of geophysics; he had only one doctoral student in probability theory (V. S. Huzur-
bazar).

In sharp contrast Fisher, possessed of a colossal, overbearing ego, thrashed about in the �eld,

attacking the work of everyone elsey with equal ferocity. Somehow, early in life Fisher's mind became
captured by the dogma that by \probability" one is allowed to mean only limiting frequency in a

y For the record (we shall not go into them deeply): we consider Fisher's criticisms of Karl Pearson on

grounds of maximum likelihood vs. moment �tting and the proper number of degrees of freedom in Chi{

squared, and of Jerzy Neyman on grounds of con�dence intervals, unbiased estimators, and the meaning of
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random experiment (although he usually stated this as the ratio of two in�nite numbers, rather
than the limit of a ratio of �nite numbers) and that any other meaning is metaphysical nonsense,

unworthy of a scientist. Conceivably, this view might have come from the philosopher John Venn
(an earlier President of Caius College, Cambridge, where Fisher was an undergraduate in 1909{

1912). In a very inuential work which went through three editions, Venn ridiculed Laplace's
conception of probability theory as logic; and Fisher's early work sounds very much like this.

However, we see a weakening of resolve in Fisher's �nal book (1956) where he actually defends
Laplace against the criticisms of Venn, and suggests that Venn did not understand mathematics

well enough to comprehend what Laplace was saying. His criticisms of Je�reys are now much toned
down. Noting this, some have opined that, were Fisher alive today, he would now be a Bayesian.y

In both science and art every creative person must, at the beginning of his career, do battle

with an Establishment that, not comprehending the new ideas, is more concerned with putting him

down than with understanding his message. Karl Pearson (1857{1936), as Editor of Biometrika,
performed that `service' for Fisher in his early attempts at publication, and Fisher never forgave

him for this. But curiously, in his last book Fisher's attacks against Pearson are, if anything, more
violent and personal than ever before. This is hard to understand, for by 1956 the battle was long

since won; Pearson had been dead for twenty years, and it was universally recognized that in all
their disputes Fisher had been in the right. Why should the bitterness remain thirty years after it

had ceased to be relevant? This tells us much about Fisher's personality.

Fisher's articles are most easily found today in two \collected works" (Fisher, 1952, 1974).

The ones on the principles of inference have an interesting characteristic pattern. They start with
a paragraph or two of polemical denunciation of Je�reys' use of Bayes' theorem (at that time called

inverse probability). Then he formulates a problem, sees the correct solution intuitively, and does
the requisite calculations in a very e�cient, competent way. But just at the point where one more

step of the logical argument would have forced him to see that he was only rediscovering, in his
own way, the results of applying Bayes' theorem, the article comes to an abrupt end.

Harold Je�reys (1939) was able to derive all the same results far more easily, by direct use
of probability theory as logic, and this automatically yielded additional information about their

range of validity and how to generalize them, that Fisher never did get. But whenever Je�reys
tried to point this out, he was buried under an avalanche of criticism which simply ignored his

mathematical demonstrations and substantive results and attacked his ideology. His perceived sin
was that he did not require a probability to be also a frequency, and so admitted the notion of

probability of an hypothesis. Nobody seemed to perceive the fact that this broader conception of
probability was just what was giving him those computational advantages.

signi�cance levels, to be justi�ed on grounds of technical fact. It is perhaps a measure of Fisher's inuence

that the two disputes where we think that Fisher was in the wrong { the one with W. S. Gossett over

randomization and the one with Je�reys on the whole meaning and philosophy of inference, are still of

serious concern today.
y But against this supposition is the fact that in the last year of his life Fisher published an article (Fisher,

1962) examining the possibilities of Bayesian methods, but with the prior probabilities to be determined

experimentally !! This shows that he never accepted { and probably never comprehended { the position of

Je�reys about the meaning and function of a prior probability. Anything obtained experimentally would

be, for Je�reys and for us, part of the data; the prior probabilities represent instead whatever additional

information we bring to the problem, exclusive of the data. In his �nal pronouncement on this, Fisher

would still leave us no way to take that prior information into account, although we saw in Chapter 6 how

crucially important even qualitative prior information can be in a real problem. It seems to us likely that

Fisher never faced a problem in which we had cogent prior information that cannot be expressed by choice

of a model; for Je�reys and for us, that is the usual situation.



1606 16: Ronald Fisher, Harold Je�reys, and Jerzy Neyman 1606

Jerzy Neyman, whom we met in Chapter 14, also rejected Je�reys' work on the same ideological
grounds as did Fisher (but in turn had his own work rejected by Fisher). Neyman, too, directs

scathing ridicule at Je�reys, far beyond what would have been called for even if Neyman had been
technically correct and Je�reys wrong. For example, Neyman (1952, p. 11) becomes heated over a

problem involving �ve balls in two urns, so simple that it would not be considered worthy of being
a homework problem today, in which Je�reys (1939, x7.02) is clearly in the right.

In view of all this, it is pleasant to be able to record that in the end Harold Je�reys outlived

his critics and the merit of his work, on both the theoretical and the pragmatic levels, was �nally
recognized. In the last years of his life he had the satisfaction of seeing Cambridge University {

from the Cavendish Physics Laboratory on the North to the Molecular Biology Laboratory on the
South { well populated with young scientists studying and applying his work and, with the new

tool of computers, demonstrating its power for the current problems of science.

The exchanges between Fisher and Je�reys over these issues in the British Journals of the

1930's were recalled recently by S. Geisser (1980) and D. Lane (1989), with many interesting
details. But we want to add some additional comments to theirs, because a fellow physicist is in

a better position to appreciate Je�reys' motivations, highly relevant for the applications we are
concerned with today.

Firstly, we need to recognize that a large part of their di�erences arose from the fact that Fisher

and Je�reys were occupied with di�erent problems. Fisher studied biological problems where one
had no prior information and no guiding theory (this was long before the days of the DNA helix)

and the data taking was very much like drawing from Bernoulli's Urn. Je�reys studied problems of
geophysics where one had a great deal of cogent prior information and a highly developed guiding

theory (all of Newtonian mechanics giving the theory of elasticity and seismic wave propagation,

plus the principles of physical chemistry and thermodynamics); and the data taking procedure had
no resemblance to drawing from an Urn. Fisher, in his cookbook, x1, de�nes statistics as the study

of populations ; Je�reys devotes virtually all of his analysis to problems of inference where there is
no population.

Late in life, Jerzy Neyman was able to perceive this di�erence. His biographer Constance

Reid (1982, p. 229) quotes Neyman thus: \The trouble is that what we [statisticians] call modern
statistics was developed under strong pressure on the part of biologists. As a result, there is

practically nothing done by us which is directly applicable to problems of astronomy."

Fisher advanced, very aggressively, the opposite view; that the methods which were successful
in his biological problems must be also the general basis of all scienti�c inference. What Fisher

was never able to see is that, from Je�reys' viewpoint, Fisher's biological problems were trivial,
both mathematically and conceptually. In his early Chapters, Je�reys (1939) disposes of them
in a few lines, obtaining Fisher's inference results far more easily than Fisher did, as the simplest

possible applications of Bayes' theorem,? then goes on to more complex problems beyond the ambit
of Fisher's methods. Je�reys (1939, Chap. 7) then summarizes the comparisons with Fisher and

Neyman in more general terms.

As science progressed to more and more complicated problems of inference, the shortcomings of
the orthodox methods became more and more troublesome. Fisher would have been nearly helpless,
and Neyman completely helpless, in a problem with many nuisance parameters but no su�cient
or ancillary statistics. Accordingly, neither ever attempted to deal with what is actually the most

common problem of inference faced by experimental scientists; linear regression with both variables

? Of course, Fisher's randomized planting methods, which we think to be not actually wrong, but for

reasons explained elsewhere in this work hopelessly ine�cient, were not reproduced by Je�reys; nor would

he wish to. It appears to be a quite general principle that, whenever there is a randomized way of doing

something, then there is a nonrandomized way that delivers better performance but requires more thought.
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subject to unknown error. Generations of scientists in several di�erent �elds searched the statistical
literature in vain for help on this; but for Bayesian methods [Zellner (1987), Chapter 5; Bretthorst

(1988)] the nuisance parameters are only minor technical details that do not deter one from �nding
the straightforward and useful solutions. Scientists, engineers, biologists, and economists with good

Bayesian training are now �nding for themselves the correct solutions appropriate to their problems,
which incorporate many di�erent kinds of prior information.

However, we recognize Fisher's high competence in the problems which concerned him. An
honest man can maintain an ideology only as long as he con�nes himself to problems where its

shortcomings are not evident. Had Fisher tried more complex problems, we think that he would
have perceived the superior power of Je�reys' methods rather quickly; the mathematics forces one

to it, independently of all ideology. As noted, it may be that he started to see this toward the end
of his life.

Secondly, we note the very di�erent personalities and habits of scholarly conduct of the com-
batants. In any �eld, the most reliable and instantly recognizable sign of a fanatic is a lack of any

sense of humor. Colleagues have reported their experiences at meetings, where Fisher could y into
a trembling rage over some harmless remark that others would only smile at. Even his most ardent

disciples (for example, M. Kendall, 1963) noted that the character defects that he attributed to

others were easily discernible in Fisher himself; as one put it, \Whenever he paints a portrait, he
paints a self{portrait."

Harold Je�reys maintained his composure, never took these disputes personally and, even in

his nineties when the present writer knew him, it was a delight to converse with him because he

still retained a wry, slightly mischevious, sense of humor. The greatest theoretical physicists of the
nineteenth and twentieth Centuries, James Clerk Maxwell and Albert Einstein, showed just the

same personality trait, as testi�ed by many who knew them.

Needless to say (since Fisher's methods were mathematically only special cases of those of

Je�reys), Fisher was never able to exhibit a speci�c problem in which his methods gave a satisfactory
result and Je�reys' methods did not. Therefore we see in Fisher's words almost no pointing to actual

results in real problems. Usually Fisher's words convey only a spluttering exasperation at the gross
ideological errors of Je�reys and his failure to repent. His few attempts to address technical details

only reveal his own misunderstandings of Je�reys.

For example, Je�reys (1932) gave a beautiful derivation of the d�=� prior for a scale parameter,

that we recall in Chapter 12. Given two observations x
1
; x

2
from a Gaussian distribution, the

predictive probability density for the third observation is

p(x
3
jx
1
; x

2
; I) =

Z
d�

Z
d� p(x

3
j�; �; I) p(�; �jx

1
; x

2
; I)

If initially � is completely unknown, then our estimates of � ought to follow the data di�erence

jx
2
� x

1
j, with the result that the predictive probability for the third observation to lie between

them ought to be 1=3, independently of x
1
and x

2
(with independent sampling, every permutation

of the three observations has the same probability). He shows that this will be true only for the
d�=� prior.

But Fisher (1933), failing to grasp the concept of a predictive distribution, takes this to be
a statement about the sampling distribution p(x

3
j�; �; I), which is an entirely di�erent thing; and

jumps to the conclusion that Je�reys is guilty of a ridiculous elementary error. This launches
him into seven pages of polemical attacks on all of Je�reys' work, which display in detail his own

total lack of comprehension of what Je�reys was doing. All readers who want to understand the
conceptual hangups that delayed the progress of this �eld for decades, should read this exchange
very carefully.
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But in Je�reys' words there is no misunderstanding of Fisher, no heaping of scorn and no
ideological sloganeering; only a bemused sense of humor at the whole business. The issue as Je�reys

saw it was not any error of Fisher's actual procedures on his particular biological problems, but the
incompleteness of his methods for more general problems and the lack of any justi�cation for his

dogmatically asserted premises (in particular that one must conjure up some hypothetical in�nite
population from which the data are drawn, and that every probability must have an objectively

`true' value, independently of human information; Je�reys' whole objective was to use probability
to represent human information). Furthermore, Je�reys always made his point quite gently.

For example, Je�reys (1939, p. 325), perceiving what we noted above, writes of Fisher that,

\In fact, in spite of his occasional denunciations of inverse probability, I think that he has succeeded

better in making use of what it really says than many of its professed users have." As another
example, in one of the exchanges Je�reys complained that Fisher had \reduced his work to non-

sense". In reply, Fisher pounced upon this, and wrote, gleefully: \I am not inclined to deny it."
Geisser (1980) concludes that Je�reys came o� second best here; we see instead Je�reys smiling at

the fact that Fisher was deected from the issue and fell headlong into the little trap that Je�reys
had set for him.

Having said something of their di�erences, we should add that, as competent scientists, Fisher

and Je�reys were necessarily in close agreement on more basic things; in particular on the role of

induction in science. Neyman, not a scientist but a mathematician, tried to claim that his methods
were entirely deductive. For example, in Neyman (1952, p. 210), he states: \� � � in the ordinary

procedure of statistical estimation there is no phase corresponding to the description of `inductive

reasoning.' � � � all the reasoning is deductive and leads to certain formulae and their properties."

But Neyman (1950) was willing so speak of inductive behavior .

Fisher and Je�reys, aware that all scienti�c knowledge has been obtained by inductive reasoning
from observed facts, naturally enough denied the claim of Neyman that inference does not use

induction, and of the philosopher Karl Popper that induction was impossible. We discussed this
claim at the end of Chapter 9. Je�reys expressed himself on this more in private conversations (at

one of which the writer was present) than in public utterances; Fisher publicly likened Popper's

and Neyman's strictures to political thought{control. As he put it (Fisher, 1956, p. 7): \To one

brought up in the free intellectual atmosphere of an earlier time there is something rather horrifying

in the ideological movement represented by the doctrine that reasoning, properly speaking, cannot

be applied to empirical data to lead to inferences valid in the real world."

Indeed, their reaction to Popper may be a repetition of what happened in the 18'th Century.

Fisher (1956, p. 10), Stigler (1983), and Zabell (1989) present quite good evidence { which seems
to us, in its totality, just short of proof { that Thomas Bayes had found his result as early as 1748,

and the original motivation for this work was his annoyance at the claim of the 18'th Century
philosopher David Hume of the impossibility of induction. We may conjecture that Bayes sought

to give an explicit counter{example, but found it a bit more di�cult than he had at �rst expected,

and so delayed publishing it. This would give a neat and natural explanation of many otherwise
puzzling facts.

Pre{data and Post{data Considerations

The basic pragmatic di�erence in the two approaches is in how they relate to the data; orthodox
practice is limited at the outset to \pre{data" considerations. That is, it gives correct answers to
questions of the form:

(A): Before you have seen the data, what data do you expect to get?

(B): If the as yet unknown data are used to estimate parameters by some known
algorithm, how accurate do you expect the estimates to be?
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(C): If the hypothesis being tested is in fact true, what is the probability that we
shall get data indicating that it is true?

Of course, probability theory as logic automatically includes all sampling distribution calculations;

so in problems where such questions are the ones of interest, we shall do the same calculations and
reach the same numerical conclusions, with at worst a verbal disagreement over terminology.

But as we have stressed repeatedly, virtually all real problems of scienti�c inference are con-

cerned with \post{data questions":

(A'): After we have seen the data, do we have any reason to be surprised by them?

(B'): After we have seen the data, what parameter estimates can we now make,

and what accuracy are we entitled to claim?

(C'): What is the probability conditional on the data, that the hypothesis is true?

Orthodoxy is prevented from dealing with post{data questions by its di�erent philosophy. The
basic tenet that determines the form of orthodox statistics is that the reason why inference is

needed lies not in mere human ignorance of the true causes operative, but in a \randomness" that
is attributed instead to Nature herself; just what we call the Mind Projection Fallacy. This leads

to the belief that probability statements can be made only about random variables and not about

unknown �xed parameters. However, although the property of being `random' is considered a real
objective attribute of a variable, orthodoxy has never produced any de�nition of the term \random

variable" that could actually be used in practice to decide whether some speci�c quantity, such as
the number of beans in a can, is or is not \random".

Therefore, although the question: \Which quantities are random?" is crucial for everything he

does, we are unable to explain how the orthodoxian actually decides this; we can only observe what
decisions he makes. For some reason, data are always considered random, almost everything else

is nonrandom; but to the best of our knowledge, there is no principle in orthodox statistics which

would have enabled one to predict this choice. Indeed, in a real situation the data are usually the
only things that are de�nite and known, and almost everything else in the problem is unknown

and only conjectured; so the opposite choice would seem far more natural.

But this orthodox choice has the consequence that orthodox theory does not admit the existence
of prior or posterior probabilities for a �xed parameter or an hypothesis, because they are not

considered random variables. We want, then, to examine how orthodoxy manages to pass o� the
answer to a pre{data question as if it were the answer to a post{data one. Mostly this is possible
because of mathematical accidents, such as symmetry in parameter and estimator.

The sampling distribution for an estimator

We have noted why a major part of the orthodox literature is devoted, necessarily, to calculating,

approximating, and comparing sampling pdf 's for estimators; this is the only criterion orthodoxy
has for judging estimators and in a new problem one may need to �nd sampling distributions for

a half{dozen di�erent estimators before deciding which one is best.

The sampling pdf for an estimator does not have the same importance in Bayesian analysis,
because we do have the needed theoretical principles; if an estimator has been derived from Bayes'
theorem and a speci�ed loss function, then we know from perfectly general theorems that it is the
optimal estimator for the problem as de�ned, whatever its sampling distribution may be. In fact,

the sampling pdf for an estimator plays no functional role in post{data inference, and so we have

no reason to mention it at all, unless pre{data considerations are of some interest (for example, in
planning an experiment and deciding what kind of data to take and when to stop).
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But in addition to this negative (non{functionality) reason, there is a stronger positive reason
for diverting attention away from the sampling pdf for an estimator; it is not the proper criterion

of the quality of an inference. Suppose a scientist is estimating a physical parameter � such as the
mass of a planet. If the sampling pdf for the estimator is indeed equal to the long{run frequencies

in many repetitions of the measurement, then its width would answer the pre{data question:

Q1: How much would the estimate of � vary over the class of all data sets that

we might conceivably get?

But that is not the relevant question for the scientist. His concern is with the post{data one:

Q2: How accurately is the value of � determined by the one data set D that we

actually have?

and according to probability theory as logic, the correct measure of this is the width of the posterior
pdf for the parameter, not the sampling pdf for the estimator. Since this is a major bone of

contention between the Orthodox and Bayesian schools of thought, let us understand why they can

sometimes be the same, with resulting confusion of pre{data and post{data considerations. In the
next Chapter, we shall see some of the horrors that can arise when they are not the same.

Historically, since the time of Laplace, scienti�c inference has been dominated overwhelmingly

by the case of Gaussian sampling distributions which have the aforementioned symmetry. Suppose
we have a data set D = fy

1
: : :yng and a sampling distribution

p(Dj�; �; I)/ exp

"
�
X
i

(yi � �)2

2�2

#
(16{1)

with � known. Then the Bayesian posterior pdf for �, with uniform prior, is

p(�jD; �; I)/ exp

�
�
n(� � �y)2

2�2

�
(16{2)

from which the post{data (mean � standard deviation) estimate of � is

(�)est = �y �
�
p
n

(16{3)

which shows that the sample mean �y � n�1
P

yi is a su�cient statistic. Then if the orthodoxian

decided to use �y as an estimator of �, he would �nd its sampling distribution to be

p(�yj�; �; I)/ exp

�
�
n(�y � �)2

2�2

�
(16{4)

and this would lead him to make the pre{data estimate

(�y)est = ��
�
p
n

(16{5)

But although (16{3) and (16{5) have entirely di�erent meanings conceptually, they are mathemati-

cally so nearly identical that the Bayesian and Orthodoxian would make the same actual numerical

estimate of � and claim the same accuracy. In problems like this, which have su�cient statistics
but no nuisance parameters, there is a mathematical symmetry (approximate or exact) which can
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make the answers to a pre{data question and a post{data question closely related if we have no
very cogent prior information which would break that symmetry.

This accidental equivalence has produced a distorted picture of the �eld; the Gaussian case
is the one in which orthodox methods do best because the symmetry is exact, and the di�erence

between pre{data and post{data results is the least. On the basis of such limited evidence, orthodox
theory tried to claim general validity for its methods.

But had the early experience referred instead to Cauchy sampling distributions:

p(yj�) =
1

�

1

1 + (y � �)2
(16{6)

the distinction could never have been missed because the answers to the pre{data and post{data
questions are so di�erent that common sense would never have accepted the answer to one as the

answer to the other. In this case, with an uninformative prior the Bayesian posterior pdf for � is

p(�jD; I) /
nY
i=1

1

1 + (�� yi)2
(16{7)

which is still straightforward, although analytically inconvenient. Numerically, the (posterior mean
� standard deviation) or (posterior median � interquartile) estimates are readily found by com-

puter, but there is no su�cient statistic and therefore no good analytical solution.

But orthodoxy has never found any satisfactory estimator at all for this problem! If we try
again to use the sample mean �y as an estimator, we �nd to our dismay that its sampling pdf is

p(�yj�; I) / [1 + (�y � �)2]�1

which is identical with (16{6); the mean of any number of observations is, according to orthodox

criteria, no better than a single observation. Although Fisher noted that for large samples, the

sample median tends to be more strongly concentrated near the true � than does the sample mean,
this gives no reason to think that it is the best estimator by orthodox criteria even in the limit of

large samples, and the question remains open today.

We expect that both the Bayesian posterior mean and posterior median value estimators

would prove to be considerably better, by orthodox criteria of performance, than any presently

known orthodox estimator. Simple computer experiments would be able to con�rm or refute this
conjecture; but we doubt whether they will be done, because the question is of no interest to

a Bayesian, while a well{indoctrinated orthodoxian will never voluntarily examine any Bayesian
result.?

? For example, many years ago the writer attempted to publish an article demonstrating the superior

performance of Bayesian estimation with a Cauchy distribution, in the small sample case which can be solved

analytically { and had the work twice rejected. The Referee accused me of unfair tactics for bringing up

the matter of the Cauchy distribution at all, because \� � � it is well known that the Cauchy distribution is a

pathological, exceptional case." Thus did one orthodoxian protect the journal's readers from the unpleasant

truth that Bayesian analysis does not break down on this problem. To the best of our knowledge Bayesian

analysis has no pathological, exceptional cases; a reasonable question always has a reasonable answer.

Finally, after 13 years of struggling, we did manage to get that analysis published after all by slipping it

into a longer article (Jaynes, 1976).
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Pro{Causal and Anti{Causal Bias

A criticism of orthodox methods that we shall �nd in the next Chapter is not ideological, but that

they have technical shortcomings (waste of information) which, in practice, all tend to bias our
inferences in the same direction. The result is that, when we are testing for a new phenomenon,

orthodoxy in e�ect considers it a calamity to give credence to a phenomenon that is not real, but
is quite unconcerned about the consequences of failing to recognize a phenomenon that is real.

But to be fair, at this point we should keep in mind the historical state of a�airs, and the far

worse practices that the early workers in this �eld had to counteract. As we noted in Chapter 5,
the uneducated mind always sees a causal relation { even where there is no conceivable physical

mechanism for it { out of the most far{fetched coincidence.

Johannes Kepler (1571{1630) was obliged to waste much of his life casting horoscopes for

his patron (and complained about it privately). No amount of evidence showing the futility of
this seems to shake the belief in it; even today, more people make their living as astrologers than

astronomers.

In the 18'th and 19'th Centuries, science was still awash with superstitious beliefs in causal in-

uences that do not exist, and Laplace (1819) warned against this in terms that seem like platitudes

today, although they made him enemies then. Our opening quotation from Helmholtz shows his
exasperation at the fact that progress in physiology was made almost impossible by common belief

in all kinds of causal inuences for which there was no physical mechanism and no evidence. Louis
Pasteur (1822{1895) spent much of his life trying to overcome the universal belief in spontaneous

generation.

Although the state of public health was intolerable by present standards, hundreds of plants

were credited with possessing miraculous medicinal properties; at the same time, tomatoes were
believed to be poisonous. As late as 1910 it was still being reported as scienti�c fact that poison

ivy plants emit an `e�uvium' which infects those who merely pass by them without actual contact,

although the simplest controlled experiment would have disproved this at once.

Today, science has advanced far beyond this state of a�airs, but common understanding has

hardly progressed at all. On the package of a popular brand of rice, the cooking instructions tell
us that we must use a closed vessel, because \the steam does the cooking". Since the steam does
not come into contact with the rice, this seems to be on a par with the poison ivy myth. Surely,
a controlled experiment would show that the temperature of the water does the cooking. But at

least this myth does no harm.

Other spontaneously invented myths can do a great deal of harm. If we have a single unusually

warm Summer, we are besieged with dire warnings that the Earth will soon be too hot to support
life. Next year we will have an unusually cold Winter, and the same disaster mongers will be
right there shouting about the imminent ice age. Both times they will receive the most full and

sympathetic coverage by the news media, who with their short memory and in their belief that
they are doing a public service, amplify a thousandfold the capacity of the disaster monger to do

mischief, and encourage ever more irresponsible disaster{mongering as the surest way to get free
personal publicity.

In 1991, some persons without the slightest conception of what either electricity or cancer
are, needed only to hint that the weak 60Hz �elds around home wiring or power lines are causing

cancer; and the news media gave it instant credence and full prime time radio and TV coverage,
throwing the uneducated public into a panic. They set up picket lines and protest marches to
prevent installation of power lines where they were needed. The right of the public to be protected

against the fraud of false advertising is recognized by all; so when will we have the right to be free
of the fraud of sensationally false news reporting { which is also sold to us for pro�t?
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To counter this universal tendency of the untrained mind to see causal relations and trends
where none exist, responsible science requires a very skeptical attitude, which demands cogent

evidence for an e�ect; particularly one which has captured the popular imagination. Thus we can
easily understand and sympathize with the orthodox conservatism in accepting new e�ects.

But there is another side to this; skepticism can be carried too far. The orthodox bias against
a real e�ect does help to hold irresponsibility in check, but today it is also preventing recognition

of e�ects that are real and important. The history of science o�ers many examples of important

discoveries that had their origin in the perception of someone who saw a small unexpected thing in
his data, that an orthodox signi�cance test would have dismissed as a random error.y The discovery

of argon by Lord Rayleigh, and of cosmic rays by Victor Hess, are examples that come to mind
immediately. Of course, they did not jump to sweeping conclusions from a single observation as

do the disaster mongers; they used the single surprising observation rather to motivate a careful
investigation that culminated in overwhelming evidence for the new phenomenon.

In other �elds we must wonder how many important discoveries, particularly in medicine, have

been prevented by editorial policies which refuse to publish that necessary �rst evidence for some
e�ect, because the one data set that the researcher was able to obtain did not quite achieve an

arbitrarily imposed signi�cance level in an orthodox test. This could well defeat the whole purpose
of scienti�c publication; for the cumulative evidence of three or four such data sets might have

yielded overwhelming evidence for the e�ect. Yet this evidence will never be found unless the �rst
data set can manage to get published.

How can editors recognize that scienti�c discovery is not a one{step process, but a many{step

one, without thereby releasing a new avalanche of irresponsible, sensational publicity seekers? The
problem is genuinely di�cult, and we do not pretend to know the full answer.

In the next Chapter we study some very instructive case histories of science gone wrong, when
orthodox statistics was used to support either an unreasonable belief or an unreasonable disbelief

in some phenomenon. In every case, a Bayesian analysis { taking into account all the evidence, not

just the evidence of one data set { would have led to far more defensible conclusions; so editorial
policies that required Bayesian standards of reasoning would go a long way toward solving this

problem.

This orthodox bias against an e�ect is seen in the fact that Feller and others heap ridicule on

\cycle hunters" as being irresponsible, seeing in phenomena such as economic time series, weather,

and earthquakes periodicities that are not there. It is conceivable that there may be instances of
this; but those who make the charge do not document speci�c examples which we can verify, and
so we do not know of any. In economics, belief in business cycles goes in and out of style cyclically.
Those who, like the economist Arthur Burns, merely look at a plot of the data, see the cycles at

once. Those who, like Fisher, Feller, and Tukey (1958), use orthodox data analysis methods, do
not �nd them.z Those who, like Bretthorst (1988) use probability theory as logic are taking into

account more evidence than either of the above groups, and may or may not �nd them. More

y Je�reys (1939, p. 321) notes that there has never been a time in the history of gravitational theory when

an orthodox signi�cance test (which takes no note of alternatives) would not have rejected Newton's law

and left us with no law at all. But nevertheless Newton's law did lead to constant improvements in the

accuracy of our accounting of the motions of the moon and planets for Centuries, and it was only when an

alternative (Einstein's law) had been stated fully enough to make very accurately known predictions of its

own that a rational person could have ceased using Newton's law.
z Indeed, orthodox spectrum analysis was invented by Arthur Schuster (1897) for the speci�c purpose of

refuting some claims of periodicities in earthquakes. As noted later, Schuster's periodogram is relevant to

this problem; but the evidence lies in its shape rather than its sampling distribution. Very clear { even

overwhelming { evidence for periodicity can be missed by those who do not understand this.
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generally, the reason why some skeptics do not see real e�ects is that they use methods of data
analysis which violate the likelihood principle, and therefore waste some of the information in the

data.

What is Real; the Probability or the Phenomenon?

This Orthodox reluctance to see causal e�ects even when they are real, has another psychological

danger because eventually it becomes extrapolated into a belief in the existence of \stochastic
processes" in which no causes at all are operative, and probability itself is the only real physical

phenomenon. When the search for any causal relation whatever is deprecated and discouraged,
scienti�c progress is brought to a standstill.

Belief in the existence of \stochastic processes" in the real world; (i.e. that the property
of being \stochastic" rather than \deterministic" is a real physical property of a process, that

exists independently of human information) is another example of the Mind Projection Fallacy:
attributing one's own ignorance to Nature instead. The current literature of probability theory is

full of claims to the e�ect that a `Gaussian random process' is fully determined by its �rst and

second moments. If it were made clear that this is only the de�ning property for an abstract
mathematical model, there could be no objection to this; but it is always presented in verbiage

that implies that one is describing an objectively true property of a real physical process. To one
who believes such a thing literally, there could be no motivation to investigate the causes more

deeply than noting the �rst and second moments, and so the real processes at work might never
be discovered.

This is not only irrational because one is throwing away the very information that is essential
to understand the physical process; if carried into practice it can have disastrous consequences.

Indeed, there is no such thing as a \stochastic process" in the sense that the individual events have
no speci�c causes. One who views human diseases or machine failures as \stochastic processes" as

described in some orthodox textbooks, would be led thereby to think that in gathering statistics
about them he is measuring the one controlling factor; the physically real \propensity" of a person

to get a disease or a machine to fail; and that is the end of it.

Yet where our real interests are involved, such foolishness is usually displaced rather quickly.

Every individual disease in every individual person has a de�nite cause; fortunately, Louis Pasteur

understood this in the 19'th Century and our medical researchers understand it today. In medicine
one does not merely collect statistics about the incidence of diseases; there are large organized

research e�orts to �nd their speci�c causes.

Likewise, every machine failure has a de�nite cause; after every airplane crash the Federal

Aviation O�cials arrive and, if necessary, spend months sifting through all the evidence trying to
determine the exact cause. Only by this pursuit of each individual cause can the level of public
health and the safety and reliability of our machines be improved.

COMMENTS

An important general conclusion is that in analyzing data { particularly when searching for new

e�ects { scientists are obliged to �nd a very careful compromise between seeing too little and
seeing too much. Only methods of inference which realize all the \resolving power" possible, by
taking careful account of all the relevant prior information, all the previously obtained data, and
all the information in the likelihood function, can steer a safe course between these dangers and

yield justi�able conclusions. Throughout this work we adduce theoretical arguments and numerical

examples showing why probability theory as logic cannot give us misleading conclusions unless we
feed it false information or withhold true and relevant information from it.
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For many years orthodox methods of data analysis, through their failure to take into account
all the relevant evidence, have been misleading us in ways that have increasingly serious economic

and social consequences. Often, orthodox methods are unable to �nd signi�cant evidence for e�ects
so clear that they are obvious at once from a mere glance at the data. More rarely, from failure to

note cogent prior information orthodox methods may hallucinate, seeing nonexistent e�ects. We
document cases of both in the next Chapter, and see how in all cases Bayesian analysis would have

avoided the di�culty automatically.
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CHAPTER 17

PRINCIPLES AND PATHOLOGY OF ORTHODOX STATISTICS

\The development of our theory beyond this point, as a practical statistical theory, involves

� � � all the complexities of the use, either of Bayes' Law on the one hand, or of those

terminological tricks in the theory of likelihood on the other, which seem to avoid the

necessity for the use of Bayes' law, but which in reality transfer the responsibility for its

use to the working statistician, or the person who ultimately employs his results." � � �
Norbert Wiener (1948)

To the best of our knowledge, Norbert Wiener never actually applied Bayes' theorem in a published
work; yet he perceived the logical necessity of its use as soon as one builds beyond the sampling
distributions involved in his own statistical work. In the present Chapter we examine some of the
consequences of failing to use Bayesian methods in some very simple problems, where the paradoxes
of Chapter 15 never arise.

In Chapter 16 we noted that the orthodox objections to Bayesian methods were always philo-
sophical or ideological in nature, never examining the actual numerical results that they give in
real problems, and we expressed astonishment that mathematically competent persons would use
such arguments. In order to give a fair comparison, we need to adopt the opposite tactic here,
and concentrate on the demonstrable facts that orthodoxians never mention. And, since Bayesian
methods have been so egregiously misrepresented in the orthodox literature throughout our life-
times, we must lean over backwards to avoid misrepresenting orthodox methods now; whenever an
orthodox method does yield a satisfactory result in some problem, we shall acknowledge that fact
and we shall not deplore its use merely on ideological grounds. On the other hand, when a common
orthodox procedure leads to a result that insults our intelligence, we shall not hesitate to complain
about it.

Our present goal is to understand: In what circumstances, and in what ways, do the orthodox

results di�er from the Bayesian results? What are the pragmatic consequences of this in real

applications? The theorems of Richard Cox provide all the ideology we need, and all of our
pragmatic comparisons only con�rm, in many di�erent contexts, what those theorems lead us to
expect.

Information Loss

It is not easy to cover all this ground, because orthodox statistics is not a coherent body of theory
that could be con�rmed or refuted by a single analysis. It is a loose collection of independent ad

hoc devices, invented and advocated by many di�erent people on many di�erent intuitive grounds;
and they are often in sharp disagreement with each other. So, to understand the performance of a
dozen such devices may require a dozen di�erent analyses.

But one can see quite generally, once and for all, when and why orthodox methods must waste
information. Consider estimation of a parameter � from a data set D � fx1 � � �xng represented
by a point in Rn. Orthodoxy requires us to choose a single estimator b(D) � b(x1 � � �xn) before

we have seen the data, and then use only b(x) for the estimation! Now specifying the observed
numerical value of b(x) locates the sample on a manifold (subspace of Rn) of dimension (n � 1).
Specifying the actual data set D tells us that, and also where on the manifold we are. If position on
the manifold is irrelevant to �, then b(D) is a su�cient statistic for � and { unless there are further
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technical problems like nuisance parameters { the orthodox method will be satisfactory pragmat-
ically whatever its proclaimed rationale. Otherwise, specifying D conveys additional information
about � that is not conveyed by specifying b(D).

But it seems that Fisher never did appreciate the further conclusion that follows from this.
Given the actual data set D, of course, all estimators that the orthodoxian might have chosen
fb1; b2; � � �g are known. The Bayesian procedure chooses the estimate after seeing the data, and so
has the bene�t of the extra information contained in the speci�c data set. Therefore it is able to
choose the optimal estimator for that data set. In e�ect Bayes' theorem has available for its use
simultaneously all the information contained in the class of all possible estimators.y

If the estimator is not a su�cient statistic, its sampling distribution is irrelevant for us, because
with di�erent data sets we shall use di�erent estimators. We saw this in some detail, from di�erent
viewpoints, in Chapters 8 and 13. The same considerations apply to hypothesis testing; the Bayesian
procedure takes into account all the relevant information in the data, but an orthodox procedure
based on a single statistic often fails to do so. Then we expect that, whenever an orthodox procedure
is not based on a su�cient statistic or conditioned on an ancillary statistic, the Bayesian procedure
will be superior (in the sense of more accurate or more reliable) because its extra information
restricts further the range of possibilities compatible with the estimator b(D).

From the Neyman{Pearson camp of orthodoxy we have the devices of unbiased estimators,
con�dence intervals, and hypothesis tests which amount to a kind of decision theory. This line
of thought has been adopted more or less faithfully in the works of Herbert Simon in Economics,
Erich Lehmann in hypothesis testing, and David Middleton in Electrical Engineering.

From the Fisherian (sometimes called the piscatorial) camp there are the principles of max-
imum likelihood, analysis of variance, randomization in design of experiments, and a mass of
specialized \tail area" signi�cance tests. Fortunately, the underlying logic is the same in all such
signi�cance tests, so they need not be analyzed separately. Adoption of these methods has been
almost mandatory in biology and medical testing. Also, Fisher advocated �ducial probability which
most statisticians rejected, and conditioning on ancillary statistics, which we discussed in Chapter 8,
but which does not seem to be used appreciably in applied statistics.z

Unbiased Estimators

Given a sampling distribution p(xj�) with some parameter � and a data set comprising n obser-
vations D � fx1 � � �xng, there are various orthodox principles for estimating �, in particular use
of an unbiased estimator, and maximum likelihood. In the former we choose some function of the
observations �(D) = �(x1 � � �xn) as our `estimator'. The Neyman{Pearson school holds that it
should be `unbiased', meaning that its expectation over the sampling distribution is equal to the
true value of �:

h�i = E(�) =

Z
�(x1 � � �xn) p(x1 � � �xnj�) dx1 � � �dxn = � (17{1)

As noted in Chap. 13, Eq. (13{20), the expected square of the error, over the sampling distribution,
is the sum of two positive terms

y Perhaps it is now clearer why we have described orthodox and Bayesian methods as `pre{data' and
`post{data' inferences.
z We �nd an interesting consistency here: the Fisherian methods that have been widely adopted are the
ones whose results often disagree strongly with Bayesian results; the ones that have met with almost no
use are just the ones that, when they are applicable, necessarily agree closely { often exactly { with the
Bayesian ones.
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h(� � �)2i = (h�i � �)2 + var(�) (17{2)

where what the orthodoxian calls the \sampling variance of �" (more correctly, the variance of the
sampling distribution for �) is var(�) = h�2i � h�i2. At present we are not after mathematical
pathology of the kind discussed in Chapter 15 and Appendix B, but rather logical pathology {
due to conceptual errors in the basic formulation of a problem { which persists even when all
the mathematics is well behaved. So we suppose that the �rst two moments of that sampling
distribution, h�i ; h�2i exist for all the estimators to be considered. If we introduce a fourth
moment h�4i, we are automatically supposing that it exists also; this is the general mathematical
policy advocated in Appendix B. Then an unbiased estimator has, indeed, the merit that it makes
one of the terms of (17{2) disappear. But it does not follow that this choice minimizes the expected
square of the error; let us examine this more closely.

What is the relative importance of removing bias and minimizing the variance? From (17{2)
it would appear that they are of equal importance; there is no advantage in decreasing one of those
terms if in so doing we increase the other more than enough to compensate. Yet that is what the
orthodox statistician usually does! As the most common speci�c example, Cram�er (1946, p. 351)
considers the problem of estimating the variance �2 of a sampling distribution p(x1j�2):

�2 = hx21i � hx1i2 = hx21i (17{3)

from n independent observations fx1 � � �xng. We assume, in (17{3) and in what follows, that
hx1i = 0, since a trivial change of variables would in any event accomplish this. An elementary
calculation shows that the sample variance (now correctly called the variance of the sample because
it expresses the variability of the data within the sample, and does not make reference to any
probability distribution):

m2 � x2 � x2 =
1

n

nX
i=1

x2i �
"
1

n

nX
i=1

xi

#2
(17{4)

has expectation, over the sampling distribution p(x1 � � �xnj�2) = p(x1j�2) � � �p(xnj�2), of

hm2i =
n� 1

n
�2 (17{5)

and thus, as an estimator of �2 it has a negative bias. So, goes the argument, we should correct
this by using the unbiased estimator

M2 �
n

n� 1
m2 : (17{6)

Indeed, this has seemed so imperative that in most of the orthodox literature, the term \sample
variance" is de�ned as M2 rather than m2.

Now, of course, the only thing that really matters here is the total error of our estimate; the
particular way in which you or I separate error into two abstractions labelled \bias" and \variance"
has no e�ect on the actual quality of the estimate. So, let's look at the full mean square error
criterion (17{2) with the choices � = m2 and � = M2. Replacement of m2 by M2 removes a term
(hm2i � �2)

2 = �22=n
2, but it also increases the term var(m2) by a factor [n=(n� 1)]2, so it seems

obvious that, at least for large n, this has made things worse instead of better. More speci�cally,
suppose we replace m2 by the estimator:

� � cm2 (17{7)
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What is the best choice of c? The expected quadratic loss (17{2) is now

h(cm2 � �2)
2i = c2 hm2

2i � 2chm2i�2 + �22

= h(m2 � �2)
2i � hm2

2i(ĉ� 1)2 + hm2
2i(c� ĉ)2

(17{8)

where

ĉ � �2 hm2i
hm2

2i
: (17{9)

Evidently, the best estimator in the class (17{7) is the one with c = ĉ, and the term �hm2
2i(ĉ� 1)2

in (17{8) represents the decrease in mean{square error obtainable by using �̂ � ĉm2 instead of m2.
Another short calculation shows that

hm2
2i = n�3(n� 1) [(n2 � 2n+ 3)�22 + (n� 1)�4] (17{10)

where

�4 � h(x1 � hx1i)4i = hx41i (17{11)

is the fourth central moment of p(x1j�2). We must understand n > 1 in all this, for if n = 1, we
havem2 = 0; in sampling theory, a single observation gives no information at all about the variance
of p(x1j�2).?

From (17{5) and (17{10) we then �nd that ĉ depends on the second and fourth moments of
the sampling distribution:

ĉ =
n2

n2 � 2n + 3 + (n� 1)K
(17{12)

where K � �4=�
2
2 � 1 (from a previous remark, we are assuming now that p(xij�2) has moments

up to fourth order at least). We see that ĉ is a monotonic decreasing function of K; so if K � 2,
(17{12) shows that ĉ < 1 for all n; instead of removing the bias in (17{5) we should always increase
it.

In the case of a Gaussian distribution, p(xj�2) / exp[�x2=2�2], we �nd K = 3. We will seldom
have K < 3, for that would imply that p(xj�2) cuts o� even more rapidly than gaussian for large
x. If K = 3, (17{12) reduces to

ĉ =
n

n + 1
(17{13)

which, by comparison with (17{6), says that rather than removing the bias we should approximately
double it, in order to minimize the mean square sampling error!

How much better is the estimator �̂ than M2? In the Gaussian case the mean square error of
the estimator �̂ is

h(�̂ � �2)
2i = 2

n + 1
�22 : (17{14)

The unbiased estimator M2 corresponds to the choice

? In Bayesian theory a single observation could give information about �2 if �2 is correlated, in the joint
prior probability p(�2; �jI), with some other parameter � in the problem about which a single observation
does give information; that is, p(�; �jI) 6= p(�jI) p(�jI). This kind of indirect information transfer can be

important in problems where we have cogent prior information but only sparse data.
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c =
n

n � 1
(17{15)

and thus to the mean square error

h(M2 � �2)
2i = �22

�
2

n+ 1
+

2

n

�
(17{16)

which is over twice the amount incurred by use of �̂. Most sampling distributions that arise in
practice, if not gaussian, have wider tails than gaussian, so that K > 3; in this case the di�erence
will be even greater.

Up to this point, it may have seemed that we are quibbling over a very small thing { changes in
the estimator of one or two parts out of n. But now we see that the di�erence between (17{14) and
(17{16) is not at all trivial. For example, with the unbiased estimator M2 you will need n = 203

observations in order to get as small a mean{square sampling error as the biased estimator �̂ gives

you with only 100 observations . This is typical of the way orthodox methods waste information; in
this example we have, in e�ect, thrown away half of our data whatever the value of n.

Indeed, R. A. Fisher perceived this long ago, remarking that a procedure that loses half the
information in the data, wastes half of the work expended in acquiring the data. But modern
orthodox practitioners seem never to perceive this, because they continue to fantasize about fre-
quencies, and do not think in terms of information at all.y A fantastic example appeared in a
work on econometrics (Valavanis, 1959, p. 60) where the author attached such great importance to
removing bias that he advocated throwing away not just half the data but practically all them, if
necessary, to achieve this.

Why do they do this? Why do orthodoxians put such exaggerated emphasis on bias? We
suspect that the main reason is simply that they are caught in a psycho{semantic trap of their own
making. When we call the quantity (h�i��) the \bias", that makes it sound like something awfully
reprehensible, which we must get rid of at all costs. If it had been called instead the \component of
error orthogonal to the variance", as suggested by the Pythagorean form of (17{2), it would have
been clear to all that these two contributions to the error are on an equal footing; it is folly to
decrease one at the expense of increasing the other. This is just the price one pays for choosing
a technical terminology that carries an emotional load, implying value judgments; orthodoxy falls
constantly into this tactical error.

Cherno� & Moses (1959) give a more forceful example showing how an unbiased estimate may
be far from what we want. A company is laying a telephone cable across San Francisco Bay. They
cannot know in advance exactly how much cable will be needed, and so they must estimate. If they
overestimate, the loss will be proportional to the amount of excess cable to be disposed of; but if
they underestimate and the cable end falls into the water, the result may be �nancial disaster. Use
of an unbiased estimate here could only be described as foolhardy; this shows why a Wald{type
decision theory is needed to fully express rational behavior.

Another reason for such an undue emphasis on bias is a belief that if we draw N successive
samples of n observations each and calculate the estimators �1 � � ��N , the average � = N�1

P
�i

y Note that this di�culty does not arise in the Bayesian approach in spite of a mathematical similarity.
Again choosing any function �(x1 � � �xn) of the data as an estimator, and letting the brackets h i stand
now for expectations over the posterior pdf for �, we have the expected square of the error of h(� �
�)2i = (� � h�i)2 + var(�), rather like (17{2). But now changing the estimator � does not change
var(�) = (h�2i � h�i2), and so by this criterion, the optimal estimator over the class of all estimators is

always � = h�i.
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of these estimates will converge in probability to h�i as N ! 1, and thus an unbiased estimator
will, on su�ciently prolonged sampling, give an arbitrarily accurate estimate of �. Such a belief is
almost never justi�ed even for the fairly well controlled measurements of the physicist or engineer;
not only because of unknown systematic error, but because successive measurements lack the logical
independence required for these limit theorems to apply.

In such uncontrolled situations as economics, the situation is far worse; there is in principle
no such thing as \asymptotic sampling properties" because the \population" is always �nite, and
it changes uncontrollably in a �nite time. The attempt to use only sampling distributions, always
interpreted as frequencies, in such a situation forces one to expend virtually all his e�orts on
irrelevant fantasies. What is relevant to inference is not any non{existent frequencies, but the

actual state of knowledge that we have about the real situation. To reject that state of knowledge {
or any human information { on the grounds that it is \subjective" is to destroy any possibility of
�nding useful results; for human information is all we have.z

But even if we accept these limit theorems, and believe faithfully that our sampling probabilities
are also the limiting frequencies, unbiased estimators are not the only ones which approach perfect
accuracy with inde�nitely prolonged sampling. Many biased estimators approach the true value of
� in this limit, and do it more rapidly . Our �̂ is an example. Furthermore, asymptotic behavior of
an estimator is not really relevant, because the real problem is always to do the best we can with
a �nite data set; therefore the important question is not whether an estimator tends to the true
value, but how rapidly it does so.

Long ago, R. A. Fisher disposed of the unbiased estimate by a di�erent argument that we gave
in Chap. 6, Eq. (6{90). The criterion of bias is not really meaningful, because it is not invariant
under a change of parameters; the square of an unbiased estimate of � is not an unbiased estimate
of �2. With higher powers �k , the di�erence in conclusions can become arbitrarily large, and
nothing in the formulation of a problem tells us which choice of parameters is \right". However,
many orthodoxians simply ignore these arguments (although they can hardly be unaware of them)
and continue to use unbiased estimators whenever they can, aware that they are violating a rather
basic principle of rationality, but unaware that they are also wasting information.

But note that, after all this argument, nothing in the above entitles us to conclude that �̂
is the best estimator of �2 by the criterion of mean{square sampling error! We have considered
only the restricted class of estimators (17{7) constructed by multiplying the sample variance (17{4)

by some preassigned number; we can say only that �̂ is the best one in that class. The question
whether some other function of the sample values, not a multiple of (17{4), might be still better
by the criterion of mean{square sampling error, remains completely open. That the orthodox
approach to parameter estimation does not tell us how to �nd the best estimator, but only how to
compare di�erent intuitive guesses, was noted in Chap. 13 following Eq. (13{21); and we showed
that the di�culty is overcome by a slight reformulation of the problem, which leads inexorably to
the Bayesian algorithm as the one which accomplishes what we really want.

z \Objectivity" in inference consists, then, in carefully considering all the information we have about the
real situation; and carefully avoiding fantasies about situations that do not actually exist. It seems to us
that this should have been obvious to orthodoxians from the start, since it was obvious already to ancient
writers such as Herodotus (ca. 500 B.C.) in his discussion of the policy decisions of the Persian kings.
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Exercise (17.1): Try to extend sampling theory to deal with the many questions left unan-
swered by the orthodox literature and the above discussion. Is there a general theory of optimal
sampling theory estimators for �nite samples? If so, does bias play any role in it? We know
already, from the analysis in Chapter 13, that this cannot be a variational theory; but it seems
conceivable that a theory somewhat like dynamic programming might exist. In particular, can
you �nd an orthodox estimator that is better than �̂ by the mean{square error criterion? Or
can you prove that �̂ cannot be improved upon within sampling theory?

In contrast to the di�culty of these questions in sampling theory, we have noted above and in
Chapter 13 that the Bayesian procedure automatically constructs the optimal estimator for any
data set and loss function, whether or not a su�cient statistic exists; and it leads at once to a
simple variational proof of its optimality not within any restricted class, but with respect to all

estimators. And it does this without making any reference to the notion of bias, which plays no
role in Bayesian theory.

Pathology of an Unbiased Estimate

On closer examination, an even more disturbing feature of unbiased estimates appears. Consider
the Poisson sampling distribution; the probability that, in one time unit, we observe n events, or
`counts', is

p(nj�) = e��
�n

n!
; n = 0; 1; 2; � � � (17{17)

in which the parameter � is the sampling expectation of n: hni = � Then what function f(n) gives
an unbiased estimate of �? Evidently, the choice f(n) = n will achieve this; to prove that it is
unique, note that the requirement hf(n)i = �, is

1X
n=0

e��
�n

n!
f(n) = � (17{18)

and from the formula for coe�cients of a Taylor series, this requires

f(n) =
dn

d�n
(�e�)

���
�=0

= n (17{19)

A reasonable result. But suppose we want an unbiased estimator of some function g(�); by the
same reasoning, the unique solution is

f(n) =
dn

d�n
[e�g(�)]

���
�=0

(17{20)

Thus the only unbiased estimator of �2 is

f(n) =

(
0; n = 0; 1

n(n� 1); n > 1

)
(17{21)

which is absurd for n = 1. Likewise, the only unbiased estimator of �3 is absurd for n = 1; 2. Here
the unbiased estimator does violence to elementary logic; if we observe n = 2, we are advised to
estimate � = 0; but if � were zero, it would be impossible to observe n = 2! An unbiased estimator
for 1=� does not exist, and the only unbiased estimator of e�� is

f(n) =

(
1; n = 0

0; n > 0

)
(17{22)
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which is absurd for all positive n. Unbiased estimators can stand in conict with deductive logic
not just for a few data sets, but for all data sets.

In contrast, with uniform prior the Bayesian posterior mean estimate of any function g(�) is

hg(�)i= 1

n!

Z
1

0

e���ng(�)d� (17{23)

which is readily veri�ed to be mathematically well{behaved and intuitively reasonable for all the
above examples. The Bayes estimate of 1=� is just 1=n. It is at �rst surprising that the Bayes
estimate of e�� is

f(n) = 2�(n+1) : (17{24)

Why would it not be just e�n? To see why, note that the posterior distribution for � is not
symmetric but strongly skewed for small n; the posterior probability that � > n is

P =

Z
1

n

e��
�n

n!
d� =

e�n

n!

nX
m=0

�
n

m

�
nm

Z
1

0

e�xxn�mdx = e�n
nX

m=0

nm

m!
(17{25)

This decreases monotonically from 1 at n = 0 to 1=2 as n!1. Thus given n, the parameter � is
always more likely to be greater than n than less, so e�n would systematically overestimate e��.
Bayes' theorem automatically detects this and corrects for it.

Exercise 17.2 Consider the truncated Poisson distribution:

p(nj�) = 1

e� � 1

�n

n!
; n = 1; 2; � � �

Show that the unbiased estimator of � is now absurd for n = 1, and the unbiased estimator of
e�� is absurd for all even n and queer for all odd n.

Many other examples are known in which the attempt to �nd unbiased estimates leads to similar
pathologies; several were noted by the orthodoxians Kendall & Stuart (1961). But their anti{
Bayesian indoctrination (from Fisher) was so strong that they would not deign to examine the
corresponding Bayesian results; and so they failed to learn that in all cases Bayesian methods
overcome the di�culty e�ortlessly. Maurice Kendall could have learned this in �ve minutes from
Harold Je�reys, whom he saw almost daily because they were both Fellows of St. John's College,
Cambridge and ate at the same high table.

Periodicity: The Weather in Central Park

A common problem, important in economics, meteorology, geophysics, astronomy and many other
�elds, is to decide whether certain data taken over time provide evidence for a periodic behavior.
Any clearly discernible periodic component (in births, diseases, rainfall, temperature, business cy-
cles, stock market, crop yields, incidence of earthquakes, brightness of a star) provides an evident
basis for improved prediction of future behavior, on the presumption (that is, inductive reasoning)
that periodicities observed in the past are likely to continue in the future. But even apart from
prediction, the principle for analyzing the data for evidence of periodicity in the past is still con-
troversial: is it a problem of signi�cance tests, or one of parameter estimation? Di�erent schools
of thought come to opposite conclusions from the same data.
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Let us consider in detail an example, from the recent literature, of orthodox reasoning and pro-
cedure here; this will also provide an easy introduction to Bayesian spectrum analysis. Bloom�eld
(1976, p. 110) gives a graph showing mean January temperatures observed over about 100 years in
Central Park, New York. The presence of a periodicity of roughly 20 years with a peak{to{peak
amplitude of about 4o Fahrenheit is perfectly evident to the eye, since the irregular `noise' is only
about 0:5o. Yet Bloom�eld, applying an orthodox signi�cance test introduced by Fisher, concludes
that there is no signi�cant evidence for any periodicity!

The folly of pre{�ltering data: In trying to understand this we note �rst that the data of
Bloom�elds's graph have been \pre{�ltered" by taking a 10 year moving average. What e�ect does
this have on the evidence for periodicity? Let the original raw data be D = fy1 � � �yng and consider
the discrete fourier transform

Y (!) �
nX
t=1

yt e
i!t (17{26)

This is well de�ned for continuous values of ! and is periodic: Y (!) = Y (! + 2�). Therefore
there is no loss of information if we con�ne the frequency to j!j < �. But even that is more than
necessary; the values of Y (!) at any n consecutive and discrete `Nyquist' frequenciesz

!k � 2�k=n; 0 � k < n (17{27)

already contain all the information in the data, for by the orthogonality n�1
P

k exp[i!k(s�t)] = �st,
the data can be recovered from them by the fourier inversion:

1

n

nX
k=1

Y (!k) e
�i!kt = yt; 1 � t � n : (17{28)

But suppose the data were replaced with anm{year moving average over past values, with weighting
coe�cient of ws for lag s:

zt �
m�1X
s=0

yt�s ws (17{29)

The new fourier transform would be, after some algebra,?

z Harry Nyquist was a mathematician at the Bell Telephone Laboratories who in the 1920's discovered a
great deal of the fundamental physics and information theory involved in electrical communication. The
work of Claude Shannon is a continuation, 20 years later, of some of Nyquist's pioneering work. All of it is
still valid and indispensible in modern electronic technology. In Chapter 7 we have already considered the
fundamental, irreducible \Nyquist noise" in electrical circuits due to thermal motion of electrons.
? At this point, many authors get involved in an annoying little semantic hangup over exactly what one
means by the term `m{year moving average' for a series of �nite length. If we have only yt for t > 0, then
it seems to many that the m{year moving average (17{29) could start only at t = m. But then they �nd
that their formulas are not exact, but require small `end{e�ect' correction terms of order m=n. We avoid
this by a slight change in de�nitions. Consider the original time series fytg augmented by `zero{padding';
we de�ne yt � 0 when t < 1 or t > n, and likewise the weighting coe�cients are de�ned to be zero when
s < 0 or s � m. Then we may understand the above sums over t; s to be over (�1; +1), and the �rst
few terms (z1; � � � ; zm�1), although averages over m years of the padded data, are actually averages over
less than m years of nonzero data. The di�erences are numerically negligible when m << n, but we gain
the advantage that the simple formulas (17{26){(17{32) with sums taken instead over �1 and t in (17{29)
allowed to take all positive values, are all exact as they stand, without our having to bother with messy
correction terms. Furthermore, it is evident that failure to do this means that some of the information in
the �rst m and last m data values is lost. This particular de�nition of the term `moving average' for a
�nite series (which was basically arbitrary anyway) is thus the one appropriate to the subject.
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Z(!) =
nX
t=1

zt e
i!t = W (!) Y (!) (17{30)

where

W (!) �
m�1X
s=0

ws e
i!s (17{31)

is the fourier transform of the weighting coe�cients. This is just the convolution theorem of fourier
theory. Thus taking any moving average of the data merely multiplies its fourier transform by a
known function. In particular, for uniform weighting:

ws =
1

m
; 0 � s < m (17{32)

we have

W (!) =
1

m

m�1X
s=0

e�i!s = exp[�i!
2
(m� 1)]

�
sin m!

2

m sin !
2

�
: (17{33)

In the case m = 10 we �nd, for a ten{year and twenty{year periodicity respectively,

W (2�=10) = 0 ; W (2�=20) = 0:639 exp[�9�i=20] : (17{34)

Thus, taking a ten{year moving average of any time series data represents an irreversible loss
of information; it completely wipes out any evidence for a ten{year periodicity, and reduces the
amplitude of a twenty{year periodicity by a factor .639 while shifting its phase by 9�=20 = 1:41
radians. We conclude that the original data had a periodicity of roughly 20 years with a peak{to{
peak amplitude of about 4=:639 = 6:3o F, even more obvious to the eye and nearly 90 degrees out
of phase with the periodicity visible in Bloom�eld's graph.

At several places we warn against the common practice of pre{�ltering data in this way before
analyzing them.y The only thing it can possibly accomplish is the cosmetic one of making the graph
of the data look prettier to the eye. But if the data are to be analyzed by a computer, this does
not help in any way; it only throws away some of the information that the computer could have
extracted from the original, unmutilated data. It renders the �ltered data completely useless for
certain purposes. For all we know, there might have been a strong periodicity of about ten years
in the original data; but taking a ten{year moving average has wiped out the evidence for it.z

The periodogram of the data is then the power spectral density:

P (!) � 1

n
jY (!)j2 = 1

n

X
t;s

yt ys e
i!(t�s) : (17{35)

y We hasten to add that Fisher and Bloom�eld are not guilty of this; but it is practiced egregiously by
others such as Blackman and Tukey (1958).
z This data pre�ltering is the one{dimensional version of the practice of `apodization' in optics. But as we
have noted elsewhere (Jaynes, 1988) this throws away highly cogent information about the �ne details in
the image, which a computer could have extracted, leading to much better resolution than that apparent
to the eye, if one had refrained from apodization. The term `apodization' means literally `removing the
foot'. It is singularly well{chosen; one who commits apodization is, in e�ect, shooting himself in the foot.
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Note that P (0) = (
P

yt)
2=n = ny2 determines the mean value of the data, while the average of

the periodogram at the Nyquist frequencies is the mean square value of the data:

P (!k)av =
1

n

nX
k=1

P (!k) = y2 : (17{36)

Fisher's proposed test statistic for a periodicity is the ratio of peak/mean of the periodogram:

q =
P (!k)max

P (!k)av
(17{37)

and one computes its sampling distribution p(qjH0) conditional on the null hypothesis H0 that the
data are Gaussian white noise. Having observed the value q0 from our data, we �nd the so{called
`P -value', which is the sampling probability, conditional on H0, that chance alone would have
produced a ratio as great or greater:

P � p(q > q0jH0) =

Z
1

q0

p(qjH0) dq (17{38)

and if P > 0:05 the evidence for periodicity is rejected as \not signi�cant at the 5% level". This is
a typical orthodox \tail area" signi�cance test.?

But this test looks only at probabilities conditional on the \null hypothesis" that there is no
periodic term. It takes no note of probabilities of the data conditional on the hypothesis that a
periodicity is present; or on any prior information indicating whether it is reasonable to expect a
periodicity! We commented on this kind of reasoning in Chapter 5; how can one test any hypothesis
rationally if he fails to specify (1) the hypothesis to be tested; (2) the alternatives against which it
is to be tested; and (3) the prior information that we bring to the problem? Until we have done
that much, we have not asked any de�nite, well{posed question.

Equally puzzling, how can one expect to �nd evidence for a phenomenon that is real, if he
starts with all the cards stacked overwhelmingly against it? The only hypothesis H0 that this test
considers is one which assumes that the totality of the data are part of a `stationary gaussian random
process' without any periodic component. According to that H0, the appearance of anything
resembling a sine wave would be purely a matter of chance; even if the noise conspires, by chance,
to resemble one cycle of a sine wave, it would still be only pure chance { equally unlikely according
to the orthodox sampling distribution { that would make it resemble a second cycle of that wave;
and so on.

But in almost every application one can think of, our prior knowledge about the real world
tells us that in speaking of \periodicity" we have in mind some systematic physical inuence that
repeats itself; indeed, our interest in it is due entirely to the fact that it we expect it to repeat . Thus
we expect to see some periodicity in the weather because we know that this is a�ected by periodic
astronomical phenomena; the rotation of the earth on its axis, its yearly orbital motion about the
sun, and the observed periodicity in sunspot numbers, which a�ect atmospheric conditions on the
earth. So the hypothesis H1 that we want to test for is quite unrelated to the hypothesis H0 that
is used in Fisher's test.y

? The choice of the 5% signi�cance level is, of course, only an arbitrary convention; yet it has been adopted
so religiously that it has become almost mandatory. Anyone who failed to use it would be considered queer
by many of his colleagues.
y If an apparent periodicity were only a momentary artifact of the noise as suposed by H0, we would not
consider it a real periodicity at all, and would not want our statistical test to take any note of it. But
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But this is the kind of logic that underlies all orthodox signi�cance tests. In order to argue
for an hypothesis H1 that some e�ect exists, one does it indirectly: invent a \null hypothesis"
H0 that denies any such e�ect, then argue against H0 in a way that makes no reference to H1 at
all (that is, using only probabilities conditional on H0)! To see how far this procedure takes us
from elementary logic, suppose we decide that the e�ect exists; that is, we reject H0. Surely, we
must also reject probabilities conditional on H0; but then what was the logical justi�cation for the
decision? Orthodox logic saws o� its own limb.z

Harold Je�reys (1939, p. 316) expressed his astonishment at such reasoning by looking at a
di�erent side of it:

\An hypothesis that may be true is rejected because it has failed to predict observable results that
have not occurred. This seems a remarkable procedure. On the face of it, the evidence might more
reasonably be taken as evidence for the hypothesis, not against it. The same applies to all the current
signi�cance tests based on P{values."

Thus if we say that there is a periodicity in temperature, we mean by this that there is some periodic
physical inuence at work, the nature of which may not be known with certainty, but about which
we could make some reasonable conjectures. For example, the aforementioned periodicity in solar
activity, already known to occur by the 11{year periodic variation in sunspot numbers (which many
believe, with good reason, to be a recti�ed 22{year periodicity), causes a periodic variation in the
number of charged particles entering our atmosphere (indicated by the aurora borealis), varying the
ion concentration and therefore the number of raindrop condensation centers. This would cause
periodic variations in the cloud cover, and hence in the temperature and rainfall, which might
be very di�erent in di�erent locations on the earth because of prevailing atmospheric circulation
patterns.

We do not mean to say that we �rmly believe this mechanism to be the dominant one; only that
it is a conceivable one, which does not violate any known laws of physics, but whose magnitude is
di�cult to estimate theoretically. But already, this prior information prepares us not to be surprised
by a periodic variation in temperature in Central Park somewhat like that observedz and leads us
to conjecture that the July temperatures (the record of which presumably still exists) might give
even better evidence for periodicity.

Once a data set has given mild evidence for such a periodicity, its reality could be de�nitely
con�rmed or refuted by other observations, correlating other data (astronomical, atmospheric elec-
tricity, �sh populations, etc.) with weather data at many di�erent locations. A person trained only
in orthodox statistics would not hesitate to consider all these phenomena \independent"; a scientist
with some prior knowledge of astrophysics and meteorology would not consider them independent
at all.

unfortunately, it is always possible for noise artifacts to appear momentarily real to any test one can devise.
The remedy is to check whether the apparent e�ect is reproducible; a noise artifact will in all probability
never occur again in the same way. A physicist can, almost always, use this remedy easily; an economist
usually cannot.
z An historical study has suggested that the culprit who started this kind of reasoning was not any
statistician, but the physicist Arthur Schuster (1897), who invented the periodogram for the purpose of
refuting some claims of periodicity in earthquakes in Japan. He achieved his preconceived goal by the
simple device of analyzing the data in a way that threw away the information about that periodicity; and
then this was taken up by many others. Nevertheless, we shall see that the periodogram does contain basic
information that Schuster, and Blackman & Tukey, failed to recognize. They thought that the information
was contained in the sampling distribution of the periodogram; whereas it was actually contained in the
shape of the periodogram.
z One who was also aware of the roughly 20{year periodicity in crop yields, well known to Kansas wheat
farmers for a Century, would be even less surprised.
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But if Editors of scienti�c journals refuse to publish that �rst mild evidence on the grounds
that it is not signi�cant in itself by an orthodox signi�cance test at the 5% level, the con�rmatory
observations will, in all probability, never be made; a potentially important discovery could be
delayed by a Century. Physicists and engineers have been largely spared from such �ascos because
they hardly ever took orthodox teachings seriously anyway; but others working in economics,
biology, or medical research who in the past allowed themselves to cowed by Fisher's authority,
have not been so fortunate.

Contrast our position just stated with that of Feller (II, p 76{77), who delivers another polemic
against what he calls the \Old Wrong Way". Suppose the data expanded in sinusoids:

yt =
nX

j=1

(Aj cos!jt +Bj sin!jt)

We can always approximate yt this way. Then it seems that Aj ; Bj must be \random variables"
if the fytg are. Feller warns us against that Old Wrong Way: �t such a series to the data with
well{chosen frequencies f!1 : : :!ng and assume all Aj ; Bj � N(0; �). If one of the R2

j = A2
j + B2

j

is big, conclude that there is a true period. He writes of this:

\For a time it was fashionable to introduce models of this form and to detect `hidden periodicities'
for sunspots, wheat prices, poetic creativity, etc. Such hidden periodicities used to be discovered as
easily as witches in medieval times, but even strong faith must be forti�ed by a statistical test. A
particularly large amplitude Rj is observed; One wishes to prove that this cannot be due to chance
and hence that !j is a true period. To test this conjecture one asks whether the large observed value
of R is plausibly compatible with the hypothesis that all n components play the same role."

Apparently, Feller did not even believe in the sunspot periodicity, which no responsible scientist has
doubted for over a Century; the evidence for it is so overwhelming that nobody needs a \statistical
test" to see it. He states that the usual procedure was to assume the Aj ; Bj iid normal N(0; �),?

then the R2
j are held to be independent with an exponential distribution with expectation 2�2. \If

an observed value R2
j deviated `signi�cantly' from this predicted expectation it was customary to

jump to the conclusion that the hypothesis of equal weights was untenable, and Rj represented a
`hidden periodicity'." At this point, Feller detects that we are using the wrong sampling distribution:

\The fallacy of this reasoning was exposed by R. A. Fisher (1929) who pointed out that the maximum
among n independent observations does not obey the same probability distribution as each variable
taken separately. The error of treating the worst case statistically as if it had been chosen at random
is still common in medical statistics, but the reason for discussing the matter here is the surprising
and amusing connection of Fisher's test of signi�cance with covering theorems."

He then states that the quantities

Vj =
R2
jP
R2
i

; 1 � j � n

are distributed as the lengths of the n segments into which the interval (0,1) is partitioned by a
random distribution of n � 1 points. The probability that all Vj < a is given by the covering
theorem of W. L. Stevens (I, 9.9).

? The abbreviation \iid" is orthodox jargon standing for \Independently and Identically Distributed". For
us, this is another form of the Mind Projection Fallacy; In the real world, each individual coe�cient Aj ; Bj

is a de�nite, �xed quantity that is known from the data; it is not \distributed" at all! Quite generally,
orthodoxy tries to draw inferences from imaginary data sets that one thinks might have been seen, but
were not. The pragmatic consequences of this nonsense are probably the most dangerous error in orthodox
reasoning. In our closing comments we shall note why orthodox ideology forces one to it.
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Of course, our position is that both Feller's \old wrong" and \new right" sampling distributions
are irrelevant to the inference; the two quantities that are relevant (the prior information that
expresses our knowledge of the phenomenon and the likelihood function that expresses the evidence
of the data) are not even mentioned by Fisher, Feller, or Bloom�eld, so they are in no position to
draw inferences about periodicity.

In any event, the bottom line of this discussion is that Fisher's test fails to detect the perfectly
evident 20 year periodicity in the New York Central Park January temperatures. But this is not
the only case where simple visual examination of the data is a more powerful tool for inference than
the principles taught in orthodox textbooks. Crow, Davis & Max�eld (1960) present applications
of the orthodox F{test and t{test which we examine in Jaynes (1976) with the conclusions that (1)
the eyeball is a more reliable indicator of an e�ect than an orthodox equal{tails test, and (2) the
Bayesian test con�rms quantitatively what the eyeball sees qualitatively. This is also relevant to
the notions of domination and admissibility discussed below.

A Bayesian analysis. Now we examine a Bayesian analysis of these same data, and for pedagogi-
cal reasons we want to explain its rationale in great detail. There may be various di�erent Bayesian
treatments of data for periodicity, corresponding to di�erent information about the phenomenon,
expressed by di�erent choices of a model. Our Bayesian model is: we consider it possible that the
data have a periodic component due to some systematic physical inuence on the weather:

A cos!t +B sin !t (17{39)

where as noted, we may suppose j!j � � (with yearly data it does not make sense to consider
periods shorter than a year). In addition the data are contaminated with variable components et
that we call \irregular" because we cannot control them or predict them and therefore cannot make
allowance for them. This could be because we do not know their real causes or because, although
we know the causes we lack the data on initial conditions that would enable predictions.y Then,
as explained in Chapter 7, it will almost always do justice to the real prior information that we
have to assign a gaussian sampling distribution with parameters (�; �) to the irregulars. There is
hardly any real problem in which we would have the detailed prior information that would justify
any more structured sampling distribution.

Thus � is the \nominal true mean temperature" not known in advance; we can estimate it
from the data very easily (intuition can see already that the mean value of the data y is about as
good an estimate of � that we can make from the information we have); but it is not of present
interest and so we treat it as a nuisance parameter. We do not know � in advance either, although
we can easily estimate it too from the data. But that is not our present interest and so we shall let
� also be a nuisance parameter to be integrated out as explained in Chapter 7. Our model equation
for the data is then

yt = A cos!t +B sin!t+ et; 1 � t � n (17{40)

and our sampling distribution for the irregular component is

p(e1 � � �enj�; �; I) =
�

1

2��2

�n=2

exp

"
� 1

2�2

X
t

(et � �)2

#
(17{41)

y In meteorology, although the laws of thermodynamics and hydrodynamics that determine the weather
are well understood, weather data taken on a 50{mile grid are grossly inadequate to predict the weather
24 hours in advance; partial di�erential equations require an enormous amount of information on initial
conditions to determine anything like a unique solution.
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Then the sampling (density) distribution for the data is

p(y1 � � �ynj�; �; I) =
�

1

2��2

�n=2

exp[�Q=2�2] (17{42)

with the quadratic form

Q(A;B; !) �
X

(yt � �� A cos!t� B sin!t)2 (17{43)

or,

Q = n[y2 � 2y� + �2 � 2Ayt cos!t� 2Byt sin!t + 2�Acos!t

+ 2�Bsin !t+ 2ABcos!t sin !t+ A2cos2 !t+ B2sin2 !t]
(17{44)

where all the overbar symbols denote sample averages over t. A great deal of detail has suddenly
appeared that was not present in the orthodox treatment; but now all of this detail is actually
relevant to the inference.z In any nontrivial Bayesian solution we may encounter much analytical
detail because every possible contingency allowed by our information is being taken into account.
Most of this detail is not perceived at all by orthodox principles, and it would be di�cult to handle
by paper{and{pencil calculation.

In practice, a Bayesian learns to recognize that much of this detail actually makes a negligibly
small di�erence for the �nal conclusions, and so we can almost always make approximations so
good that we can do the special calculation needed for our present purpose with pencil and paper
after all. But fortunately, details are no deterrent to a computer, which can happily grind out the
exact solution.? Now in the present problem, (A;B; !) are the interesting parameters that we want
to estimate, while (�; �) are nuisance parameters to be eliminated. We see that of the nine sums
in (17{44), four involve the data yt; and since this is the only place where the data appear, these
four sums are the jointly su�cient statistics for all the �ve parameters in the problem. The other
�ve sums can be evaluated analytically once and for all, before we have the data.

Now, what is our prior information? Surely, we knew in advance that A;B must be less than
100o F. If there were a temperature variation that large, New York City would not exist; there would
have been a panic evacuation of that area long before, by anyone who happened to wander into it
and survived long enough to escape. Thus the empirical fact that New York City exists is highly
cogent information relevant to the question being asked; it is already su�cient to ensure proper
priors for (A;B) in the Bayesian calculation. Also, we have no prior information about the phase
� = tan�1(B=A) of any periodicity. We could cite various other bits of relevant prior information,
but we know already [from the results found in Chapter 6, Exercise (6.6)] that unless we have prior
information that reduces the possible range to something like 10o F, it will make a numerically
negligible di�erence in the conclusions (a strictly nil di�erence if we record our conclusions only
to two or three decimal digits). So let us see what Bayesian inference gives with just this. By an
argument essentially the same as the Herschel derivation of the gaussian distribution in Chapter 7,
we may assign a joint prior

z This is just the expression of the fact that probability theory as logic is the exact system for inference;
therefore it will seek out relentlessly every scrap of information that has any relevance at all to the question
being asked.
? Indeed, the exact general solution is often easier to program than is any particular special case of it or
approximation to it, because one need not go into the details that make the case special. And the program
for the exact solution has the merit of being crash{proof if written to prevent underow or overow (for
approximations will almost surely break down for some data sets, but the exact solution { with proper
priors { must always exist for every possible data set.
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p(A;BjI) = 1

2��2
exp

�
�A

2 +B2

2�2

�
(17{45)

where � is of the order of magnitude of 100o F; we anticipate that its exact numerical value can have
no visible e�ect on our conclusions (nevertheless, such a proper prior may be essential to prevent
computer crashes).

Now the most general application of Bayes' theorem for this problem would proceed as follows.
We �rst �nd the joint posterior distribution for all �ve parameters:

p(A;B; !; �; �jD; I) = p(A;B; !; �; �jI) p(DjA;B; !; �; �; I)
p(DjI) (17{46)

then integrate out the nuisance parameters:

p(A;B; !jD; I) =
Z
d�

Z
d� p(A;B; !; �; �jD; I) (17{47)

But this is a far more general calculation than we need for present purposes; it is prepared to take
into account arbitrary correlations in the prior probabilities. Indeed, we can always factor the prior
thus:

p(A;B; !; �; �jI) = p(A;B; !jI) p(�; �jA;B;!; I) (17{48)

and thus the most general solution appears formally simpler:

p(A;B; !jD; I) = C p(A;B; !jI)L�(A;B; !) (17{49)

where C is a normalization constant, and L� the quasi{likelihood

L�(A;B; !) �
Z
d�

Z
d� p(�; �jA;B; !; I) p(DjA;B; !; �; �; I) (17{50)

In (17{49) the nuisance parameters are already out of sight. But in our present problem, evidently
knowledge of the parameters (A;B; !) of the systematic periodicity would tell us nothing about
the parameters (�; �) of the irregulars; so the prior for the latter is just

p(�; �jA;B; !; I) = p(�; �jI) (17{51)

so what is our prior information about (�; �)? Surely we know also, for the same \panic evacuation"
reason, that neither of these parameters could be as large as 100o F. And we know that � could not
be as small as 10�6 degrees F, because after all our data are taken with a real thermometer, and
no meteorologist's thermometer can be read to that accuracy (if it could, it surely would not give
reproducible readings to that accuracy over many years). We could just as well ignore that practical
information and argue that � could not be as small as 10�20 degrees F because temperature is not
de�ned, in statistical mechanics, to that accuracy. Numerically, it will make no di�erence at all in
our �nal conclusions; but it is still conceivable that a proper prior may be needed to avoid computer
crashes in all contingencies; so to be on the safe side we assign the prior gaussian in � because it
is a location parameter, a truncated Je�reys prior for � because we have seen in Chapter 12 that
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the Je�reys prior is uniquely determined as the only completely uninformative prior for a scale
parameter:

p(�; �jI) = 1p
2��2

exp[��2=2�2] � 1
�
; a � � � b (17{52)

in which � and b are also of the order of 100o F, while a ' 10�6; we are only playing it extremely
safe in the expectation that most of this care will prove in the end to have been unnecessary.

Our quasi{likelihood is then

L�(A;B; !) =

Z
1

�1

d� exp[��2=2�2]
Z b

a

d�

�n+1
exp[�Q=2�2] (17{53)

But now it is evident that the �nite limits on � are unnecessary; for if n > 0 the integral over �
converges both at zero and in�nity, and

Z
1

0

d�

�n+1
exp[�Q=2�2] = 1

2

(n=2� 1)!

(Q=2)n=2
(17{54)

and the integral of this over � is also guaranteed to converge. But for tactical reasons, let us do
the integration over � �rst.

Q = n[s2 � (�� y)2

************** MUCH, MUCH MORE HERE! *****************

COMMENTS

Let us try to summarize and understand the underlying technical reasons for the facts noted in the
last two Chapters. Sampling theory methods of inference were satisfactory for the relatively simple
problems considered by R. A. Fisher in the 1930's. These problems had the features of:

(A) Few parameters

(B) No nuisance parameters

(C) No important prior information

(D) Presence of su�cient statistics.

When all these conditions are met and we have a reasonably large amount of data (say, n � 30),
orthodox methods become essentially equivalent to the Bayesian ones and it will make no pragmatic
di�erence which ideology we prefer. But today we are faced with important problems in which
some or all of these conditions are violated. Only Bayesian methods have the analytical apparatus
capable of dealing with such problems without sacri�cing much of the relevant information in the
data. They are more powerful (i.e., if there is no su�cient statistic, Bayesian methods extract
more information from the data because they make use of all the data, while an orthodox method
will still use only one function of the data, namely some arbitrarily chosen `estimator' �(x1 � � �xn).

But at the same time Bayesian methods are safer (i.e., they have automatic built{in safety
devices that prevent them from misleading us with the over{optimistic or over{pessimistic conclu-
sions that orthodox methods can produce). In parameter estimation, for example, whether or not
there is a su�cient statistic, the log{likelihood function is
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logL(�) =
nX
i=1

log p(xij�) = n log p(xij�) (17{sam)

in which we see the average of the log{likelihoods over each individual data point. The log{likelihood
is always spread out over the full range of variability of the data, so if we happen to get a very
bad (spread out) data set, no good estimate is possible and Bayes' theorem warns us about this
by returning a wide posterior distribution. With a location parameter and an uninformative prior,
the width of the posterior distribution for � is essentially (R+W )

(range of the data) + (width of individual likelihoods)

If we happen to get a very good (sharply concentrated) data set, a more accurate estimate of �
is possible and Bayes' theorem takes advantage of this, returning a posterior distribution whose
width approaches a lower bound determined by that of the single point likelihood Li(�) = p(xij�).

In the orthodox method the accuracy claim is essentially the width of the sampling distribution
for whatever estimator � we have chosen to use. But this takes no note of the range of the data!
Whether the data range is large or small, orthodoxy will claim just the same accuracy for its
estimate. Far worse, that accuracy expresses entirely the variability of the estimator over other

data sets that we might have obtained but did not . But as noted, unobserved data sets are entirely
a �gment of our imagination, and so are irrelevant to the inference being made.

One wonders how is is possible that this orthodox logic continues to be taught year after year
as `objective', while charging Bayesians with `subjectivity'. When we examine the rationale of their
procedures, it is evident that orthodoxians are in no position to charge anybody with `subjectivity'.
If there is no su�cient statistic, the orthodox accuracy claim simply ignores all the evidence in the
data that is relevant to the accuracy.

We shall illustrate this in later Chapters with several examples including interval estimation,
dealing with trend, linear regression, detection of cycles, and prediction of time series. In all
these cases, \orthodox" methods can miss important evidence in the data; but they can also yield
conclusions not justi�ed by the data. No case of such failure of Bayesian methods has been found;
indeed, the optimality theorems well known in the Bayesian literature lead one to expect this from
the start. Psychologically, however, practical exemples seem to have more convincing power than
do optimality theorems.

Historically, scienti�c inference has been dominated overwhelmingly by the case of univariate
or bivariate Gaussian sampling distributions. This has produced a distorted picture of the �eld;
the Gaussian case is the one in which \orthodox", or \sampling theory" methods do best, and the
di�erence between pre{data and post{data procedures is the least. On the basis of this limited
evidence, orthodox theory (in the hands of Fisher) tried to claim general validity for its methods,
and attacked Bayesian methods savagely without ever examining the results they give.

But even in the multivariate Gaussian case, there are important problems where sampling
theory methods fail for technical reasons. An example is linear regression with both variables
subject to error of unknown variance; indeed, this is perhaps the most common problem of inference
faced by experimental scientists. Yet sampling theory is helpless to deal with it, because each new
data point brings with it a new nuisance parameter. The orthodox statistical literature o�ers us
no satisfactory way of dealing with this problem. See, for example, Kempthorne & Folks (1971),
in which the (for them) necessity of deciding which quantities are \random", and which are not,
leads them to formulate sixteen di�erent linear regression models to describe what is only a single
inference problem; then they �nd themselves helpless to deal with most of them.

When we depart from the Gaussian case, we open up a Pandora's box of anomalies, logical
contradictions, absurd results, and technical di�culties beyond the means of sampling theory to
handle [several examples were noted already by the devout orthodoxians Kendall & Stuart (1961)].
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These show the fundamental error in supposing that the quality of an estimate can be judged
merely from the sampling distribution of the estimator. This is true only in the simpler Gaussian
cases; in general, as Fisher noted, many di�erent samples which all lead to the same estimator
nevertheless determine the values of the parameters to very di�erent accuracy because they have
di�erent con�gurations (ranges). But Fisher's remedy { conditioning on ancillary statistics { is
seldom possible, and when it is possible, it is mathematically equivalent to use of Bayes' theorem.

Unfortunately, what the orthodox literature fails to recognize is that all of these problems
are solved e�ortlessly by the uniform application of the single Bayesian method. In fact, once the
Bayesian analysis has shown us the correct answer, one can often study it, understand intuitively
why it is right; and with this deeper understanding see how that answer might have been found by
some ad hoc device acceptable to orthodoxy.

We will illustrate this by giving the solution to the aforementioned regression problem, and
to some inference problems with the Cauchy sampling distribution. To the best of our knowledge,
these solutions cannot be found in any of the orthodox statistical literature.

But we must note with sadness that in much of the current Bayesian literature, very little of
the orthodox baggage has been cast o�. For example, it is rather typical to see a Bayesian article
start with such phrases as: \Let X be a random variable with density function p(xj�), where the
value of the parameter � is uknown. Suppose this parametric family contains the true distribution
of X � � � ." The analytical solutions thus obtained will doubtless be valid Bayesian results; but one
is still clinging to the orthodox �ction of `random variables' and `true distributions', unaware that
this is restricting the application to a small fraction of the real situations where the solution might
be useful. In the vast majority of real applications there there are no `random variables' and no
`true distribution'; yet probability theory as logic applies to all of them.

Unlike orthodox tests, Bayesian posterior probabilities or odds ratios can tell us quantitatively
how strong the evidence is for some e�ect, taking into account all the evidence at hand, not merely
the evidence of one data set.

L. J. Savage (1962, pp. 63{67) gives by a rather long, closely reasoned argument using only
sampling probabilities, a rationale for the Bayesian algorithm. The Bayesian argument expounded
here in Chapter 4, which he rejects as a \necessary" view, yields the same conclusion, in greater
generality, by three lines of elementary algebra.

These comparisons show that in order to deal successfully with current real problems, it may be
essential to jettison tradition and authority, which have retarded progress throughout this Century.
It is a major scandal that orthodox methods continue to be taught at all to young statisticians,
economists, biologists, and medical researchers; this has done irreparable damage in these �elds for
decades.

Yet everywhere we look there are glimmerings of hope. For example, in medical diagnosis
the great physician Sir William Osler (1849 { 1919) long ago noted that:y Medicine is a science

of uncertainty and an art of probability . The book of Dr. Lee Lusted (1965) gives worked{out
examples, with ow charts and source code, of the Bayesian Computer diagnoses of six important
medical conditions, as well as a great deal of qualitative wisdom in medical testing. Lusted later
founded the Society for Medical Decision Making in 1978, and served as the �rst Editor of its
journal, Medical Decision Making . At the time of his death in February 1994 he was retired but
still serving as Adjunct Professor at the Stanford University Medical School, advising medical
students in problems of Decision Analysis. Dr. Peter Cheeseman has been developing Expert
Systems for medical diagnosis based on Bayesian principles.z

y Quoted by Wm. B. Bean (1950); p. 125
z As noted in Jaynes (1990b) this aroused �erce opposition from those with an entrenched vested interest in
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the old ad hoc principles; but in all their statistical training they had never seen a Bayesian solution, and did
not understand what Bayesian methods are. Once the �nal results are in hand, such uninformed opposition
melts away like an ice cube in a furnace. As we noted in Chapter 5 under \Evolution into Bayesianity", Cox's
theorems show that Bayesian methods are uniquely determined by elementary requirements of consistency.
Therefore, to deny that the human mind reasons according to Bayesian principles is to assert that it operates
in a deliberately inconsistent way. Nobody could maintain such a position if he were aware of this.
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CHAPTER 18

THE Ap DISTRIBUTION AND RULE OF SUCCESSION

\Inside every nonBayesian, there is a Bayesian struggling to get out."

- - - Dennis V. Lindley

Up to this point we have given our robot fairly general principles by which it can convert information
into numerical values of prior probabilities, and convert posterior probabilities into de�nite �nal
decisions; so it is now able to solve lots of problems. But it still operates in a rather ine�cient way
in one respect. When we give it a new problem, it has to go back into its memory (this proposition
that we have denoted by X or I , which represents everything it has ever learned). It must scan its
entire memory archives for anything relevant to the problem before it can start working on it. As
the robot grows older this gets to be a more and more time{consuming process.

Now, human brains don't do this. We have some machinery built into us which summarizes
our past conclusions, and allows us to forget the details which led us to those conclusions. We want
to see whether it is possible to give the robot a de�nite mechanism by which it can store general
conclusions rather than isolated facts.

Memory Storage for Old Robots.

Note another thing, which we will see is closely related to this problem. Suppose you have a
penny and you are allowed to examine it carefully, convince yourself that it's an honest coin; i.e.
accurately round, with head and tail, and a center of gravity where it ought to be. Then, you're
asked to assign a probability that this coin will come up heads on the �rst toss. I'm sure you'll say
1=2. Now, suppose you are asked to assign a probability to the proposition that there was once
life on Mars. Well, I don't know what your opinion is there, but on the basis of all the things that
I have read on the subject, I would again say about 1=2 for the probability. But, even though I
have assigned the same `external' probabilities to them, I have a very di�erent `internal' state of
knowledge about those propositions.

To see this, imagine the e�ect of getting new information. Suppose we tossed the coin �ve
times and it comes up tails every time. You ask me what's my probability for heads on the next
throw; I'll still say 1=2. But if you tell me one more fact about Mars, I'm ready to change my
probability assignment completely. There is something which makes my state of belief very stable
in the case of the penny, but very unstable in the case of Mars.y

This might seem to be a fatal objection to probability theory as logic. Perhaps we need to
associate with a proposition not just a single number representing plausibility, but two numbers;
one representing the plausibility, and the other how stable it is in the face of new evidence. And
so, a kind of two{valued theory would be needed. In the early 1950's, the writer gave a talk at one
of the Berkeley Statistical Symposiums, expounding this viewpoint.

But now, with more mature reection we think that there is a mechanism by which our
present theory automatically contains all these things. So far, all the propositions we have asked

y Note in passing a simple counter{example to a principle sometimes stated by philosophers, that theories
cannot be proved true; only false. We seem to have just the opposite situation for the theory that there
was once life on Mars. To prove it false, it would not su�ce to dig up every square foot of the surface of
Mars; to prove it true one needs only to �nd a single fossil.
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the robot to think about are \Aristotelian" ones of two{valued logic; they had to be either true
or false. Suppose we bring in new propositions of a di�erent type. It doesn't make sense to say
the proposition is either true or false, but still we are going to say that the robot associates a real
number with it, which obeys the rules of probability theory. Now, these propositions are sometimes
hard to state verbally; but we noticed before that if we give the probabilities conditional on X for
all propositions that we are going to use in a given problem, we have told you everything about
X which is relevant to that mathematical problem (although of course, not everything about its
meaning and signi�cance to us, that may make us interested in the problem). So, we introduce a
new proposition Ap, de�ned by

p(AjApE) � p (18{1)

where E is any additional evidence. If we had to render Ap as a verbal statement, it would come
out something like this:

Ap �

(
\Regardless of anything else you may have been told,

the probability of A is p."

)

Now, Ap is a strange proposition, but if we allow the robot to reason with propositions of this sort,
Bayes' theorem guarantees that there's nothing to prevent it from getting an Ap worked over onto
the left side in its probabilities: p(ApjE). What are we doing here? It seems almost as if we are
talking about the \probability of a probability."

Pending a better understanding of what that means, let us adopt a cautious notation that will
avoid giving possibly wrong impressions. We are not claiming that p(ApjE) is a `real probability' in
the sense that we have been using that term; it is only a number which is to obey the mathematical
rules of probability theory. Perhaps its proper conceptual meaning will be clearer after getting a
little experience using it. So let us refrain from using the pre�x symbol p; to emphasize its more
abstract nature, let us use the bare bracket symbol notation (ApjE) to denote such quantities, and
call it simply \the density for Ap, given E."

We de�ned Ap by writing an equation. You ask what it means, and we reply by writing more
equations. So let's write the equations; if X says nothing about A except that it is possible for A
to be true, and also possible for it to be false, then as we saw in case of the \completely ignorant
population" in Chapter 12,

(ApjX) = 1; 0 � p � 1 (18{2)

The transformation group arguments of Chapter 12 apply to this problem. As soon as we have this,
we can use Bayes' theorem to get the density for Ap, conditional on the other things. In particular,

(ApjEX) = (ApjX)
P (EjApX)

P (EjX)
=
P (EjAp)

P (EjX)
(18{3)

Now,

P (AjE) =

Z 1

0

(AApjE)dp : (18{4)

The propositions Ap are mutually exclusive and exhaustive (in fact, everyAp atly and dogmatically
contradicts every other Aq), so we can do this. We're just going to apply all of our mathematical
rules with total disregard of the fact that Ap is a funny kind of proposition. We believe that these
rules form a consistent way of manipulating propositions. But now we recognize that consistency
is a purely structural property of the rules, which could not depend on the particular semantic
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meaning you and I might attach to a proposition. So now we can blow up the integrand of (18{4)
by the product rule:

P (AjE) =

Z 1

0

P (AjApE)(ApjE)dp (18{5)

But from the de�nition (18{1) of Ap, the �rst factor is just p, and so

P (AjE) =

Z 1

0

(ApjE) p dp : (18{6)

The probability which our robot assigns to proposition A is just the �rst moment of the density
for Ap. Therefore, the density for Ap should contain more information about the robot's state
of mind concerning A, than just the probability for A. Our conjecture is that the introduction
of propositions of this sort solves both of the problems mentioned, and also gives us a powerful
analytical tool for calculating probabilities.

Relevance

To see why, let's note some lemmas about relevance. Suppose this evidence E consists of two parts;
E = EaEb, where Ea is relevant to A and, given Ea, Eb is not relevant:

P (AjE) = P (AjEaEb) = P (AjEa) (18{7)

By Bayes' theorem, it follows that, given Ea, A must also be irrelevant to Eb, for

P (EbjAEa) = P (EbjEa)
P (AjEbEa)

P (AjEa)
= P (EbjEa) (18{8)

Let's call this property `weak irrelevance.' Now does this imply that Eb is irrelevant to Ap? Ev-
idently not, for (18{7) says only that the �rst moments of (ApjEa) and (ApjEaEb) are the same.
But suppose that for a given Eb, (18{7) holds independently of what Ea might be; call this \strong
irrelevance." Then we have

P (AjE) =

Z 1

0

(ApjEaEb) p dp =

Z 1

0

(ApjEa) p dp: (18{9)

But if this is to hold for all (ApjEa), the integrands must be the same:

(ApjEaEb) = (ApjEa) (18{10)

and from Bayes' theorem it follows as in (18{8) that Ap is irrelevant to Eb:

p(EbjApEa) = p(EbjEa) (18{11)

for all Ea (according to our rules of notation, Appendix B, we may use either p or P for these
probability symbols).

Now, suppose our robot gets a new piece of evidence, F . How does this change its state of
knowledge about A? We could expand directly by Bayes' theorem, which we have done before, but
let's use our Ap this time:
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p(AjEF ) =

Z 1

0

(ApjEF ) p dp=

Z 1

0

(ApjE)
p(F jApE)

p(F jE)
p dp: (18{12)

In this likelihood ratio, any part of E that is irrelevant to Ap can be struck out. Because, by Bayes'
theorem, it is equal to

p(F jApEaEb)

p(F jEaEb)
=
p(F jApEa)

h
p(EbjFApEa)

p(EbjApEa)

i
p(F jEa)

h
p(EbjFEa)

p(EbjEa)

i =
p(F jApEa)

p(F jEa)
(18{13)

where we have used (18{11).

Now if Ea still contains a part irrelevant to Ap, we can repeat this process. Imagine this
carried out as many times as possible; the part Eaa of E that is left contains nothing at all that is
irrelevant to Ap. Eaa must then be some statement only about A. But then by de�nition (18{1)
of Ap, we see that Ap automatically cancels out Eaa in the numerator: (F jApEaa) = (F jAp). And
so we have (18{12) reduced to

p(AjEF ) =
1

p(F jEaa)

Z 1

0

(ApjE) p(F jAp) p dp : (18{14)

The weak point in this argument is that we haven't proved that it is always possible to resolve E
into a completely relevant part and completely irrelevant part. However, it is easy to show that in
many applications it is possible. So, let's just say that the following results apply to the case where
the prior information is \completely resolvable." We have not shown that it is the most general
case; but we do know that it is not an empty one.

A Surprising Consequence

Now, (F jEaa) is a troublesome thing which we would like to eliminate. It's really just a normalizing
factor, and we can eliminate it the way we did in Chapter 4; by calculating the odds on A instead
of the probability. This is just

(AjEF ) =
p(AjEF )

p(AjEF )
=

R 1
0
(ApjE)p(F jAp) p dpR 1

0
(ApjE)p(F jAp) (1� p) dp

(18{15)

The signi�cant thing here is that the proposition E, which for this problem represents our prior
information, now appears only in the density (ApjE). This means the only property of E which the

robot needs in order to reason out the e�ect of new information is this density (ApjE). Everything
that the robot has ever learned which is relevant to proposition A may consist of millions of isolated
separate facts. But when it receives new information, it does not have to go back and search its
entire memory for every little detail of its information relevant to A. Everything it needs in order
to reason about A from that past experience is contained summarized in this one function, (ApjE).

So, for each proposition A about which it is to reason, the robot can store a density function
(ApjE) like that in Figure (18.1). Whenever it receives new information F , it will be well advised
to calculate (ApjEF ), and then it can erase the previous (ApjE) and for the future store only
(ApjEF ). By this procedure, every detail of its previous experience is taken into account in future
reasoning about A.

This suggests that in a machine which does inductive reasoning, the memory storage problem
may be simpler than it is in a machine which does only deductive reasoning. This does not mean
that the robot is able to throw away entirely all of its past experience, because there is always a
possibility that some new proposition will come up which it has not had to reason about before.
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And whenever this happens, then of course it will have to go back into its original archives and
search for every scrap of information it has relevant to this proposition.

With a little introspection, we would all agree that that is just what goes on in our minds.
If you are asked how plausible you regard some proposition, you don't go back and recall all the
details of everything that you ever learned about this proposition. You recall your previous state
of mind about it. How many of us can still remember the argument which �rst convinced us that
d sin x=dx = cos x ? [But, unlike the robot, when you or I are confronted with some entirely new
proposition Z, we do not have the ability to carry out a full archival search.]

Let's look once more at Equation (18{14). If the new information F is to make any appreciable
change in the probability of A, we can see from this integral what has to happen. If the density
(ApjE) was already very sharply peaked at one particular value of p, then p(F jAp) will have to be
even more sharply peaked at some other value of p, if we are going to get any appreciable change in
the probability. On the other hand, if the density (ApjE) is very broad, any small slope in p(F jAp)
can make a big change in the probability which the robot assigns to A.

So, the stability of the robot's state of mind when it has evidence E is determined, essentially,
by the width of the density (ApjE). There does not appear to be any single number which fully
describes this stability. On the other hand, whenever it has accumulated enough evidence so that
(ApjE) is fairly well peaked at some value of p, then the variance of that distribution becomes a
pretty good measure of how stable the robot's state of mind is. The greater amount of previous
information it has collected, the narrower its Ap{distribution will be, and therefore the harder it
will be for any new evidence to change that state of mind.

Now we can see the di�erence between the penny and Mars. In the case of the penny, my
(ApjE) density, based on my prior knowledge, is represented by a curve something like Figure
(18.2a). In the case of previous life on Mars, my state of knowledge is described by an (ApjE)
density something like Figure (18.2b), qualitatively. The �rst moment is the same in the two cases,
so I assign probability 1=2 to either one; nevertheless, there's all the di�erence in the world between
my state of knowledge about those two propositions, and this di�erence is represented in the (ApjE)
densities.

Ideas very much like this have arisen in other contexts. While the writer was �rst speculating on
these ideas, a newspaper story appeared entitled: \Brain Stockpiles Man's Most Inner Thoughts."
It starts out: \Everything you have ever thought, done, or said{a complete record of every conscious
moment{is logged in the comprehensive computer of your brain. You will never be able to recall
more than the tiniest fraction of it to memory, but you'll never lose it either. These are the �ndings
of Dr. Wilder Pen�eld, Director of the Montreal Neurological Institute, and a leading Neurosurgeon.
The brain's ability to store experiences, many lying below consciousness, has been recognized for
some time, but the extent of this function is recorded by Dr. Pen�eld."

Now there are several examples given, of experiments on patients su�ering from epilepsy.
Stimulation of a de�nite location in the brain recalled a de�nite experience from the past, which
the patients had not been able to recall to memory previously. Here are the concluding sentences
of the article. Dr. Pen�eld now says:

\This is not memory as we usually use the word, although it may have a relation to it. No man can
recall by voluntary e�ort such a wealth of detail. A man may learn a song so he can sing it perfectly,
but he cannot recall in detail any one of the many times he heard it. Most things that a man is able
to recall to memory are generalizations and summaries. If it were not so, we might �nd ourselves
confused by too great a richness of detail."

This is exactly the hint we needed to form a clearer idea of what the Ap density means conceptually.
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Outer and Inner Robots

We know from overwhelming evidence, of which the above is only a small part, that human brains
have two di�erent functions: a conscious mind and a subconscious one. They work together in
some kind of cooperation. The subconscious mind is probably at work continually throughout life.
It solves problems and communicates information to the conscious mind under circumstances not
under our conscious control; everyone who has done original thinking about di�cult problems has
experienced this, and many [Henri Poincar�e, Jacques Hadamard, Wm. Rowan Hamilton, Freeman
Dyson] have recorded the experience for others to read. A communication from the subconscious
mind appears to us as a sudden inspiration that seems to come out of nowhere when we are relaxed
and not thinking consciously about the problem at all; instantly, we feel that we understand the
problem that has perplexed us for weeks.y

Now if the human brain can operate on two di�erent levels, so can our robot. Rather than
trying to think of a `probability of a probability' we may think of two di�erent levels of reasoning:
an `outer robot' in contact with the external world and reasoning about it; and an `inner robot'
who observes the activity of the outer robot and thinks about it. The conventional probability
formulas that we used before this Chapter represent the reasoning of the outer robot; the Ap
density represents the inner robot at work. But we would like our robot to have one advantage
over the human brain. The outer robot should not be obliged as we are to wait for the inspiration
from within; it should have the power to call at will upon the services of the inner robot.

Looking at the Ap distribution this way makes it much less puzzling conceptually. The outer
robot, thinking about the real world, uses Aristotelian propositions referring to that world. The
inner robot, thinking about the activities of the outer robot, uses propositions that are not Aris-
totelian in reference to the outer world; but they are still Aristotelian in its context, in reference
to the thinking of the outer robot; so of course the same rules of probability theory will apply to
them. The term `probability of a probability' misses the point, since the two probabilities are at
di�erent levels.

Having had this much of a glimpse of things, our imagination races on far beyond it. The inner
robot may prove to be more versatile than merely calculating and storing Ap densities; it may have
functions that we have not yet imagined. Furthermore, could there be an `inner inner' robot, twice
removed from the real world, which thinks about the activity of the inner one? What prevents us
from having a nested hierarchy of such robots, each inner to the next? Why not several parallel
hierarchies, concerned with di�erent contexts?

Questions like this may seem weird, until we note that just this same hierarchy has evolved
already in the development of computers and computer programming methods. Our present micro-
computers operate on three discernible hierarchical levels of activity, the inner `BIOS' code which
contacts the machine hardware directly, the `COMMAND SHELL' which guards it from the outer
world while sending information and instructions back and forth between them, and the outer level
of human programmers who provide the `high level' instructions representing the conscious ulti-
mate purpose of the machine level activity. Furthermore, the development of `massively parallel'
computer architecture has been underway for several years.

In the evolution of computers this represented such a natural and inevitable division of labor
that we should not be surprised to realize that a similar division of labor occurred in the evolution
of the human brain. It has an inner `BIOS' level which in some way exerts direct control over
the body's biological hardware (such as rate of heartbeat and levels of hormone secretion), a

y The writer has experienced this several times when, in unlikely situations like riding a tractor on his
farm, he suddenly saw how to prove something long conjectured. But the inspiration does not come unless
the conscious mind has prepared the way for it by intense concentration on the problem.
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`COMMAND SHELL' which receives `high level' instructions from the conscious mind and converts
them into the �nely detailed instructions needed to execute such complex activities as walking or
playing a violin, without any need for the conscious mind to be aware of all those details. Then in
some aspects of the present organization of the brain, not yet fully understood, we may be seeing
some aspects of the future evolution of computers; in particular of our robot.

The idea of a nested hierarchy of robots, each thinking about propositions on a di�erent level,
is in some ways similar to Bertrand Russell's `theory of types', which he introduced as a means of
avoiding some paradoxes that arose in the �rst formulation of his Principia Mathematica. There
may be a relation between them; but these e�orts at what Peano and Poincar�e called \logistic"
made in the early 20'th Century are now seen as so awed and confused { with an unlimited
proliferation of weird and self{contradictory de�nitions, yet with no recognition of the concept of
information { that it seems safest to scrap this old work entirely and rebuild from the start using
our present understanding of the role of information and our new respect for Kronecker's warnings,
so appropriate in an age of computers, that constructibility is the �rst criterion for judging whether
a newly de�ned set or other mathematical object makes any sense or can serve any useful purpose.

Our opening quotation from Dennis Lindley (made in a talk at a Bayesian seminar in the
early 1980's) �ts in nicely with these considerations and with our remarks in Chapter 5 about
visual perception. There we noted that any reasoning which conicts with Bayesian principles
would place a creature at a decided survival disadvantage, so evolution by natural selection would
automatically produce brains which reason in the Bayesian format. But our outer brain can become
corrupted by false indoctrination from contact with the outer world, while the inner brain, protected
from this, retains its natural Bayesian purity. Thus Lindley's statement made as a kind of joke,
may be quite literally true.

But we are here treading on the boundaries of present knowledge, so the above material
is necessarily a tentative, preliminary exploration of a possibly large new territory (call it wild
speculation if you prefer), rather than expounding a well established theory. With these cautions
in mind, let us examine some concrete examples which follow from the above line of thought, but
can also be justi�ed independently.

An Application.

Now let' imagine that a \random" experiment is being performed. From the results of the experi-
ment in the past, we want to do the best job we can of predicting results in the future. To make
the problem a de�nite one, introduce the propositions:

X � \For each trial we admit two prior hypotheses: A true, and A false. The
underlying `causal mechanism' is assumed the same at every trial. This means,
for example, that (1) the probability assigned to A at the n'th trial does not
depend on n, and (2) evidence concerning the results of past trials retains its
relevance for all time; thus for predicting the outcome of trial 100, knowledge
of the result of trial 1 is just as relevant as is knowledge of the result of trial
99. There is no other prior evidence."

Nn � \A true n times in N trials in the past."

Mm � \A true m times in M trials in the future."

The verbal statement of X su�ers from just the same ambiguities that we have found before, and
which have caused so much trouble and controversy in the past. One of the important points we
want to put across here is that you have not de�ned the prior information precisely until you have
given, not just verbal statements, but equations, which show how you have translated them into
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mathematics by specifying the prior probabilities to be used. In the present problem, this more
precise statement of X is, as before

(ApjX) = 1; 0 � p � 1 (18{16)

with the additional understanding (part of the prior information for this particular problem) that
the same Ap{distribution is to be used for calculations pertaining to all trials. What we are after
is p(MmjNn). First, note that by many repetitions of our product and sum rules in the same way
that we found Equation (9{30), we have the binomial distributions

p(NnjAp) =

�
N

n

�
pn(1� p)N�n

p(MmjAp) =

�
M

m

�
pm(1� p)M�m

(18{17)

and at this point we see that, although Ap sounds like an awfully dogmatic and indefensible state-
ment to us the way we introduced it, this is actually the way in which probability is introduced
in almost all present textbooks. One postulates that an event posses some intrinsic, \absolute"
or \physical" probability, whose numerical value we can never determine exactly. Nevertheless, no
one questions that such an \absolute" probability exists. Cram�er (1946, p. 154), for example, takes
it as his fundamental axiom. That is just as dogmatic a statement as our Ap; and we think it is, in
fact, just our Ap. The equations you see in current textbooks are all like the two above; whenever
p appears as a given number, an adequate notation would show that there is an Ap hiding invisibly
in the right{hand of the probability symbols.

Mathematically, the main functional di�erences between what we are doing here and what
is done in current textbooks are: (1) we recognize the existence of that right{hand side of all
probabilities, whether or not an Ap is hiding in them; and (2) thanks to Cox's theorems, we are not
afraid to use Bayes' theorem to work any proposition { including Ap { back and forth from one side
of our symbols to the other. In refusing to make free use of Bayes' theorem, orthodox writers are
depriving themselves of the most powerful single principle in probability theory. When a problem
of inference is studied long enough, sometimes through a string of ad hockeries for decades, one is
always forced eventually to a conclusion that could have been derived in three lines from Bayes'
theorem. But those cases refer to `external' probabilities at the interface between the robot and
the outside world; now we shall see that Bayes' theorem is equally powerful and indispensible for
manipulating `inner' probabilities.

We need to �nd the prior probability p(NnjX). This is already determined from (ApjX), for
our trick of resolving a proposition into mutually exclusive alternatives gives us

p(NnjX) =

Z 1

0

(NnApjX)dp=

Z 1

0

p(NnjAp)(ApjX)dp=

�
N

n

�Z 1

0

pn(1� p)N�ndp:

The integral we have to evaluate is the complete Beta-function:

Z 1

0

xr(1� x)sdx =
r!s!

(r + s+ 1)!
(18{18)

Thus, we have

p(NnjX) =

8<
:

1

N + 1
; 0 � n � N

0; N < n

9=
; ; (18{19)
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i.e., just the uniform distribution of maximum entropy; p(MmjX) is found similarly. Now we can
turn (18{17) around by Bayes' theorem:

(ApjNn) = (ApjX)
p(NnjAp)

p(NpjX)
= (N + 1)P (NnjAp) (18{20)

and so �nally the desired probability is

p(MmjNn) =

Z 1

0

(MmApjNn) dp =

Z 1

0

p(MmjApNn) (ApjNn) dp : (18{21)

Since p(MmjApNn) = p(MmjAp) by the de�nition of Ap, we have worked out everything in the
integrand. Substituting into (18{21), we have again an Eulerian integral, and our result is

p(MmjNn) =

�
n+m
n

� �
N+M�n�m

N�n

�
�
N+M+1

M

� : (18{22)

Note that this is not the same as the hypergeometric distribution (3{18) of sampling theory. Let's
look at this result �rst in the special caseM = m = 1. it then reduces to the probability of A being
true in the next trial, given that it has been true n time in the previous N trials. The result is

p(AjNn) =
n+ 1

N + 2
: (18{23)

We recognize Laplace's rule of succession, which we found before and discussed briey in terms of
Urn sampling in (6{28) { (6{43). Now we need to discuss it more carefully, in a wider context.

Laplace's Rule of Succession.

This rule occupies a supreme position in probability theory; it has been easily the most misunder-
stood and misapplied rule in the theory, from the time Laplace �rst gave it in 1774. In almost any
book on probability you'll �nd this rule mentioned very briey, mainly in order to warn the reader
not to use it. But we must take the trouble to understand it, because in our design of this robot
Laplace's rule is, like Bayes' theorem, one of the most important constructive rules we have. It is a
`new' rule (i.e., a rule in addition to the principle of indi�erence and its generalization, maximum
entropy) for converting raw information into numerical values of probabilities, and it gives us one
of the most important connections between probability and frequency.

Poor old Laplace has been ridiculed for over a Century because he illustrated use of this rule
by calculating the probability that the sun will rise tomorrow, given that it has risen every day for
the past 5,000 years.y One gets a rather large factor (odds of 5000� 365:2426+1 = 1826214 : 1) in
favor of the sun rising again tomorrow. With no exceptions at all as far as we are aware, modern
writers on probability have considered this a pure absurdity. Even Keynes (1921) and Je�reys
(1939) �nd fault with the rule of succession.

We have to confess our inability to see anything at all absurd about the rule of succession.
We recommend very strongly that you do a little independent literature searching, and read some

y Some passages in the Bible led early theologians to conclude that the age of the world is about 5,000
years. It seems that Laplace at �rst accepted this �gure, as did everyone else. But it was during Laplace's
lifetime that dinosaur remains were found almost under his feet (under the streets of Montmartre in Paris),
and interpreted correctly by the anatomist Cuvier. Had he written this near the end of his life, we think
that Laplace would have used a �gure vastly greater than 5,000 years.
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of the objections various writers have to it. You will see that in every case the same thing has
happened. First, Laplace was quoted out of context, and secondly, in order to demonstrate the
absurdity of the rule of succession, the author applies it to a case where it does not apply, because
there is additional prior information which the rule of succession does not taken into account.

But if you go back and read Laplace (1819) himself, you will see that in the very next sentence
after this sunrise episode, he warns the reader against just this misunderstanding: \But this number
is far greater for him who, seeing in the totality of phenomena the principle regulating the days

and seasons, realizes that nothing at the present moment can arrest the course of it." In this
somewhat awkward phraseology he is pointing out to the reader that the rule of succession gives
the probability based only on the information that the event occurred n times in N trials, and that
our knowledge of celestial mechanics represents a great deal of additional information. Of course,
if you have additional information beyond the numbers n and N , then you ought to take it into
account. You are then considering a di�erent problem, the rule of succession no longer applies, and
you can get an entirely di�erent answer. Probability theory gives the results of consistent plausible
reasoning on the basis of the information which was put into it.

But it has to be admitted that, in mentioning the sunrise at all, Laplace made a very unfortu-
nate choice of an example { because the rule of succession does not really apply to the sunrise, for
just the reason that he points out. This choice has had a catastrophic e�ect on Laplace's reputation
ever since. His statements make sense when the reader interprets \probability", as Laplace did,
as a means of representing a state of partial knowledge. But to those who thought of probability
as a real physical phenomenon, existing independently of human knowledge, Laplace's position
was quite incomprehensible; and so they jumped to the conclusion that Laplace had committed a
ludicrous error, without even bothering to read his full statement.

Here are some famous examples of the kind of objections to the rule of succession which you
�nd in the literature:

(1) Suppose the solidi�cation of hydrogen to have been once accomplished. According to
the rule of succession, the probability that it will solidify again if the experiment is
repeated is 2/3. This does not in the least represent the state of belief of any scientist.

(2) A boy 10 years old today. According to the rule of succession, he has the probability
11/12 of living one more year. His grandfather is 70; and so according to this rule
he has the probability 71/72 of living one more year. The rule violates qualitative
common sense!

(3) Consider the case N = n = 0. It then says that any conjecture without veri�cation
has the probability 1=2. Thus there is probability 1=2 that there are exactly 137
elephants on Mars. Also there is probability 1/2 that there are 138 elephants on
Mars. Therefore, it is certain that there are at least 137 elephants on Mars. But the
rule says also that there is probability 1/2 that there are no elephants on Mars. The
rule is logically self{contradictory!

The trouble with examples (1) and (2) is obvious in view of our earlier remarks; in each case, highly
relevant prior information, known to all of us, was simply ignored, producing a agrant misuse of
the rule of succession. But let's look a little more closely at example (3). Wasn't the rule applied
correctly here? We certainly can't claim that we had prior information about elephants on Mars
which was ignored. Evidently, if the rule of succession is to survive example (3), there must be
some very basic points about the use of probability theory which we need to emphasize.

Now, what do we mean when we say that there is `no evidence' for a proposition? The question
is not what you or I might mean colloquially by such a statement. The question is: What does it

mean to the robot? What does it mean in terms of probability theory?
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The prior information we used in derivation of the rule of succession was that the robot is told
that there are only two possibilities: A is true, orA is false. Its entire \universe of discourse" consists
of only two propositions. In the case N = 0, we could solve the problem also by direct application
of the principle of indi�erence, and this will of course give the same answer P (AjX) = 1=2, that we
got from the rule of succession. But just by noting this, we see what is wrong. Merely by admitting

the possibility of one of three di�erent propositions being true, instead of only one of two, we have

already speci�ed prior information di�erent from that used in deriving the rule of succession.

If the robot is told to consider 137 di�erent ways in which A could be false, and only one way in
which it could be true, and is given no other information, then its prior probability for A is 1/138,
not 1/2. So, we see that the example of elephants on Mars was, again, a gross misapplication of
the rule of succession.

Moral: Probability theory, like any other mathematical theory, cannot give a de�nite answer
unless we ask it a de�nite question. We should always start a problem with an explicit enumeration
of the \hypothesis space" consisting of the di�erent propositions that we're going to consider in
that problem. That is part of the \boundary conditions" which must be speci�ed before we have a
well{posed mathematical problem. If you say, \I don't know what the possible propositions are,"
that is mathematically equivalent to saying, \I don't know what problem I what to solve". The
only answer the robot can give is: \Come back and ask me again when you do know."

Je�reys' Objection.

As one would expect, the example used by Je�reys (1939, p. 107) is more subtle. He writes: \I may
have seen one in 1000 of the `animals in feathers' in England; on Laplace's theory the probability
of the propositions `all animals with feathers have beaks' would be about 1/1000. This does not
correspond to my state of belief, or anybody else's."

Now, while we agree with everything Je�reys said, we must point out that he failed to add
two important facts. In the �rst place, it is true that, on this evidence P (all have beaks) � 1=1000
according to Laplace's rule. But also P (all but one have beaks) � 1=1000; P (all but two have
beaks) � 1=1000; � � � etc. More speci�cally, if there are N feathered animals of which we have seen
r (all with beaks) then rewriting (18{22) in this notation we see that P (all have beaks)= P0 =
(r + 1)=(N + 1) � 1=1000, while P (all but n have beaks) is

Pn = P0
(N � r)! (N � n)!

N ! (N � n� r)!

and the probability that there are n0 or more without beaks is

NX
n=n0

Pn =
(N � r)! (N � n0 + 1)!

(N + 1)! (N � n0 � r)!
� exp(�rn0=N):

Thus if there are one million animals with feathers of which we have seen 1000 (all with beaks),
this leaves it an even bet that there are at least 1000 ln2 = 693 without beaks; and of course,
an even bet that the number is less than that. If the only relevant information one had was the
aforementioned observation we think that this would be just the proper and reasonable inference.

But in the second place, Laplace's rule is not appropriate for this problem because we all have
additional prior information that it does not take into account; hereditary stability of form, the
fact that a beakless feathered animal would, if it existed, be such an interesting curiosity that we
all should have heard of it even if we had not seen it (as has happened in the converse case of
the duck{billed platypus), etc. To see fairly and in detail what Laplace's rule (18{22) says, we
need to consider a problem where our prior information corresponds better to that supposed in its
derivation.
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Bass or Carp?

A guide of unquestioned knowledge and veracity assures us that a certain lake contains only two
species of �sh: Bass and Carp. We catch ten and �nd them all Carp { what is then our state of
belief about the percentage of Bass? Common sense tells us that, if the �sh population were more
than about ten percent Bass, then in ten catches we had a reasonably good chance of �nding one;
so our state of belief drops o� rapidly above ten percent. On the other hand, these data D provide
no evidence against the hypothesis that the Bass population is zero. So common sense without any
calculation would lead us to conclude that the Bass population is quite likely to be in the range,
say, (0%, 15%), but intuition does not tell us quantitatively how likely this is.

What, then, does Laplace's rule say? Denoting the Bass fraction by f , its posterior cumulative
pdf is p(f < f0jDX) = 1 � (1 � f0)

11. Thus we have a probability of 1 � (1 � :15)11 = :833, or
odds of 5:1, that the Bass population is indeed below 15%. Likewise, the data yield a probability
of 2/3, or odds of 2:1, that the lake contains less than 9.5 percent Bass, and odds of 10:1 that it is
less than 19.6 percent, while the posterior median value is

f1=2 = 1�

�
1

2

�1=11

= 0:061

or 6.1 percent; it is an even bet that the Bass population is less than this. The interquartile range
is (f1=4; f3=4) = (2.6%, 11.8%); it is as likely to be within as outside that interval. The `best'
estimate of f by the criterion of minimum mean{square error is Laplace's posterior mean value
(18{23): hfi = 1=12, or 8.3 percent.

Suppose now that our eleventh catch is a Bass; how does this change our state of belief?
Evidently, we shall revise our estimate of f upward, because the data now do provide evidence
against the hypothesis that f is very small. Indeed, if the Bass population were less than 5%, then
we would be unlikely to �nd one in only eleven catches, so our state of belief drops o� rapidly below
5%, but less rapidly than before above 10%.

Laplace's rule agrees, now saying that the best mean square estimate is hfi = 2=13, or 15.4
percent, and the posterior density is P (df jDX) = 132f(1 � f)10df . This yields a median value
of 13.6 percent, raised very considerably because the new datum has e�ectively eliminated the
possibility that the Bass population might be below about three percent, which was just the most
likely region before. The interquartile range is now (8.3%, 20.9%).

It appears to us that all these numbers correspond excellently to our common sense judgments.
This, then, is the kind of problem to which Laplace's rule applies very realistically; i.e., there were
known to be only two possibilities at each trial, and our prior knowledge gave no other information
beyond assuring us that both were possible. Whenever the result of Laplace's rule of succession
conicts with our intuitive state of belief, we suggest that the reason is that our common sense is
making use of additional prior information about the real world situation, that is not used in the
derivation of the rule of succession.

So Where Does The Rule Stand?

Mathematically, the rule of succession is the solution to a certain problem of inference, de�ned by
the prior probability and the data. The 200{year{old hangup has been over the question: what

prior information is being described by the uniform prior probability (18{2)? Laplace was not too
clear about this { his discussion of it seemed to invoke the idea of a `probability of a probability'
which may appear to be metaphysical nonsense until one has the notion of an inner and outer
robot { but his critics, instead of being constructive and trying to de�ne the conceptual problem
more clearly, seized upon this to denounce Laplace's whole approach to probability theory.
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Of Laplace's critics, only Je�reys (1939) and Fisher (1956) seem to have thought it through
deeply enough to realize that the unclear de�nition of the prior information was the source of
the di�culty; the others, following the example of Venn (1866), merely produce examples where
common sense and Laplace's rule are in conict, and without making any attempt to understand
the reason for it, reject the rule in any and all circumstances. As we noted in Chapter 16, Venn's
criticisms were so unjust that even Fisher (1956) was impelled to come to Laplace's defense on this
issue.

In this connection we have to remember that probability theory never solves problems of actual
practice, because all such problems are in�nitely complicated. We solve only idealizations of the
real problem, and the solution is useful to the extent that the idealization is a good one. In the
example of the solidi�cation of hydrogen, the prior information which our common sense uses so
easily, is actually so complicated that nobody knows how to convert it into a prior probability
assignment. There is no reason to doubt that probability theory is, in principle, competent to deal
with such problems; but we have not yet learned how to translate them into mathematical language
without oversimplifying rather drastically.

In summary, Laplace's rule of succession provides a de�nite, useful solution to a de�nite, real
problem. Everybody denounces it as nonsense because it is not also the solution to some di�erent
problem. The case where the problem can be reasonably idealized to one with only two hypotheses
to be considered, a belief in a constant \causal mechanism," and no other prior information, is the
only case where it applies. But you can, of course, generalize it to any number of hypotheses, as
follows.

Generalization.

We give the derivation in full detail, to present a mathematical technique of Laplace that is useful
in many other problems. There are K di�erent hypotheses, fA1; A2; : : : ; AKg, a belief that the
\causal mechanism" is constant, and no other prior information. We perform a random experiment
N times, and observe A1 true n1 times, A2 true n2 times, etc. Of course,

P
i ni = N . On the basis

of this evidence, what is the probability that in the nextM =
P

imi repetitions of the experiment,
Ai will be true exactly mi times? To �nd the probability p(m1 : : :mK jn1 : : :nK) that answers this,
de�ne the prior knowledge by a K{dimensional uniform prior Ap{density:

(Ap1 : : :pK jX) = C�(p1 + � � �+ pK � 1); pi � 0 (18{24)

To �nd the normalization constant C, we set

Z 1

0

dp1 � � �

Z 1

0

dpK(Ap1 : : :pk jX) = 1 = CI(1) (18{25)

where

I(r) �

Z 1

0

dp1 � � �

Z 1

0

dpk�(p1 + � � �+ pK � r) (18{26)

Direct evaluation of this would be rather messy, because all integrations after the �rst would be
between limits that need to be worked out; so let's use the following trick. First, take the Laplace
transform of (18{26)Z

1

0

e��rI(r)dr =

Z
1

0

dp1 � � �

Z
1

0

dpKe
��(p1+���+pK) =

1

�K
(18{27)

Then, inverting the Laplace transform by Cauchy's theorem,
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I(r) =
1

2�i

Z +i1

�i1

e�r

�K
d� =

1

(K � 1)!

dK�1

d�K�1
e�r
���
�=0

=
rK�1

(K � 1)!
(18{28)

where, according to the standard theory of Laplace transforms, the path of integration passes to
the right of the origin, and is closed by an in�nite semicircle over the left half{plane, the integral
over which is zero. Thus,

C =
1

I(1)
= (K � 1)! (18{29)

By this device we avoided having to consider complicated details about di�erent ranges of integra-
tion over the di�erent pi, that would come up if we tried to evaluate (18{26) directly. The prior
p(n1 : : :nK jX) is then, using the same trick,

p(n1 : : :nK jX) =
N !

n1! : : :nK !

Z 1

0

dp1 � � �

Z 1

0

dpK pn11 � � �pnKK (Ap1 : : :ApK jX)

=
N ! (K � 1)!

n1! : : :nK !
J(1)

(18{30)

where

J(r) �

Z
1

0

dp1 � � �

Z
1

0

dpK pn11 � � �pnKK �(p1 + � � �+ pk � r) (18{31)

which we evaluate as before by taking the Laplace transform:

Z 1

0

e��rJ(r)dr =

Z 1

0

dp1 � � �

Z 1

0

dpK pn11 � � �pnKK e��(p1+���+pK) =
KY
i=1

ni!

�ni+1
(18{32)

So, as in (18{28), we have

J(r) =
n1! � � �nK !

2�i

Z +i1

�i1

d�
e�r

�N+K
=

n1! � � �nK !

(N +K � 1)!
rN+K�1 (18{33)

and

p(n1 � � �nk jX) =
N ! (K � 1)!

(N +K � 1)!
; ni � 0; n1 + � � �+ nK = N (18{34)

Therefore, by Bayes' theorem

(Ap1���pK jn1 � � �nK) = (Ap1���pK jX)
p(n1 � � �nK jAp1���pK )

p(n1 � � �nK jX)

=
(N +K � 1)!

n1! � � �nK !
pn11 � � �pnKK �(p1 + � � �+ pK � 1)

(18{35)

and �nally

p(m1 : : :mK jn1 : : :nK) =

Z 1

0

dp1 � � �

Z 1

0

dpK p(m1 : : :mK jAp1���pK ) (Ap1���pK jn1 � � �nK)

=
M !

m1! � � �mK !

(N +K � 1)!

n1! � � �nK !

Z 1

0

dp1 � � �

Z 1

0

dpK pn1+m1

1 � � �pnK+mK

K �(p1+ � � �+ pK � 1) (18{36)
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The integral is the same as J(1) except for the replacement ni ! ni +mi. So, from (18{33),

p(m1 � � �mK jn1 � � �nK) =
M !

m1! � � �mK !

(N +K � 1)!

n1! � � �nK !

(n1 +m1)! � � �(nK +mK)!

(N +M +K � 1)!
(18{37)

or, reorganizing into binomial coe�cients, the generalization of (18{22) is

p(m1 : : :mK jn1 : : :nK) =

�
n1 +m1

n1

�
� � �

�
nK +mK

nK

�
�
N +M +K � 1

M

� : (18{38)

In the case where we want just the probability that A1 will be true on the next trial, we need this
formula with M = m1 = 1, all other mi = 0. The result is the generalized rule of succession:

p(A1jn1; N;K) =
n1 + 1

N +K
: (18{39)

You see that in the case N = n1 = 0, this reduces to the answer provided by the principle of
indi�erence, which it therefore contains as a special case. If K is a power of 2, this is the same
as a method of inductive reasoning proposed by Carnap in 1945, which he denotes c�(h; e) in his
\Continuum of Inductive Methods."

Now, use of the rule of succession in cases where N is very small is rather foolish, of course.
Not really wrong; just foolish. Because if we have no prior evidence about A, and we make such
a small number of observations that we get practically no evidence; well, that's just not a very
promising basis on which to do plausible reasoning. We can't expect to get anything useful out of
it. We do, of course, get de�nite numerical values for the probabilities, but these values are very
\soft," i.e., very unstable, because the Ap distribution is still very broad for small N . Our common
sense tells us that the evidence Nn for small N provides no reliable basis for further predictions,
and we'll see that this conclusion also follows as a consequence of the theory we're developing here.

The real reason for introducing the rule of succession lies in the cases where we do get a
signi�cant amount of information from the experiment; i.e., when N is a large number. In this
case, fortunately, we can pretty much forget about these �ne points concerning prior evidence.
The particular initial assignment (ApjX) will no longer have much inuence on the results, for the
same reason as in the particle{counter problem of Chapter 6. This remains true for the generalized
case leading to (18{38). You see from (18{39) that as soon as the number of observations N is
large compared to the number of hypotheses K, then the probability assigned to any particular
hypothesis depends for all practical purposes, only on what we have observed, and not on how
many prior hypotheses there are. If you contemplate this for ten seconds, your common sense will
tell you that the criterion N � K is exactly the right one for this to be so.

In the literature starting with Venn (1866), those who issued polemical denunciations of
Laplace's rule of succession have put themselves in an incredible situation. How is it possible
for one human mind to reject Laplace's rule { and then advocate a frequency de�nition of prob-
ability? Anyone who assigns a probability to an event equal to its observed frequency in many
trials, is doing just what Laplace's rule tells him to do! The generalized rule (18{39) supplies an
obviously needed re�nement of this, small correction terms when the number of observations is not
large compared to the number of propositions.
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Con�rmation and Weight of Evidence.

A few new ideas { or rather, connections with familiar old ideas { are suggested by our calculations
involving Ap. Although we shall not make any particular use of them, it seems worthwhile to point
them out. We saw that the stability of a probability assignment in the face of new evidence is
essentially determined by the width of the Ap distribution. If E is prior evidence and F is new
evidence, then

p(AjEF ) =

Z 1

0

(ApjEF )pdp =

R 1
0
(ApjF )(ApjE)pdpR 1
0
(ApjF )(ApjE)dp

(18{40)

We might say that F is compatible with E, as far as A is concerned, if having the new evidence, F ,
doesn't make any appreciable change in the probability of A;

p(AjEF ) = p(AjE) (18{41)

The new evidence can make an enormous change in the distribution of Ap without changing the �rst
moment. It might sharpen it up very much, or broaden it. We could become either more certain
or more uncertain about A, but if F doesn't change the center of gravity of the Ap distribution,
we still end up assigning the same probability to A.

Now, the stronger property: the new evidence F con�rms the previous probability assignment,
if F is compatible with it, and at the same time, gives us more con�dence in it. In other words, we
exclude one of these possibilities, and with new evidence F the Ap distribution narrows. Suppose
F consists of performing some random experiment and observing the frequency with which A is
true. In this case F = Nn, and our previous result, Eq. (18{20), gives

(ApjNn) =
(N + 1)!

n!(N � n)!
pn(1� p)N�n

� (constant) � exp

�
�

�
(p� f)2

2�2

��
(18{42)

where

�2 =
f(1� f)

n
(18{43)

and f = (n=N) is the observed frequency of A. The approximation is found by expanding
log(ApjNp) in a Taylor series about its peak value, and is valid when n � 1 and (N � n) � 1. If
these conditions are satis�ed, then (ApjNn) is very nearly symmetric about its peak value. Then,
if the observed frequency f is close to the prior probability P (AjE), the new evidence Nn will not
a�ect the �rst moment of the Ap distribution, but will sharpen it up, and that will constitute a
con�rmation as we de�ned it.

This shows one more connection between probability and frequency. We de�ned the \con-
�rmation" of a probability assignment according to entirely di�erent ideas than are usually used
to de�ne it. We de�ne it in a way that agrees with our intuitive notation of con�rmation of a
previous state of mind. But it turned out that the same experimental evidence would constitute
con�rmation on either the frequency theory or our theory.

Now, from this we can see another useful notion; which we'll call weight of evidence. Consider
Ap, given two di�erent pieces of evidence, E and F ,

(ApjEF ) = (constant)� (ApjE) (ApjF ): (18{44)

If the distribution (ApjF ) was very much sharper than the distribution (ApjE), then the product
of the two would still have a peak at practically the value determined by F . In this case, we would
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say intuitively that the evidence F carries much greater \weight" than the evidence E. If we have
F , it doesn't really matter much whether we take E into account or not. On the other hand, if
we don't have F , then whatever evidence E may represent will be extremely signi�cant, because it
will represent the best we are able to do. So, acquiring one piece of evidence which carries a great
amount of weight can make it, for all practical purposes, unnecessary to continue keeping track of
other pieces of evidence which carry only a small weight.

Of course, this is the way our minds operate. When we receive one very signi�cant piece of
evidence, we no longer pay so much attention to vague evidence. In so doing, we are not being very
inconsistent, because it wouldn't make much di�erence anyway. So, our intuitive notion of weight
of evidence is bound up with the sharpness of the Ap distribution. Evidence concerning A that we
consider very signi�cant is not necessarily evidence that makes a big change in the probability of
A. It is evidence that makes a big change in our density for Ap. Now seeing this, we can get a
little more insight into the principle of indi�erence and also make contact between this theory and
Carnap's methods of inductive reasoning.

Is Indi�erence Based on Knowledge or Ignorance?

Before we can use the principle of indi�erence to assign numerical values of probabilities, there are
two di�erent conditions that have to be satis�ed: (1) we have to be able to analyze the situation into
mutually exclusive, exhaustive possibilities; (2) having done this, we must then �nd the available
information gives us no reason to prefer any of the possibilities to any other. In practice, these
conditions are hardly ever met unless there's some evident element of symmetry in the problem.
But there are two entirely di�erent ways in which condition (2) might be satis�ed. It might be
satis�ed as a result of ignorance, or it might be satis�ed as a result of positive knowledge about
the situation.

To illustrate this, let's suppose that a person who is known to be very dishonest is going to
toss a coin and there are two people watching him. Mr. A is allowed to examine the coin. He
has all the facilities of the National Bureau of Standards at his disposal. He performs hundreds
of experiments with scales and calipers and magnetometers and microscopes, X{rays, and neutron
beams, and so on. Finally, he is convinced that the coin is perfectly honest. Mr. B is not allowed
to do this. All he knows is that a coin is being tossed by a shady character. He suspects the coin
is biased, but he has no idea in which direction.

Condition (2) is satis�ed equally well for both of them. Each would start out by assigning
probability one{half to each face. The same probability assignment can describe a condition of
complete ignorance or a condition of very great knowledge. This has seemed paradoxical for a long
time. Why doesn't Mr. A's extra knowledge make any di�erence? Well, of course, it does make
a di�erence. It makes a very important di�erence, but one that doesn't show up until we start
performing this experiment. The di�erence is not in the probability for A, but in the density for
Ap.

Suppose the �rst toss is heads. To Mr. B, that constitutes evidence that the coin is biased to
favor heads. And so, on the next toss, he would assign new probabilities to take that into account.
But to Mr. A, the evidence that the coin is honest carries overwhelmingly greater weight than the
evidence of one throw, and he'll continue to assign a probability of 1=2.

You see what's going to happen. To Mr. B, every toss of the coin represents new evidence
about its bias. Every time it's tossed, he will revise his assignment for the next toss; but after
several tosses his assignment will get more and more stable, and in the limit n!1 they will tend
to the observed frequency of heads. To observer A, the prior evidence of symmetry continues to
carry greater weight than the evidence of almost any number of throws, and he persists in assigning
the probability 1=2. Each has done consistent plausible reasoning on the basis of the information
available to him, and our theory accounts for the behavior of each.
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If you assumed that Mr. A had perfect knowledge of symmetry, you might conclude that his
Ap distribution is a �{function. In that case, his mind could never be changed by any amount of
new data. Of course, that's a limiting case that's never reached in practice. Not even the Bureau
of Standards can give us evidence that good.

Carnap's Inductive Methods.

The philosopher Rudolph Carnap (1952) gives an in�nite family of possible \inductive methods,"
by which one can convert prior information and frequency data into a probability assignment and
an estimate of frequencies for this future. His ad hoc principle (that is, a principle that is found from
intuition rather than from the rules of probability theory) is that the �nal probability assignment
p(AjNnX) should be a weighted average of the prior probability p(AjX) and the observed frequency,
f = n=N . Assigning a weight N to the \empirical factor" f , and an arbitrary weight � to the
\logical factor" p(AjX) leads to the method which Carnap denotes by c�(h; e). Introduction of
the Ap distribution accounts for this in more detail; the theory developed here includes all of
Carnap's methods as special cases corresponding to di�erent prior densities (ApjX), and leads us
to reinterpret � as the weight of prior evidence. Thus, in the case of two hypotheses, the Carnap
�{method is the one you can calculate from the prior density (ApjX) = (constant) � [p(1 � p)]r,
with 2r = �� 2. The result is

p(AjNnX) =
2n+ �

2N + 2�
=

(n+ r) + 1

(N + 2r) + 2
: (18{45)

Greater � thus corresponds to a more sharply peaked (ApjX) density.

In our coin{tossing example, the gentleman form the Bureau of Standards reasons according
to a Carnap method with � of the order of, perhaps, thousands; while Mr. B, with much less prior
knowledge about the coin, would use a � of perhaps 5 or 6. (The case � = 2, which gives Laplace's
rule of succession, is much too broad to be realistic for coin tossing; for Mr. B surely knows that
the center of gravity of a coin can't be moved by more than half its thickness from the geometrical
center. Actually, as we saw in Chapter 10, this analysis isn't always applicable to tossing of real
coins, for reasons having to do with the laws of physics.)

From the second way we wrote Equation (18{45), you see that the Carnap �-method corre-
sponds to a weight of prior evidence which would be given by (� � 2) trials, in exactly half of
which A was observed to be true. Can we understand why the weighting of prior evidence is � =
(number of prior trials + 2), while that of the new evidence Np is only (number of new trials) =
N? Well, look at it this way. The appearance of the (+2) is the robot's way of telling us this: Prior
knowledge that is possible for A to be either true or false, is equivalent to knowledge that A has
been true at least once, and false at least once. This is hardly a derivation; but it makes reasonably
good sense.

But let's pursue this line of reasoning a step further. We started with the statement X : it is
possible for A to be either true or false at any trial. But that is still a somewhat vague statement.
Suppose we interpret it as meaning that A has been observed true exactly once, and false exactly
once. If we grant that this state of knowledge is correctly described by Laplace's assignment
(ApjX) = 1, then what was the \pre{prior" state of knowledge X0 before we had the data X?

To answer this, we need only to apply Bayes' theorem backwards, as we did in the method of
imaginary results in Chapter 5 and in Urn sampling in Chapter 6. The result is: our \pre{prior"
Ap{distribution must have been

(ApjX0)dp = (constant) �
dp

p (1� p)
(18{46)
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This is just the quasi{distribution representing \complete ignorance," or the \basic measure" of
our parameter space, that we found by transformation groups in Chapter 12 and which Haldane
(1932) had suggested long ago. So, here is another line of thought that could have led us to this
measure. By the same line of thought we found the discrete version of (18{46) already in Chapter
6, Eq. (6{46).

It appears, then, that if we have de�nite prior evidence that it is possible for A to be either
true or false on any one trial, then Laplace's rule (ApjX) = 1 is the appropriate one to use. But if
initially we are so completely uncertain that we're not even sure whether it is possible for A to be
true on some trials and false on others, then we should use the prior (18{46).

How di�erent are the numerical results which the pre{prior assignment (18{46) gives us?
Repeating the derivation of (18{20) with this pre{prior assignment we �nd that, provided n is not
zero or N ,

(ApjNnX0) =
(N � 1)!

(n� 1)! (N � n � 1)!
pn�1(1� p)N�n�1 (18{47)

which leads, instead of to Laplace's rule of succession, to the mean{value estimate of p:

p(AjNnX0) =

Z 1

0

(ApjNn) p dp =
n

N
(18{48)

equal to the observed frequency, and identical with the maximum{likelihood estimate of p. Likewise,
provided 0 < n < N , we �nd instead of (18{22) the formula

p(MmjNnX0) =

�
m+n�1

m

� �
M�m+N�n�1

M�m

�
�
N+M�1

M

� (18{49)

All of these results correspond to having observed one less success and one less failure.

The de Finetti Representation Theorem

******************************* MORE COMING! ****************************
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CHAPTER 19

PHYSICAL MEASUREMENTS

We have seen, in Chapter 7, how the great mathematician Leonhard Euler was unable to solve the

problem of estimating 8 orbital parameters from 75 discrepant observations of the past positions
of Jupiter and Saturn. Thinking in terms of deductive logic, he could not even conceive of the

principles by which such a problem could be solved. But 38 years later Laplace, thinking in terms

of probability theory as logic, was in possession of exactly the right principles to resolve the Great
Inequality of Jupiter and Saturn. In this Chapter we develop the solution as it would be done

today by considering a simpler problem, estimating two parameters from three observations. But
our general solution, in matrix notation, will include Laplace's automatically.

Reduction of Equations of Condition

Suppose we wish to determine the charge e and mass m of the electron. The Millikan oil-drop

experiment measures e directly. The deection of an electron beam in a known electromagnetic
�eld measures the ratio e=m. The deection of an electron toward a metal plate due to attraction

of image charges measures e2=m.

From the results of any two of these experiments we can calculate values of e andm. But all the

measurements are subject to error, and the values of e, m obtained from di�erent experiments will
not agree. Yet each of the measurements does contain some information relevant to our question,

that is not contained in the others. Then how are we to process the data so as to make use of all the
information available and get the best estimates of e, m? What is the probable error remaining?

How much would the situation be improved by including still another experiment of given accuracy?
Probability theory gives simple and elegant answers to these questions.

More speci�cally, suppose we have the results of these experiments:

(1) measures e with �2% accuracy

(2) measures (e=m) with �1% accuracy

(3) measures (e2=m) with �5% accuracy

Supposing the values of e, m approximately known in advance, e � e
0
, m � m

0
, the measurements

are then linear functions of the corrections. Write the unknown true values of e and m as

e = e
0
(1 + x

1
)

m = m
0
(1 + x

2
)

(19{1)

then x
1
, x

2
are dimensionless corrections, small compared to unity, and our problem is to �nd the

best estimates of x
1
, x

2
. The results of the three measurements are three numbers M

1
, M

2
, M

3

which we write as

M
1
= e

0
(1 + y

1
)

M
2
=

e
0

m
0

(1 + y
2
)

M
3
=

e2
0

m
0

(1 + y
3
)

(19{2)
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where the yi are also small dimensionless numbers which are de�ned by (19{2) and are therefore
known in terms of the old estimates e

0
, m

0
and the new measurements M

1
, M

2
, M

3
. On the other

hand, the true values of e; e=m; e2=m are expressible in terms of the xi:

e = e
0
(1 + x

1
)

e

m
=

e
0
(1 + x

1
)

m
0
(1 + x

2
)
=

e
0

m
0

(1 + x
1
� x

2
+ : : :)

e2

m
=
e2
0
(1 + x

1
)2

m
0
(1 + x

2
)
=

e
0

m
0

(1 + 2x
1
� x

2
+ : : :)

(19{3)

where higher order terms are considered negligible. Comparing (19{2) and (19{3) we see that if
the measurements were exact we would have

y
1
= x

1

y
2
= x

1
� x

2

y
3
= 2x

1
� x

2

(19{4)

But taking into account the errors, the known yi are related to the unknown xj by

y
1
= a

11
x
1
+ a

12
x
2
+ �

1

y
2
= a

21
x
1
+ a

22
x
2
+ �

2

y
3
= a

31
x
1
+ a

32
x
2
+ �

3

(19{5)

where the coe�cients aij form a (3� 2) matrix:

A =

0
@a

11
a
12

a
21

a
22

a
31

a
32

1
A =

0
@ 1 0

1 �1
2 �1

1
A (19{6)

and the �i are the unknown fractional errors of the three measurements. For example, the statement
that �

2
= �0:01 means that the second measurement gave a result one per cent too small.

More generally, we have n unknown quantities fx
1
: : : xng to be estimated from N imperfect

observations fy
1
: : : yNg, and the N \equations of condition:"

yi =

nX
j=1

aijxj + �i; i = 1; 2; : : : ; N (19{7)

or, in matrix notation,

y = Ax + � (19{8)
where A is an (N�n) matrix. In the present discussion we suppose the problem \overdetermined" in
the sense thatN > n. This condition defeated Euler (1749), who was facing the caseN = 75; n = 8.
But we keep in mind that the cases N = n (ostensibly well{posed) and N < n (underdetermined)
can also arise in real problems, and it will be interesting to see what probability theory has to say

about those cases.

In the early 19'th Century, it was common to reason as follows. It seems plausible that the best
estimate of each xj will be some linear combination of all the yi, but if N > n we cannot simply

solve equation (19{8) for x, since A is not a square matrix and has no inverse. However, we can get

a system of equations solvable for x if we take n linear combinations of the equations of condition;
i.e., if we multiply (19{8) on the left by some (n�N) matrix B. Then the product BA exists and
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is a square (n� n) matrix. Choose B so that (BA)�1 exists. Then the linear combinations are the
n rows of

By = BAx +B� ; (19{9)
which has the unique solution

x = (BA)�1B(y � �) : (19{10)
If the probabilities of various fractional errors �i are symmetric: p(�i) = p(��i) so that h�ii = 0,
then corresponding to any given matrix B the \best" estimate of xj by almost any reasonable loss

function criterion will be the j'th row of

x̂ = (BA)�1By ; (19{11)
but by making di�erent choices of B (i.e., taking di�erent linear combinations of the equations of
condition) we get di�erent estimates. In Euler's problem there were billions of possible choices.

Which choice of B is best?

In the above we have merely restated, in modern notation but old language, the problem of

\reduction of equations of condition" described in Laplace's Essai Philosophique (1819). A popular
criterion for solution was the principle of least squares; �nd that matrix B for which the sum of

the squares of the errors in x̂j is a minimum; or perhaps use a weighted sum. This problem can be
solved directly; we shall �nd the same solution by di�erent reasoning below.

Reformulation as a Decision Problem

But we really solved this problem in Chapter 13, where we have seen in generality that the best

estimate of any parameter, by the criterion of any loss function, is found by applying Bayes' theorem
to �nd the probability, conditional on the data, that the parameter lies in various intervals, then

making that estimate which minimizes the expected loss taken over the posterior probabilities.

Now in the original formulation of the problem, as given above, it was only a plausible con-

jecture that the best estimate of xj is a linear combination of the yi as in Equation (19{11). The
material in Chapter 13 shows us a much better way of formulating the problem, in which we don't

have to depend on conjecture. Instead of trying to take linear combinations without knowing which
combinations to take, we should apply Bayes' theorem directly to the equations of condition. Then,

if the best estimates are indeed of the linear form (19{11), Bayes' theorem should not only tell us
that fact, it will give us automatically the best choice of the matrix B and also tell us the accuracy

of those estimates, which least squares does not give at all.

Let's do this calculation for the case that we assign independent gaussian probabilities to

the errors �i of the various measurements. From our discussion in Chapter 7 we expect this to
be, nearly always, the best error law we can assign from the information we have. But in the

orthodox literature one would not see it that way; instead one would argue that in most physical
measurements the total error is the sum of contributions from many small, causally independent

imperfections, and the central limit theorem would then lead us to a gaussian frequency distribution

of errors.z There is nothing wrong with that argument, except that it has been psychologically
misleading to generations of workers, who concluded that if the frequency distribution of errors is
not in fact gaussian, then to assign a gaussian probability distribution is to \assume" something

that is not true; and this will lead to some horrible kind of error in our �nal conclusions.

Sermon on Gaussian Error Distributions. The considerations of Chapter 7 reassure us that

this danger is grossly exaggerated; the point is that in probability theory as logic, the gaussian

z As noted in Chapter 14, this is subject to an important quali�cation; that in general the gaussian

approximation will be good only for those values of total error � which can arise in many di�erent ways

by combination of the individual elementary errors. For unusually wide deviations we do not expect, and

hardly ever observe, gaussian frequencies.
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probability assignment is not an assumption about the frequencies of the errors; it is a description

of our state of knowledge about the errors. We hardly ever have prior knowledge about the errors

beyond the general magnitude to be expected, which we can interpret reasonably as specifying the
�rst two moments of the error distribution. This leads, by the principle of maximum entropy, to a

gaussian probability assignment as the one which agrees with that information without assuming
anything else. The region 
 of reasonably probable noise vectors (�

1
� � ��N) or the region Ax+ 


of reasonably probable data vectors, is then as large as it can be while agreeing with the second
moment constraints. The frequency distribution of errors is almost always unknown before seeing

the data; but even it if is far from gaussian, the gaussian probability assignment will still lead us
to the best inferences possible from the information we have.

The privileged status of a gaussian frequency distribution lies in a more subtle fact: acquisition

of new information does not a�ect our inferences if that new information is only what we would
have predicted from our old information. Thus if we assigned gaussian probabilities and then

acquired new information that the true frequency distribution of errors is indeed gaussian with the
speci�ed variance, this would not help us because it is only what we would have predicted. But if

we had additional prior information about the speci�c way in which the error frequencies depart
from gaussian, that would be cogent new information constraining the possible error vectors to a

smaller domain 

1
� 
. This would enable us to improve our parameter estimates over the ones to

be obtained below, because data vectors in the complementary set 
� 

1
, which were previously

dismissed as noise, are now recognized as indicating a real \signal". Bayes' theorem does all this

for us automatically.

Thus the covenant that we have with Nature is more favorable than supposed in orthodox

teaching; for given second moments a nongaussian frequency distribution will not make our infer-

ences worse; but knowledge of a nongaussian distribution would make them still better than the
results to be found below.

Encouraged by the message of this Sermon, we assign the probability for the errors f�
1
� � ��Ng

lie in the intervals fd�
1
� � �d�Ng respectively, as

p(�
1
� � � �N )d�1 � � �d�N = (const.) exp

"
�
1

2

NX
i=1

wi�
2

i

#
d�

1
� � �d�N (19{12)

where the \weight" wi is the reciprocal variance of the error of the i'th measurement. For example,

the crude statement that the �rst measurement has �2 per cent accuracy, now becomes the more
precise statement that the �rst measurement has weight

w
1
=

1

h�2
1
i
=

1

(0:02)2
= 2500 (19{13)

For the time being we suppose these weights known, as is generally the case with astronomical

and other physical data. From (19{7) and (19{12) we have immediately the sampling probability
density for obtaining measured values fy

1
� � �yNg given the true values fx

1
� � �xNg:

p(y
1
� � �yN j x

1
� � �xn) = C

1
exp

8><
>:�

1

2

NX
i=1

wi

2
4yi � nX

j=1

aijxj

3
5
2

9>=
>; (19{14)

where C
1
is independent of the yi. According to Bayes' theorem, if we assign uniform prior proba-

bilities to the xj , then the posterior probability density for the xj , given the actual measurements
yi, is of the form
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p(x
1
� � �xn j y1 � � �yN ) = C

2
exp

8><
>:�

1

2

NX
i=1

wi

2
4yi � nX

j=1

aijxj

3
5
2

9>=
>; (19{15)

where now C
2
is independent of the xj . Next, as in nearly all gaussian calculations, we need to

reorganize this quadratic form to bring out the dependence on the xi. Expanding it, we have

NX
i=1

wi

0
@yi � nX

j=1

aijxj

1
A

2

=

NX
i=1

wi

8<
:y2i � 2yi

nX
j=1

aijxj +

nX
j;k=1

aijaikxjxk

9=
;

=

nX
j;k=1

Kjkxixk � 2

nX
j=1

Ljxj +

NX
i=1

wiy
2

i

(19{16)

where

Kjk =

NX
i=1

wiaijaik ; Lj =

NX
i=1

wiyiaij (19{17)

or, de�ning a diagonal \weight" matrix Wij = wi�ij , we have a matrix K and a vector L:

K = ~AWA ; L = ~AWy (19{18)
where ~A is the transposed matrix. We want to write (19{15) in the form

p(x
1
� � �xn j y1 � � �yN ) = C

3
exp

8<
:�1

2

nX
j;k=1

Kjk(xj � x̂j)(xk � x̂k)

9=
; (19{19)

whereupon the x̂j will be the mean value estimates desired. Comparing (19{16) and (19{19) we

see that
nX

k=1

Kjkx̂k = Lj (19{20)

so if K is nonsingular we can solve uniquely for x̂.

The Underdetermined Case: K is Singular

If we have fewer observations than parameters, N < n, then from (19{17), K is still an (n � n)
matrix, but it is at most of rank N , and so is necessarily singular. Then the trouble is not that
(19{20) has no solution; but rather that it has an in�nite number of them. The maximum likelihood
is attained not at a point, but on an entire linear manifold of dimensionality n � N . Of course,

maximum likelihood solutions still exist as is seen from the fact that, although ( ~AWA)�1 does not
exist, (A ~A)�1 does, and so the parameter estimate

x� = ~A(A ~A)�1y (19{21)

now makes the quadratic form in (19{15) vanish: y = Ax�, achieving the maximum possible

likelihood. This is called the canonical inverse solution, and the MAXENT.EXE program described

in Appendix H has an option which will calculate it for you. But the canonical inverse is far
from unique; for we see from (19{8) that if we add to the estimate (19{21) any solution z of the



1906 19: The Overdetermined Case: K Can be Made Nonsingular 1906

homogeneous equation Az = 0, we have another estimate x�+ z with just as high a likelihood; and
there is a linear manifold � of such vectors x� + z, of dimensionality n�N .

Exercise 19.1. Show that the canonical inverse solution (19{21) is also a least squares one,

making
P
(x�i )

2 a minimum on the manifold �. Unfortunately, there seems to be no compelling
reason why one should want the vector of estimates to have minimum length.

For a long time no satisfactory way of dealing with such problems was recognized; yet we are
not entirely helpless, for the data do restrict the possible values of the parameters fxig to a \feasible

set" � satisfying (19{20). The data alone are incapable of picking out any unique point in this
set; but the data may be supplemented with prior information which enables us to make a useful

choice in spite of that. These are \generalized inverse" problems, which are of current importance
in many applications such as image reconstruction. In fact, in the real world, generalized inverse

problems probably make up the great majority, because the real world seldom favors us with all
the information needed to make a well{posed problem. Yet useful solutions may be found in many

cases by maximum entropy which resolves the ambiguity in a way that is \optimal" by several
di�erent criteria, as described in Chapters 11 and 24.

The Overdetermined Case: K Can be Made Nonsingular

By its de�nition (19{17), K is an (n� n) matrix, and for all real fq
1
� � �qng such that

P
q2i > 0,

nX
j;k=1

Kjkqj qk =

NX
i=1

wi

0
@ nX

j=1

aijqj

1
A
2

� 0 (19{22)

so if K is of rank n it is not only nonsingular, but positive de�nite. If N � n this will be the case

unless we have done something foolish in setting up the problem { including a useless observation
or an irrelevant parameter.

For, in the �rst place, we suppose all the weights wi to be positive; if any observation yi has

weight wi = 0, then it is useless in our problem; that is, it can convey no information about the
parameters and we should not have included it in the data set at all. We can reduce N by one.

Secondly, if there is a nonzero vector q for which
P

j aijqj is zero for all i, then in (19{7) for
all c, the parameter sets fxjg and fxj + cqjg would lead to identical data, and so could not be

distinguished whatever the data. In other words, there is an irrelevant parameter in the problem
which has nothing to do with the data; we can reduce n by one. Mathematically, this means that

the columns of the matrix A are not linearly independent; then if qk 6= 0, we can remove the
parameter xk and the k'th column of A with no essential change in the problem (i.e., no change in
the information we get from it).

Removing irrelevant observations and parameters if necessary, if �nally the number of cogent
observations is at least as great as the number of relevant parameters, then K is a positive de�nite
matrix and (19{20) has a unique solution

x̂k =

nX
j=1

(K�1)kjLj : (19{23)

From (19{18), we can write the result as

x̂ = ( ~AWA)�1 ~AWy (19{24)
and, comparing with (19{11), we see that in the gaussian case with uniform prior probabilities, the

best estimates are indeed linear combinations of the measurements, of the form (19{11), and the
best choice of the matrix B is
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B = ~AW; (19{25)
a result perhaps �rst found by Gauss, and repeated in Laplace's work referred to. Let us evaluate

this solution for our simple problem.

Numerical Evaluation of the Result

Applying the solution (19{24) to our problem of estimating e and m, the measurements of e, (e=m),
(e2=m) were of 2%, 1%, 5% accuracy respectively, and so

w
2
=

1

(0:01)2
= 10; 000

w
3
=

1

(0:05)2
= 400

(19{26)

and we found w
1
= 2500 before. Thus we have

B = ~AW =

�
1 1 2
0 �1 �1

�0@w
1

0 0

0 w
2

0
0 0 w

3

1
A =

�
w
1

w
2

2w
3

0 �w
2

�w
3

�
(19{27)

K = ~AWA =

�
(w

1
+ w

2
+ 4w

3
) �(w

2
+ 2w

3
)

�(w
2
+ 2w

3
) (w

2
+ w

3
)

�
(19{28)

K�1 = ( ~AWA)�1 =
1

jKj

�
(w

2
+ w

3
) (w

2
+ 2w

3
)

(w
2
+ 2w

3
) (w

1
+ w

2
+ 4w

3
)

�
(19{29)

where

jKj = det(K) = w
1
w
2
+ w

2
w
3
+ w

3
w
1

(19{30)
Thus the �nal result is

( ~AWA)�1 ~AW =
1

jKj

�
w
1
(w

2
+ w

3
) �w

2
w
3

w
2
w
3

w
1
(w

2
+ 2w

3
) �w

2
(w

1
+ 2w

3
) w

3
(w

2
� w

1
)

�
(19{31)

and the best point estimates of x
1
, x

2
are

x̂
1
=
w
1
(w

2
+ w

3
)y
1
+ w

2
w
3
(y

3
� y

2
)

w
1
w
2
+ w

2
w
3
+ w

3
w
1

x̂
2
=
w
1
w
2
(y
1
� y

2
) + w

2
w
3
(y

3
� 2y

2
) + w

3
w
1
(2y

1
� y

3
)

w
1
w
2
+ w

2
w
3
+ w

3
w
1

(19{32)

Inserting the numerical values of w
1
, w

2
, w

3
, we have

x̂
1
=

13

15
y
1
+

2

15
(y

2
� y

3
)

x̂
2
=

5

6
(y

1
� y

2
) +

2

15
(y

3
� 2y

2
) +

1

30
(2y

1
� y

3
)

(19{33)

which exhibits the best estimates as weighted averages of the estimates taken from all possible pairs

of experiments. Thus, y
1
is the estimate of x

1
obtained in the �rst experiment, which measures e di-

rectly. The second and third experiments combined yield an estimate of e given by (e2=m)(e=m)�1.
Since
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e2
0

m0

(1 + y
3
)

e0
m0

(1 + y
2
)
� e

0
(1 + y

3
� y

2
) (19{34)

(y
3
� y

2
) is the estimate of x

1
given by experiments 2 and 3. Equation (19{33) says that these two

independent estimates of x
1
should be combined with weights 13=15, 2=15. Likewise, x̂

2
is given

as a weighted average of three di�erent (although not independent) estimates of x
2
.

Accuracy of the Estimates

From (19{19) we �nd the second central moments of p(x
1
: : : xn j y1 : : : yN):

h(xj � x̂j)(xk � x̂k)i = hxjxki � hxjihxki = (K�1)jk (19{35)
Thus from the (n� n) inverse matrix

K�1 = ( ~AWA)�1 (19{36)
already found in our calculation of x̂j , we can also read o� the probable errors, or more conveniently,
the standard deviations. From (19{29) we can state the results in the form (mean) � (standard

deviation) as

(xj)est = x̂j �

q
(K�1)jj : (19{37)

Equations (19{24) and (19{37) represent the general solution of the problem, which Euler needed.

In the present case this is

(x
1
)est = x̂

1
�

�
w
2
+ w

3

w
1
w
2
+ w

2
w
3
+ w

3
w
1

�
1=2

(x
2
)est = x̂

2
�

�
w
1
+ w

2
+ 4w

3

w
1
w
2
+ w

2
w
3
+ w

3
w
1

�
1=2

(19{38)

with numerical values

x
1
= x̂

1
� 0:0186

x
2
= x̂

2
� 0:0216

(19{39)

so that from the three measurements we obtain e with �1:86 per cent accuracy, m with �2:16 per
cent accuracy.

How much did the rather poor measurement of (e2=m), with only �5 per cent accuracy, help

us? To answer this, note that in the absence of this experiment we would have arrived at conclusions
given by (19{28), (19{46) and (19{32) in the limit w

3
! 0. The results (also easily veri�ed directly

from the statement of the problem) are

x̂
1
= y

1

x̂
2
= y

1
� y

2

(19{40)

K�1 =
1

w
1
w
2

�
w
2

w
2

w
2

(w
1
+ w

2
)

�
(19{41)

or, the (mean) � (standard deviation) values are

x
1
= y

1
�

1

w
1

= y
1
� 0:020

x
2
= y

1
� y

2
�

�
w
1
+ w

2

w
1
w
2

�
1=2

= y
1
� y

2
� 0:024

(19{42)
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As might have been anticipated by common sense, a low{accuracy measurement can add very little
to the results of accurate measurements, and if the (e2=m) measurement had been much worse than

�5 per cent it would hardly be worthwhile to include it in our calculations. But suppose that an
improved technique gives us an (e2=m) measurement of �2 per cent accuracy. How much would

this help? The answer is given by our previous formulas with w
1
= w

3
= 2500, w

2
= 10; 000. We

�nd now that the mean-value estimates give much higher weight to the estimates using the (e2=m)

measurement:

x̂
1
= 0:556y

1
+ 0:444(y

3
� y

2
)

x̂
2
= 0:444(y

1
� y

2
) + 0:444(y

3
� 2y

2
) + 0:112(2y

1
� y

3
)

(19{43)

which is to be compared with (19{33). The standard deviations are given by

x
1
= x̂

1
� 0:0149

x
2
= x̂

2
� 0:020

(19{44)

The accuracy of e (x
1
) is improved roughly twice as much as that of m (x

2
), since the improved

measurement involves e2, but only the �rst power of m.

Exercise 19.2. Write a computer program which solves this problem for general N and n,
with N � n, and test it on the problem just solved. Estimate how long it would require for

the compiled program to solve Euler's problem. A usable routine for matrix inversion is given
in the source code �le MAXENT.BAS, lines 600{850. The same routine is included in many

FORTRAN packages.

Generalization

In the above we supposed the weights wi known from prior information. If this is not the case,
there are many di�erent conceivable kinds of partial prior information about them, leading to many

di�erent possible prior probability assignments p(w
1
� � �wnjI). Let us see how this circumstance

would change the above solutions.

********************** MORE TO COME HERE! ***************************

COMMENTS

A Paradox. We can learn many more things from studying this problem. For example, let us

note something which you will �nd astonishing at �rst. If you study Equation (19{32), which gives
the best estimate of m from the three measurements, you will see that y

3
, the result of the (e2=m)

measurement, enters into the formula in a di�erent way than y
1
and y

2
. It appears once with a

positive coe�cient, and once with a negative one. If w
1
= w

2
, these coe�cients are equal and

(19{32) collapses to

x̂
2
= y

1
� y

2
(19{45)

Now, realize the full implications of this: it says that the only reason we make use of the (e2=m)

measurement in estimatingm is that the (e)measurement and the (e=m)measurement have di�erent

accuracy. No matter how accurately we know (e2=m), if the (e) and (e=m) measurements happen
to have the same accuracy, however poor, then we should ignore the good measurement and base

our estimate of m only on the (e) and (e=m) measurements!

We think that, on �rst hearing, your intuition will revolt against this conclusion, and your �rst
reaction will be that there must be an error in Equation (19{32). So, check the derivation at your
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leisure. This is a perfect example of the kind of result which probability theory gives us almost
without e�ort, but which our unaided common sense might not notice in years of thinking about

the problem. We won't deprive you of the pleasure of resolving this \paradox" for yourself, and
explaining to your friends how it can happen that consistent inductive reasoning may demand that

you throw away your best measurement.

In Chapter 17, we complained about the fact that orthodox statisticians sometimes throw

away relevant data in order to �t a problem to their preconceived model of \independent random
errors." Are we now guilty of the same o�ense? No doubt, it looks very much that way! Yet we

plead innocence; the numerical value of (e2=m) is in fact irrelevant to inference about m, if we

already have measurements of e and e=m of equal accuracy. To see this, suppose that we knew
(e2=m) exactly from the start. How would you make use of that information in this problem? If you

try to do this, you will soon see why (e2=m) is irrelevant. But to clinch matters, try the following
exercise:

Exercise 19.3. Consider a speci�c case: w
1
= w

2
= 1; w

3
= 100; the third measurement is

ten times more accurate than the �rst two. If the third measurement cancels out when we try to
use all three as in (19{22), then it seems that the only way we could use the third measurement is

by discarding either the �rst or second. Show that, nevertheless, the estimates made by (19{32)
using only the �rst and second measurements are more accurate than those made by using the

�rst and third; or the second and third. Now explain intuitively why the paradox is not real.

As another example, it is important that we understand the way our conclusions depend on

our choice of loss functions and probability distributions for the errors �i. If we use instead of
the gaussian distribution (19{12) one with wider tails, such as the Cauchy distribution p(�) /

(1 + w�2=2)�1, the posterior distribution p(x
1
x
2
j y

1
y
2
y
3
) may have more than one peak in the

(x
1
; x

2
)-plane. Then a quadratic loss function, or more generally any concave loss function (i.e.,

doubling the error more than doubles the loss) will lead one to make estimates of x
1
and x

2
which

lie between the peaks, and are known to be very unlikely. With a convex loss function a di�erent

\paradox" appears, in that the basic equation (19{46) for constructing the best estimator may have
more than one solution, with nothing to tell us which one to use.

The appearance of these situations is the robot's way of telling us this: our state of knowledge

about x
1
and x

2
is too complicated to be described adequately simply by giving best estimates and

probable errors. The only honest way of describing what we know is to give the actual distribution

p(x
1
x
2
jy
1
y
2
y
3
). This is one of the limitations of decision theory, which we need to understand in

order to use it properly.
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CHAPTER 20

TREND AND SEASONALITY IN TIME SERIES

\� � � both London and Dublin by reason of the great and casual Accession of

Strangers who die therein, rendred them incapable of being Standards for this

purpose; which requires, if it were possible, that the People we treat of should

not at all be changed, but die where they were born, without any Adentitious

Increase from Abroad, or Decay by Migration elsewhere."

- - - Edmund Halley (1693)

The observed time series generated by the real world seldom appear to be \stationary" but exhibit

more complicated behavior. In most series, particularly demographic or economic data, trend is the

most common form of nonstationarity. Many economic time series are so dominated by trend (due,

for example, to steadily rising population or ination) that any attempt to detect other regularities

like cyclical uctuations or settling back after response to a shock, can be more misleading than

helpful until we have a safe way of dealing with trend.

The problem has been with us from the very beginning, as our opening quotation shows. In

that work Edmund Halley compiled the �rst tables of mortality; but he perceived that the data on

births and deaths from London and Dublin were so dominated by trend (both cities were growing

rapidly) that the information he needed could not be extracted from them. Instead he used data

from the city of Breslau in Silesia (today called Wroclaw, in what is now Poland) because the people

there were more meticulous in record keeping and less inclined to migrate.

Likewise, many time series are so dominated by cyclic uctuations (seasonal e�ects in economic

date, hum in electrical circuits) that it frustrates the attempt to extract an underlying \signal"

such as a long-term trend from a short run of data. In the present Chapter we examine what

probability theory has to say about the similar (logically, almost identical) problems of extracting

the information one wants in spite of such contaminations.

Previous Methods

The traditional procedures do not apply probability theory to this problem; and indeed, do not

even recognize the possibility that probability theory might be applied. Instead, one resorts to the

same kind of intuitive ad hockeries that we have noted so often before. The usual ones are called

\detrending" and \seasonal adjustment" in the economic literature, \�ltering" in the electrical

engineering literature. Like all such ad hockeries not derived from �rst principles, they capture

enough of the truth to be usable in many problems, but they are less than optimal in most and

dangerously misleading in some.

The almost universal detrending procedure in economics is to suppose the data (or the log-

arithm of the data) to be y(t) = x(t) + Ct + e(t), composed additively of a linear \trend" Ct, a

random \error" or \noise" e(t), and the component of interest x(t). We estimate the trend com-

ponent, subtract it from the data, and proceed to analyze the resulting \detrended data" for other

e�ects. However, many writers have noted that conventional detrending may introduce spurious

artifacts that distort the evidence for other e�ects, and render suspect some of the conclusions that

one tries to draw from the data. Detrending may even destroy the relevance of the data for our

purposes.

Merely to recognize the unsatisfactory nature of this procedure does not in itself suggest an

alternative that would be any better; and nothing better is to be found in the orthodox literature.
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To �nd it we need a deeper theoretical analysis. Now very fundamental theorems indicate that

Bayesian methods are the optimal way of dealing with any such problems of inference. Indeed,

it may be that the Bayesian method of dealing with trend may prove to be the most important

contribution of this work to practical econometrics.

Likewise, the traditional way of dealing with seasonal e�ects is to produce \seasonally adjusted"

data, in which one subtracts an estimate of the seasonal component from the true data, then tries

to analyze the adjusted data for other e�ects. Indeed, most of the economic time series data one

can obtain have been rendered nearly useless because they have been seasonally adjusted in an

irreversible way that has destroyed information which probability theory could have extracted from

the raw data. We think it imperative that this be recognized, and that researchers be able to obtain

the true, unmutilated data.

Electrical engineers would think instead in terms of fourier analysis and resort to \high{pass

�lters" and \band{rejection �lters" to deal with trend and seasonality. Again, the philosophy is to

produce a new time series (the output of the �lter) which represents in some sense an estimate of

what the real series would be if the contaminating inuence were absent. Then choice of the \best"

physically realizable �lter is a di�cult and basically indeterminate problem.

The Bayesian procedure (direct application of probability theory) leads us to an entirely dif-

ferent philosophy in that we do not seek to remove the trend or seasonal component from the data;

that is fundamentally impossible because there is no way to know the \true" trend or seasonal term,

and any assumption about them is almost certain to inject false information into the detrended,

seasonally adjusted, or �ltered series. Rather, we seek to remove the e�ect of trend or seasonality

from our �nal conclusions, while leaving the actual data intact. We develop the Bayesian procedure

for this and compare it in detail to the conventional one.

The Bayesian Procedure

First, we analyze the simplest possible nontrivial model, which can be solved completely and will

enable us to understand the exact relation between the two procedures. Having this understand-

ing, the generalization to the most complicated multivariate case will be straightforward, with no

surprises.

Suppose the model consists of only a single sinusoid and a linear trend: y(t) = A sin!t+Bt+

e(t) where A is the amplitude of interest to be estimated, and B is the unknown trend rate. If

the data are monthly economic data and the sinusoid represents a seasonal e�ect, then ! will be

2�=12 = 0:524. But, for example, if we are trying to detect a cycle with a period of twenty years,

! will be :524=20 =; 00262. Estimation of an unknown ! from such data is the very important

problem of spectrum analysis, considered in Chapter 21; for the present we suppose ! known.

Writing for brevity s(t) � sin(!t), our model equation is then:

y(t) = As(t) + B t + e(t) (20{1)

and the available data D � (y1; � � � ; yN) are values of this sampled at equal time intervals t =

1; 2; � � � ; N . Assigning the noise an iid gaussian prior probability density function et � N(0; �), the

sampling pdf for the data is

p(yjA;B; �) =

�
1

2��2

�N=2

exp

"
�

1

2�2

NX
t=1

(yt � Ast �B t)2

#
(20{2)

and as in any gaussian calculation, the �rst task is to rearrange the quadratic form
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Q(A;B) �
X
t

(yt � Ast �B t)2

= N
h
y2 + A2 s2 +B2t2 � 2Asy � 2B ty + 2AB ts

i (20{3)

where

y2 �
1

N

NX
t=1

y2t ; sy �
1

N

NX
t=1

styt ; (20{4)

etc. denote averages over the data sample. Three of these averages, (s2; t2; ts) are determined by

the \design of the experiment" and can be known before one has the data. In fact, we have nearly

s2 '
1

2
; t2 '

1

3
N2 (20{5)

with errors of relative order O(1=N), while ts is highly variable. It is certainly less than N=2, since

that could be achieved only if s(t) = 1 at every sampling point. Generally, ts is much less than

this, of the order ts ' 1=! due to near cancellation of positive and negative terms.

The other three averages (y2; sy; ty) depend on the data and are the \su�cient statistics" for

our problem, to be calculated as soon as one has the data.

Suppose that it is the seasonal amplitude A that we wish to estimate, while the trend rate

B is the nuisance parameter that makes the problem complicated. We want to make its e�ects

disappear, as far as is possible. We shall do this by �nding the joint posterior pdf for A and B

p(A;BjDI) (20{6)

and integrating out B to get the marginal posterior pdf for A

p(AjDI) =

Z
p(A;BjDI) dB (20{7)

This is the quantity that tells us everything the data D and prior information I have to say about

A, whatever the value of B. Conversely, if we wanted to estimate B, then A would be the nuisance

parameter, and we would integrate it out of (20|6) to get the marginal posterior p(BjDI).

In the limit of di�use priors for A and B (i.e., their prior pdf 's do not vary appreciably over

the region of high likelihood), the appropriate integration formula for (20|7) is

Z
1

�1

exp

�
�
Q(A;B)

2�2

�
dB = (const:)� exp

n n

2�2
(t2 s2 � ts

2
) (A� Â)2

o
(20{8)

where

Â �
t2 sy2 � ts

2
ty

2

t2 s2 � ts
2

(20{9)

and the (const:) is independent of A. Thus the marginal posterior pdf for A is proportional to

(20|8), and the Bayesian estimate of A, regardless of the value of B, is

(A)est = Â � �

s
t2

N(t2 s2 � ts
2
)

(20{10)
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However, orthodox writers have railed against this process of integrating out nuisance param-

eters { in spite of the fact that it is uniquely determined by the rules of probability theory as the

correct procedure { on the ideological grounds that the probability of a parameter is meaningless

because the parameters are not `random' variables; and even worse, in the integration we intro-

duced a prior that they consider arbitrary. But, independently of all such philosophical hangups,

we can examine how the Bayesian and orthodox procedures are related mathematically.

How are they related?

The integration of a nuisance parameter may be related to the detrending procedure as follows.

The joint posterior pdf may be factored into marginal and conditional pdf 's in two di�erent ways:

p(A;B; jDI) = p(AjDI) p(BjA;DI) (20{11)

or equally well,

p(A;BjDI) = p(AjBDI) p(BjDI) (20{12)

From (20|11) we see that (20|7) follows at once. From (20|12) we see that (20|89) can be

written as

p(AjDI) =

Z
p(AjBDI) p(BjDI) dB (20{13)

Thus the marginal pdf for A is a weighted average of the conditional pdf 's with B known:

p(AjBDI) (20{14)

But if B is known, then (20|14), in its dependence on A, is just (20|2) with B held �xed. This

is, from (20|3),

P (AjBDI) / exp

"
Ns2

2�2
(A�A�)2

#
(20{15)

where

A� �
sy � Bts

s2
(20{16)

But this just the estimate that one would make by ordinary least squares (OLS) �tting of As(t) to

the detrended data y(t)det � y(t)� Bt

A� =
sydet

s2
(20{17)

That is, A� is the estimate the orthodoxian would make if he estimated the trend rate to be B.

If his estimate was exactly correct, then he would indeed �nd the best estimate possible; but any

error in his estimate of the trend rate will bias his estimate of A.

The Bayesian estimate of A obtained from (20|13/ does not assume any particular trend

rate B; it is a weighted average over all possible values that the trend rate might have, weighted

according to their respective probabilities. Thus if the trend rate is very well determined by the

data, so that the probability p(BjDI) in (20|26) has a very sharp peak, then the Bayesian and

orthodoxian will be in essential agreement on the estimate of A. If the trend rate is not well
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determined by the data, then the Bayes estimate is a more cautious, conservative one that \hedges

its bets" by taking into account all possible values of trend rate.

But while an orthodoxian would presumably accept what we have done as mathematically

correct, this argument would not convince him of the superiority of the Bayesian estimate, because

he judges estimates by a di�erent criterion. It is the sampling distribution for the estimate that is,

for him, all-important. So let us investigate this.

Comparison of Bayesian and Conventional Estimates

Having found a Bayesian estimator, which theorems demonstrate to be optimal by the Bayesian

criterion of performance, nothing prevents us from examining its performance from the \orthodox"

sampling theory viewpoint and comparing it with orthodox estimates. Then let ~A and ~B be the

unknown true values of the parameters, and let us describe the situation as it would appear to one

who already knew ~A and ~B, but not what data we have found. As he would know, but unknown

to us, our data vector will in fact be

yt = ~Ast + ~B t + et (20{18)

and we shall calculate the statistic

sy = ~As2 + ~B ts+ es (20{19)

in which the �rst two terms are �xed (i.e. independent of the noise) and only the last varies with

di�erent noise samples.

Similarly, he knows what is unknown to us; that we shall �nd the statistic

ty = ~A ts+ ~B t2 + et (20{20)

Substituting (2) and (3) into (3) we �nd that ~B cancels out and the Bayes estimate reduces to

(A)Bayes = ~A+
t2 es � ts et

t2 s2 � ts
2

(20{21)

which is exactly independent of the true trend rate ~B. Therefore the Bayesian estimate does indeed

eliminate the e�ect of trend; one could hardly hope to do so more completely than that.

On the other hand, if one uses the conventional OLS estimator ( ) with detrended data [yt�B̂t]
based on any estimate B̂, he will �nd instead

(A)orthodox = ~A+
es

s2
+
h
~B � (Â)

i ts

; s2
(20{22)

and any error in estimation of the trend contributes an error in the estimate of the seasonal. But

if one uses the OLS estimate of the trend,

B̂ =
ty

t2

we �nd

(A)orth = ~A+
es s2

�

ts
2 ~A+ ts et

t2 s2

= (1� r2) ~A+
t2 s� ts et

t2 s2

(20{23)
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where

r �
tsp
t2 s2

(20{24)

is the sample correlation coe�cient of t and s(t). Thus (6) is also exactly independent of the true

trend rate ~B; but orthodox teaching would hold that the estimator (6) has a negative bias.

But in further comparison of (4) and (6) we see that in fact

(A)orth = (1� r2)(A)Bayes (20{25)

and so if the othodoxian corrected the bias simply by multiplying the detrended estimator (6) by

(1� r2) he would be led to exactly the Bayes estimate.

However, having recognized what he would consider a shortcoming of (6) and perceiving that

the Bayesian result (4) has at least the merit (from his viewpoint) of being unbiased, it does not

follow that the Bayesian solution is the best possible one. It is far from clear that the optimal

estimator can be found merely by multiplying the OLS estimate by a constant. Indeed, one who

has absorbed a strong anti-Bayesian indoctrination would, we suspect, reject any such suggestion

and would say that we should be able to correct the defects of (6) by a little more careful thinking

about the problem from the orthodox viewpoint. Let us try.

An Improved Orthodox Estimate

Orthodox reasoning runs about as follows. If one had in mind only the seasonal term and was not

aware of trend, one would be led to estimate the cyclic amplitude as

Â(0) =
sy

s2
; (20{26)

the conventional regression solution. Many di�erent lines of reasoning, including Ordinary Least

Squares (OLS) �tting of the data, lead us to this result.

But then one realizes that (20|26) is not a very good estimate because it ignores the disturbing

e�ect of trend. A better seasonal estimate could be made from the detrended data

(yt)det � yt � B̂ t (20{27)

where B̂ is an estimate of the trend rate, and it seems natural to estimate it by the conventional

regression rule

B̂(0) =
ty

t2
(20{28)

from OLS �tting of a straight line to the data. Using the detrended data (20|27) in (20|26)

yields the corrected cyclic amplitude estimate

Â(1) =
sy � ts B̂(0)

s2
(20{29)

or

Â(1) =
t2 sy � ts ty

t2 s2
(20{30)
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which is the conventional orthodox result for the problem.

But now we see that this is not the end of the story; for A and B enter into the model on just

the same footing. If it is true that we should estimate the cyclic amplitude A from detrended data

(16-30), surely it is equally true that we should estimate the trend rate B from the decyclized, or

\seasonally adjusted" data:

yt � Â(0) st (20{31)

Thus a better estimate of trend than (20|28) would be

B̂(1) =
ty � ts Â(0)

t2
(20{32)

or with the OLS estimate (16{29),

B̂(1) =
s2 ty � ts sy

t2 s2
(20{33)

But now, with this better estimate of trend, we can get a better estimate of the seasonal than

(20|29) by using (20|33):

Â(2) =
sy � ts B̂(1)

s2
(20{34)

But this improved estimate of the seasonal amplitude will in turn enable us to get a still better

estimate of trend B̂(2) � � �; and so on forever!

Therefore, the reasoning underlying the conventional detrending procedure, if applied consis-

tently, does not stop at the conventional result (20|30). It leads us into an in�nite sequence of

back-and-forth revisions of our estimates, each set [Â(n); B̂(n)] better than the last [Â(n�1); B̂(n�1) ].

Then does this in�nite sequence converge to a �nal \best of all" set of estimates [Â(1)B̂(1) ]?

If so, this is surely the optimal way of dealing with a nuisance parameter from the orthodox

viewpoint. But can we calculate these �nal optimal estimates directly without going through the

in�nite sequence of updatings?

To answer this de�ne the (2 � 1) vector of n'th order estimates:

Vn �

�
Â(n)

B̂(n)

�
(20{35)

Then the general recursion relation is, as we see from (20|29), (20|89), (20|34),

Vn+1 = V0 +M Vn (20{36)

where the matrix M is

M =

�
0 �ts=s2

ts=t2 0

�
(20{37)

The solution of (19) is

Vn = (1 +M +M2 + � � �+Mn)V0 (20{38)
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and since, by Schwartz inequality, the eigenvalues of M are less than unity, this in�nite series sums

to

V1 = (I �M)�1V0 (20{39)

Now we �nd readily that

(I �M)�1 =
1

t2 s2 � ts
2

�
t2 s2 �t2 ts
�s2 ts t2 s2

�
(20{40)

and so our �nal best of all estimate is

Â(1) = t2 s2 Â(0) � t2 ts B̂(0)t2 s2 � ts
2

=
t2 sy � ts ty

t2 s2 � ts
2

(20{41)

But this is precisely the Bayesian estimate that we calculated far more easily in (20|10). Likewise,

the �nal best estimate of trend rate is

B̂(1) =
s2 ty � ty sy

t2 s2 � ts
2

(20{42)

which is just the Bayesian estimate that we get by integrating out A as a nuisance parameter from

(20|6).

This is another example of what we found before (Chapter 13); if the orthodoxian will think

his estimation problems through to the end, he will �nd himself obliged to use the mathematical

form of the Bayesian solution, even if his ideology still leads him to reject the Bayesian rationale for

it; this mathematical form is required by elementary requirements of rationality and consistency,

quite independently of all philosophical stances.

Now we see the relation between the orthodox and Bayesian procedures in an entirely di�erent

light. The procedure of integrating out a nuisance parameter sums an in�nite series of mutual

updatings for us, and does it in such a simple, unobtrusive way that to the best of our knowledge,

no orthodox writer has yet noticed that this is what is happening. What we have just found will

generalize e�ortlessly to far more complex problems.

As we noted before (Jaynes, 1976) in many other cases, it is a common phenomenon that or-

thodox results, when improved to the maximum possible extent, become mathematically equivalent

to the results that Bayesian methods give us far more easily. Indeed, it is one of the problems we

have that Bayesian and Maximum Entropy methods are so slick and e�cient that orthodoxians,

unaccustomed to getting results so easily, accuse us of claiming to get something for nothing.

Thus in the long run, attempts to evade the use of Bayes' theorem do not lead to di�erent

�nal results; they only make us work harder to get them. So much harder that many important

Bayesian results { even some that were given already by Je�reys (1939) { are still unknown in the

orthodox literature.

The Orthodox Criterion of Performance

In our endeavor to understand this situation fully, let us examine it from a di�erent viewpoint.

According to orthodox theory, the accuracy of an estimation procedure is to be judged by the

sampling distribution of the estimator, while in Bayesian theory it should be judged from the

posterior pdf for the parameter. Let us compare these. For the orthodox analysis, note that in
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both (4) and (6) the terms containing the noise vector e combine to make a linear combination of

the form

ge �
1

N

NX
t=1

gtet (20{43)

Then over the sampling pdf for the noise we have

E(ge) =
1

N

X
t

gtE(et) = 0 (20{44)

E[(ge)2] =
1

N

X
gtgt0E(etet0) = g2 �2 (20{45)

since E(etet0) = �2�(t; t0). Thus, the sampling pdf would estimate this error term by (mean �
standard deviation):

(ge)est = 0� �

q
g2 (20{46)

For the Bayes estimator (4)

gt =
t2st � tst

t2 s2 � ts
2

(20{47)

and after some algebra we �nd

g2 =
t2(t2s2 � ts

2
)

s2 (1� r2)
(20{48)

where r is the correlation coe�cient de�ned before. Thus the sampling distribution for the Bayes

estimator (4) has mean � standard deviation of

~A � �

q
N̂s2(1� r2) (20{49)

while for the orthodox estimator this is

(1� r2) ~A� �

s
1� r2

Ns2
(20{50)

The General Case

Having shown the nature of the Bayesian results from several di�erent viewpoints, we now gener-

alize them to a fairly wide class of useful problems. We assume that the data are not necessarily

uniformly spaced in time, that the noise probability distribution, although Gaussian, is not neces-

sarily stationary or white (uncorrelated) and that the prior probabilities for the parameters are not

necessarily independent. It turns out that the computer programs to take all this into account are

not appreciably more di�cult to write, if the most general analytical formulas are in view when we

write them.

So now we have the model

yt = T (t) + F (t) + et (20{51)
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where T (t) is the trend function, f(t) is the seasonal function and et is the irregular component.

We de�ne

T (t) =
X

k�k(t) (20{52)

f(t) =
X

[AkC(kt) + BkS(kt)] (20{53)

The joint likelihood of all the parameters is

L(; A;B; �) = p(y1; � � � ; yN jAB�) =

�
1

2��2

�N=2
exp

(
1

2�2

NX
t=1

[y(t)� T (t)� f(t)]
2

)
(20{54)

The quadratic form is

Q(�k; j) �
NX
t=1

2
4yt � rX

j=1

jTj �
mX
k=1

�kGk(t)

3
5
2

(20{55)

where, in the seasonal adjustment problem, m = 12 and

f�1; � � � ; �mg = fA0; A1; � � � ; A6; B1; B2; � � � ; B5g (20{56)

Likewise,

GK(t) =

�
cos k!t; for 0 � k � 6;

sin (k � 6)!t; for 7 � k � 12
(20{57)

But if we combine �;  into a single vector of dimension n = m+ r :

q � (�  ) (20{58)

Fk(t) =

�
Gk(t); for 1 � k � m;

Tk(t); for m+ 1 � k � n
(20{59)

The model is then in the form

y(t) =

mX
j=1

qjFj(t) + e(t) (20{60)

The data vector is

yi =

mX
j=1

qjFj(ti) + e(ti) (20{61)

or

y = Fq + e (20{62)
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where

Fij � Fj(ti) 1 � j � n 1 � i � N (20{63)

The \noise" values et = e(ti) have prior probability density

p(e1; � � � ; eN) =

p
detK

(2�)N=2
exp

�
�
1

2
eTKe

�
; (20{64)

where K�1 is the (N �N) noise prior covariance matrix. For \stationary white noise", it reduces

to

K�1 = �2 �ij ; 1 � i; j � N : (20{65)

Given K and the parameters fqjg, the sampling pdf for the data takes the form

p(y1; � � � ; yN jqKI) =

p
det(K)

(2�)N=2
exp

�
�
1

2
(y � Fy)TK(y � Fy)

�
(20{66)

Likewise, a very general form of joint prior pdf for the parameters is

p(A; � � � ; qmjI) =

p
det(L)

(2�)n=2
exp

�
�
1

2
(q � q0)

TL(q � q0)

�
(20{67)

where L�1 is the (n � n) prior covariance matrix and q0 the vector of prior estimates. Almost

always we shall take L to be diagonal:

Lij = �2j �ij ; 1 � i; j � n (20{68)

and q0 to be zero. But the general formulas without these simplifying assumptions are readily

found and programmed.

The joint posterior pdf for the parameters fqjg is then

p(qjyI) =
exp(�Q

2
)R

exp(�Q
2
) dA � � �dqn

(20{69)

where Q is the quadratic form

Q � (y � Fq)TK(y � Fq) + (q � q0)
TL(q � q0) (20{70)

which we may expand into eight terms:

Q = yTKy � yTKFq � qTFTKy + qTFTKFq + qTLq � qTLq0 � qT0 Lq + qT0 Lq0 (20{71)

We want to bring out the dependence on q by writing this in the form

Q = (q � q̂)TM(q � q̂) +Q0 (20{72)

where Q0 is independent of q. Writing this out and comparing with (20|71), we have
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M = FTKF + L ;

Mq̂ = FTKy + Lq0 ;

q̂TMq̂ + Q0 = yTKy + qT0 Lq0

: (20{73)

M , q̂, and Q0 are thus uniquely determined, because the equality of (20|71) and (20|72) must

be an identity in q:

q̂ = M�1
�
FTKy + Lq0

�
(20{74)

Q0 = yTKy + qT0 Lq0 � q̂TMq̂ (20{75)

The denominator of (20|69) is then found using ( ), with the �nal result

p(A; � � � ; qnjyKL) =

p
det(M)

(2�)n=2
exp

�
�
1

2
(q � q̂)TM(q � q̂)

�
(20{76)

The components A; � � � ; qm are the seasonal amplitudes we wish to estimate, while (qm+1; � � � ; qn)
are the trend nuisance parameters to be eliminated. From ( ) the marginal pdf we want is

p(A; � � � ; qm j yKL) =

Z
� � �

Z
dqm+1 � � �dqnp(A; � � �qnjyKL)

=

p
det(M)

(2�)n=2
(2�)(n�m)=2q

det(W )

exp

�
�
1

2
(u� û)TU(u� û)

�

=

p
det(U)

(2�)m=2
exp

�
�
1

2
(u� û)TU(u� û)

�
(20{77)

where U; V;W; u are de�ned by ( ), ( ), ( ). From the fact that they are normalized, we see that

det(M) = det(W )det(U) (20{78)

a remarkable theorem not at all obvious from ( ) and ( ) except in the case V = 0. This is another

good example of the power of probabilistic reasoning to prove purely mathematical theorems.

Thus, the most general solution consists, computationally, of a string of elementary matrix

operations and is readily programmed. To summarize the �nal computation rules:

K�1 is the N �N prior covariance matrix for the \noise".

L�1 is the n� n prior covariance matrix for the parameters.

F is the N � n matrix of model functions.

First, calculate the (n� n) matrix

M � FTKF + L (20{79)

and decompose it into block form representing the interesting and uninteresting subspaces:

M =

�
U0 V

V T W0

�
(20{80)
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Then calculate the (m�m) and (r� r) renormalized matrices

U � U0 � VW�1
0 V T (20{81)

W � W0 � V TU�1
0 V (20{82)

This much is determined by the de�nition of the model, and the computer can work all this out in

advance, before the data are known.

Now given y, the (N�1) data vector and q0, the (n�1) vector of prior estimates, the computer

should calculate the (n� 1) vector

q̂ = M�1
�
FTKy + Lq0

�
(20{83)

of \best" estimates of the parameters. Actually, the �rstm of them are the interesting ones wanted,

and the remaining r = n�m components are not needed unless one also wants an estimate of the

trend function. Then we can use the following result.

The inverse M�1 can be written in the same block form as M :

M�1 =

�
U�1 �U0VW

�1

�W0V
TU�1 W�1

�
(20{84)

where, analogous to U ,

W � W0 � V TU�1
0 V (20{85)

Then FT has the same block form with respect to its rows:

(FT )ji = (Gj(ti) Ti(ti) ) ;

1 � j � m;

1 � i � N;

(m+ 1) � K � n

(20{86)

where Gj(t) are the seasonal sinusoids and Tk(t) the trend functions.

Almost always, q0 = 0 and so the \interesting" seasonal amplitudes are given by

q̂ = RKy (20{87)

where R is the reduced (m�N) matrix

R � U�1G� U�1
0 VW�1T (20{88)

and U�1 is the joint posterior covariance matrix for the interesting parameters fA; � � � ; qmg. Note
that R and U�1 are determined by the model, so the computer can calculate them once and for all

before the data are available, and then use them for any number of data sets.

***************************** MUCH MORE TO COME! *********************
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CHAPTER 21

REGRESSION AND LINEAR MODELS

Fitting a theoretical curve to a set of data points is one of the most common statistical problems

faced by scientists, engineers, and economists. This �eld is very large, because there is no one

solution that applies to all cases. Instead, we have a number of quite di�erent problems, depending

on just what prior information we had about the phenomenon being observed, the measurement

errors, and the unknown parameters.

At the end of Chapter 8 we noted briey some problems that orthodox theory encounters here

because of the di�culty in distinguishing between \random" and \nonrandom" quantities. Another

di�culty is even more troublesome in practice.

Unwanted Parameters

That di�erences in the prior information can generate qualitatively di�erent mathematical problems

has, of course, been well recognized in the voluminous orthodox literature. Some `sharp and drastic'

di�erences can be expressed adequately by di�erent choices of a model (for example the judgment

that a certain parameter should or should not be present at all). But some more `gentle' di�erences

in the prior information can be expressed precisely only by di�erences in the corresponding prior

probabilities within a model. Orthodox theory, which does not admit the existence of the needed

prior probabilities, is helpless to take such information into account, although it may be fully as

cogent as the data.

This is not merely a philosophical problem; it leads to a serious technical problem, of \nuisance

parameters," i.e., parameters which are physically present in the phenomenon and so cannot be

safely disregarded in the model, although we are not interested in estimating them. But once in

the model they cannot be eliminated by orthodox principles, and one is obliged to estimate them

along with the interesting parameters.

In Bayesian methods, nuisance parameters cause very little trouble { any uninteresting param-

eters are removed by integrating out with respect to their prior probabilities. But this gives rise to

another technical question whose answer will be important for future extensions of Bayesian theory

to more and more complex problems. When parameters are integrated out, what e�ect does this

have on the accuracy of our estimates of the remaining ones?

In many cases, the presence of an unwanted and unknown parameter that has to be integrated

out, will cause a deterioration of our ability to estimate another parameter. Thus, consider esti-

mation of the mean � of a normal distribution form the sample data D � fx1; x2; : : : ; xng. If �2

is known, the posterior distribution p(duj�;D) is still a normal distribution, leading to the 90%

interval estimate (i.e., the shortest interval that contains 90% of the posterior probability):

(�)est = �x� 1:645
�p
n
:

But if � is completely unknown and must be integrated out with respect to a Je�rey's prior

d�=�, we are, in e�ect, estimating �2 by the sample variance s2 = x2 � �x2. But this estimate

is uncertain, and the integration over � averages the normal distribution p(d�j�;D) over this

uncertainty. It then becomes a t-distribution, with density function / [s2 + (�� �x)2]�n=2; and the

90% interval estimate becomes
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(�)est = �x� tn
sp
n � 1

where tn is the upper critical value of the t-statistic at the 95% level for f = (n � 1) degrees

of freedom. From the t-tables we �nd that ft2; t3; t4; t10g = f6:3; 2:92; 2:35; 1:83g respectively;

but as n ! 1, tn ! 1:645. Thus for small samples the penalty for failure to know � is not a

change in the actual point estimate, but an appreciable loss of accuracy which we may claim in our

estimate of �. With large samples � is determined by the data more and more accurately, and so

we approach the accuracy with � known.

Now suppose there were many parameters f�1; �2 : : :�kg that all had to be integrated out. If

each had a comparable e�ect, then if k = n, no useful estimates would be possible at all. There seems

to be a general belief { presumably for this reason -that models with large numbers of parameters

are, ipso facto, intractable, any useful inference requiring that the number of observations be large

compared to te number of parameters. Thus various authors [such as Kempthorne and Folks (1971

p. 425)] repeat the folk-theorem that no inference is possible if the number of parameters is greater

than the number of di�erent \statistics" that appear in the sampling distribution.

On the other hand, Lindley (1971) notes a problem of the type we study here, which pro-

vides a counter-example to the folk-theorem, the presence of many unwanted parameters doing no

appreciable harm. It will be important for us to understand the exact conditions for this good

behavior.

Linear Models{A First Look

There are pairs of \true" values (Xi; Yi) and the corresponding measured values (xi; yi),

xi = Xi + ei; i = 1; 2; : : :n

yi = Yi + fi
(21{1)

where the errors ei, fi are supposed independent and N(0; �x), N(0; �y) respectively; �x and �y
may be known, but usually are not. The probability, given f�x; �y; X1 : : :Xn; Y1 : : : Yng that we

shall see the data D � f(x1; y1); : : : ; (xn; yn)g, within tolerances dx � dx1 : : :dxn, dy � dy1 : : : dyn,

is

p(dxdyj�x�yXY ) = (2��x�y)
�n exp

�
�1

2
R

�
dxdy (21{2)

where

R �
nX
i=1

�
(xi �Xi)

2

�2x
+

(yi � Yi)
2

�2y

�
(21{3)

and we could integrate out either dx or dy to obtain the marginal distribution; i.e.,

p(dyj�y; Y ) =
�

1

2��2y

�n

2

exp

(
�
X
i

(yi � Yi)
2

2�2y

)
dy: (21{4)

At this stage, we have two independent problems, of inference about Xi, Yi separately. But now

the problems are tied together by a \model"; i.e., a postulated functional relationship between X

and Y :
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f(X; Y; �1; �2; : : :) = 0 (21{5)

This model equation contains certain parameters �k ; and the problem then becomes: to estimate

the �k. The common experimentalist's problem of �tting a line to a set of data points, corresponds

to choosing the model equation

Yi = � + �Xi (21{6)

and using the data to estimate (�; �).

Note that in the older literature the word \Linear" in \Linear Models" is usually taken to

mean that the model equation is linear in the parameters and in the errors, but not necessarily in

the measured variables. Thus Y 2
i = � + � cosXi would be termed a \linear model" if ei, fi are

small enough so that we can write cosXi = cosxi+ ei sin xi, etc; but Yi = �2 + �xi would not [see,

for example, Graybill (1961); p. 97]. This terminology was unfortunate, because it is hard to invent

any model equation (21|5) that cannot, merely by a rede�nition of f�i; X; Y g, be made linear in

the �i. Thus the term \linear" was almost meaningless as far as the real content of the theory was

concerned { it really meant only \small errors."

The uninitiated were falling constantly into the trap of supposing that \linear" refers to the

fact that (23{6) is the equation of a straight line (and the term would be more appropriate and

useful if it did!). In 1985, M. DeGroot made a break with this terminology and rede�ned the term

\linear model" to mean straight-line �tting. We shall follow this reform in terminology.

Case 1. �x � 0; �y known

The simplest case is that in which the error is all in the Y measurements (i.e., xi � Xi), and �y
is known. The terms in �x are then absent, and the sampling distribution (21{4) is appropriate.

Using (21{6), it reduces to

p(dyj�y; �; �;X) =

�
1

2��2y

�n

2

exp

�
� n

2�2y
Q(�; �)

�
dy (21{7)

where

Q(�; �) � 1

n

nX
i=1

(yi � �� �xi)
2 (21{8)

is a positive de�nite quadratic form in �, � that proves to be fundamental in several problems

below. We digress to consider the many ways of writing this out in detail.

Forms of Q(�; �)

For various purposes, several di�erent forms of Q(�; �) are convenient. Writing out (21{8) in full,

we get six terms:

Q(�; �) = y2 + �2 + �2x2 � 2�y + 2��x� 2�xy (21{9)

where the sample �rst moments

x � 1

n

X
xi; y � 1

n

X
yi (21{10)
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and second moments

x2 � 1

n

X
x2i ; y2 � 1

n

X
y2i ; xy � 1

n

X
xiyi (21{11)

are, of course, known from the data. Often, we are interested primarily in �, not in � [for example,

a chemist may want to know how a reaction rate varies with temperature, a meteorologist may wish

to determine if there is evidence for a slow warming trend over the past decade; or an economist

may want to know how the demand for gasoline or steel varies with its price]. We will then want

to integrate � out of the problem. In preparation for this we must complete the square �rst on �:

Q(�; �) = (�� �0)2 + s2x(� � ��)2 + s2y(1� r2): (21{12)

Here we have introduced the notation

�0 � y � �x; �� � sxy

s2x
=

sy

sx
r (21{sam)

where the sample variances and covariance

s2x � x2 � x2; s2y � y2 � y2; sxy � xy � xy (21{15)

and the sample correlation coe�cient

r � sxy

sxsy
(21{16)

are, of course, also known from the data. As is apparent already from (21{12), �� is going to

emerge as a \natural" estimator for �.

On the other hand, we might be interested primarily in � rather than �. [For example, a

physical chemist measuring ionic conductivity has to make measurements at �nite concentrations

(= x); but it is the extrapolation to in�nite dilution (x = 0) that is the fundamental quantity

to be compared with theory. Or, a spectroscopist may wish to determine atomic energy levels by

extrapolation the measurable Zeeman levels back to zero magnetic �eld, as in the famous Lamb

shift experiment.] In this case, we will want to integrate � out of the problem; completing the

square �rst on �, we get

Q(�; �) = x2(� � �0)2 +
s2x

x2
(�� ��)2 + s2y(1� r2) (21{17)

where

�0 � xy � �x

x2
(21{18)

and

�� � y � ��x (21{19)

is a \natural" estimator of �. Even at this stage, we can see that to make the estimates (��; ��),

means that we would take the line passing through the data centroid (x; y) with slope ��, as our

estimate of the \true" line.
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Finally, we may be interested in both � and beta, or in some function f(�; �) that involves both;

and we wish to get their joint posterior pdf p(d�d�jD) in a form that treats them symmetrically.

For this we introduce the coe�cients Cij of the quadratic form:

C(�; �) = c11(�� ��)2 + 2C12(�� ��)(� � ��) + C22(� � ��)2: (21{20)

Comparison with (21{8) shows that if we choose the matrix elements Cij to be

Cij =

�
1 x

x x2

�
(21{21)

we have

Q(�; �) = C(�; �) + s2y(1� r2): (21{22)

Now, from this and (21{2), (21{7) we see that (since only the dependence on � and � matters; i.e.,

any factors independent of � and � are going to be absorbed into normalizing constants anyway)

the joint likelihood of (�; �) may be taken simply as

L(�; �) = exp
n
� n

2�2
C(�; �)

o
(21{23)

and so with uniform priors, their joint posterior distribution is the bivariate normal based on the

matrix C and peaked at (��; ��). Writing p(d�d�jD) = F (�; �)d�d�, this joint posterior density

is

F (�; �) = A exp
n
� n

2�2
C(�; �)

o
(21{24)

with

C(�; �) � (�� ��)2 + 2x(�� ��)(� � ��) + x2(� � ��)2 (21{25)

and the normalizing constant is

A =
n

2��2y
jdet(C)j

1

2 =
nsx

2��2y
: (21{26)

the second central moment of (21{24) are given by the inverse matrix to C:

D = C�1 =
1

s2x

�
x2 �x
�x 1

�
: (21{27 Thus )

h(�� ��)2i =
�2y

n
D11 =

�2y

n

x2

s2x
(21{28)

as may also be read o� by inspection of (21{17); and

h(� � ��)2i =
�2y

n
D22 =

�2y

n

1

s2x
(21{29)
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as is evident from (23{12). The covariance is

h(�� ��)(� � ��)i =
�2y

n
D12 = �

�2y x

ns2x
(21{30)

leading to the correlation coe�cient

� =
h(�� ��)(� � ��)i

[h(�� ��)2ih(� � ��)2i]
1

2

= � x�
x2
� 1

2

: (21{31)

It is interesting that (21{28) { (21{31) involve only the x{measurements which are with error. Now

if �y is known and the x{measurements are without error, then often one can decide in advance how

many measurements to make, and as what values of xi; whereupon we know just what accuracy

our � and � estimates will have. The entire shape and width of the posterior (21{24) can be known

in advance of the experiment, only the location of the peak (��; ��) awaiting the actual data.

Of course, this is a rather arti�cial and oversimpli�ed example; it is not often that one knows

�y in advance. For most measurements it would be more realistic to go to the opposite extreme,

and suppose �y entirely undetermined by the prior information, whereupon it must be estimated

from the consistency of the data (i.e., if all the data points lie very accurately on a straight line,

our common sense tells us that �y must have been very small, etc).

Case 2. �x � 0, �y Unknown

To express \complete initial ignorance" of �y we must, as noted in Chapter 12, use the Je�reys

prior

p(d�jX) =
d�y

�y
(21{32)

and the dependence of the likelihood on �y must be retained; thus we cannot use (21{23), but must

go back to the sampling distribution (21{7) which, in its dependence on f�; �; �yg gives their joint
likelihood:

L(�; �; �x) = ��n
y exp

�
� n

2�2y
Q(�; �)

�
: (21{33)

With uniform priors for � and �, their joint posterior pdf has the form

p(d�d�d�yjD) = A0
d�d�d�y

�n+1y

exp

�
� n

2�2y
Q(�; �)

�
(21{34)

and if we care only about �, �, we integrate out �y to obtain

p(d�d�jD) = AQ�n=2d�d�: (21{36)

The two normalizing constants being related by

A =

�
2

n

�n=2

�
�n
2

�
A0: (21{36)
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We thus have the bivariate t-distribution (21|35), instead of the bivariate normal distribution

(21{24), as the price we incur for not knowing �y . The distributions are qualitatively similar,

the t-distribution having wider tails which, for small n, represent a signi�cant deterioration in the

accuracy of our estimates.

*************************** MUCH MORE TO COME! *******************
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CHAPTER 24

MODEL COMPARISON

\Entities are not to be multiplied without necessity" - - - William of Ockham, ca 1330

We have seen in some detail how to conduct inferences { test hypotheses, estimate parameters,
predict future observations { within the context of a preassigned model, representing some working

hypothesis about the phenomenon being observed. But a scientist must be concerned also with a

bigger problem; how to decide between di�erent models when both seem able to account for the
facts. Indeed, the progress of science requires comparison of di�erent conceivable models; a false

premise built into a model that is never questioned, cannot be removed by any amount of new data.

Stated very broadly, the problem is hardly new; some 650 years ago the Franciscan Monk
William of Ockham perceived the logical error in the Mind Projection Fallacy.y This led him to

teach that some religious issues might be settled by reason, but others only by faith. He removed
the latter from his discourse, and concentrated on the areas where reason might be applied { just

as Bayesians seek to do today when we discard orthodox mind{projecting mythology (such as
assertions of limiting frequencies in experiments that have never been performed), and concentrate

on the things that are meaningful in the real world. His propositions `amenable only to faith'
correspond roughly to what we should call non{Aristotelian propositions (or Aristotelian ones for

which the available information is too meager to permit any inferences). His famous epigram quoted
above, generally called \Ockham's razor", represents a good start on the principles of reasoning

that he needed, and that we still need today. But it was also so subtle that only through modern

Bayesian analysis has it been well understood.

Of course, from our present vantage point it is clear that this is really the same problem as that

of compound hypothesis testing, considered already in Chapter 4. Here we need only generalize
that treatment and work out further details, but some extra care is needed. As long as we work

within a single model, normalization constants tend to cancel out and so need not be introduced

at all. But when two di�erent models appear in a single equation, the normalization constants do
not cancel out, and it is imperative that all probabilities be correctly normalized.

Formulation of the Problem

To see why this happens, recall �rst what Bayes' theorem tells us about parameter estimation. A
modelM contains various parameters denoted collectively by �. Given dataD and prior information

I , and assuming the correctness of model M , to estimate the parameters we �rst apply Bayes'
theorem:

p(�jD;M; I) = p(�jM; I)
p(Dj�;M; I)

p(DjM; I)
(24{1)

in which the denominator serves as the normalizing constant:

y Ockham's position, stated in the language of his time, was that \Reality exists solely in individual
things, and universals are merely abstract signs." Translated into Twentieth Century language: the abstract
creations of the mind are not realities in the external world. Unfortunately for him, some of the cherished
`realities' of contemporary orthodox theology were just the things to which he denied reality; so this got
him into trouble with the Establishment. Evidently, Ockham was a forerunner of modern Bayesians, to
whom all this sounds very familiar.
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p(DjM; I) =

Z
p(D; �jM; I) d� =

Z
p(Dj�;M; I) p(�jM; I) d� (24{2)

which we see is the prior expectation of the likelihood L(�) = p(Dj�;M; I); that is, its expectation
over the prior probability distribution p(�jM; I) for the parameters.

Now we move up to a higher level problem; to judge, in the light of the prior information and
data, which of a given set of di�erent models fM1 � � �Mrg is most likely to be the correct one.

Bayes' theorem gives the posterior probability for the j'th model as

p(Mj jD; I) = p(Mj jI)
p(DjMj ; I)

p(DjI) ; 1 � j � r : (24{3)

But we may eliminate the denominator p(DjI) by calculating instead odds ratios as we did in

Chap. 4. The posterior odds ratio for model Mj over Mk is

p(MjjD; I)
p(MkjD; I)

=
p(Mj jI)
p(MkjI)

� p(DjMj; I)

p(DjMk; I)
(24{4)

and we see that the same probability p(DjMj; I) that appears in the single{model parameter
estimation problem (24{1) only as a normalizing constant, now appears as the fundamental quantity

determining the status of model Mj relative to any other.z The exact measure of what the data
have to tell us about this, is always the prior expectation of its likelihood function, over the

prior probability p(�j jMj ; I) for whatever parameters �j may be in that model (they are generally

di�erent for di�erent models). All probabilities must be correctly normalized here, otherwise we
are violating our basic rules and the likelihood ratio in (24{4) is arbitrary nonsense even when it

is not zero or in�nite.

Intuitively, the model favored by the data is the one that assigns the highest probability to the

observed data, and therefore \explains the data" best. This is just a repetition, at a higher level,
of the likelihood principle for parameter estimation within a model.

But it is not yet clear how an Ockham principle can emerge from this. Indeed, the principle
has never been stated in exact, well{de�ned terms. Later writers have tried, almost universally,
to interpret it as saying that the criterion of choice is the `simplicity' of the competing models,
although it is not clear that Ockham himself used that term. Centuries of discussion by philoso-

phers trying to make this interpretation brought no appreciable clari�cation of what is meant by
`simplicity'.? We think that concentration of attention exclusively on that unde�ned term has pre-
vented understanding of the real point, which is merely that a model with unspeci�ed parameters

is a composite hypothesis, not a simple one. For this reason some interesting new features appear,
arising from the internal structure of the parameter space.

z This logical structure is more general even than the Bayesian formalism; we shall see in Volume 2 that
it persists in the pure maximum{entropy formalism, where in statistical mechanics the relative probability
Pj=Pk of two di�erent phases, such as liquid and solid, is the ratio of their partition functions Zj=Zk , which
are the normalization constants for the sub{problems of prediction within one phase, although they are not
expectations of any likelihoods. In Bayesian analysis, the data are indi�erent between two models when
their normalization constants become equal; in statistical mechanics the temperature of a phase transition
is the one at which the two partition functions become equal. In chemical thermodynamics it is customary
to state this as equality of the \free energies" Fj ' logZj . This illustrates the basic unity of Bayesian and

maximum{entropy reasoning, in spite of their super�cial di�erences.
? Indeed, for a time the notion of `simplicity' was given up for dead, because of the seeming impossibility
of de�ning it. The tedious details are recounted by Rosenkrantz (1977).
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Parameters Known in Advance: To see this, suppose �rst that there is no such internal space;
the parameters of a model are known exactly (� = �0) in advance. This amounts to assigning a

prior p(�j jMjI) = �(�j � �0j), whereupon (24{2) reduces to

p(DjMj ; I) = p(Dj�0
j
;Mj ; I) = Lj(�

0

j
) (24{5)

just the likelihood of �0
j
within the j'th model. Evidently, this will be a maximum if �0

j
happens to

be equal to the maximum likelihood estimate �̂j for that model and the data. Then the posterior
odds ratio (24{4) would reduce to

p(Mj jD; I)
p(MkjD; I)

=
p(Mj jI)
p(MkjI)

� (Lj)max

(Lk)max

(24{6)

This is the conventional Bayes' theorem result of Chapter 4. If the parameters were known to have,
for each model, the most favorable values for the given data set, each model becomes in e�ect a

simple hypothesis rather than a composite one [this is almost self{contradictory, for if the data
were di�erent one would have to suppose also di�erent prior information about the parameters in

order to retain (24{6)].

But this extreme case is also very unrealistic; usually, the parameters are unknown and in

the problems `amenable to reason' where useful inferences are possible, the data D will be more
informative about the parameters within some modelMj than is the prior information; that is, as a

function of �j the likelihood function Lj(�j) = p(Dj�j ;Mj; I) will be more sharply peaked, at some
point picked out by the data, than is the prior probability p(�j jMj ; I). Then in the exact integral

(24{2) most of the contribution will come from a \high likelihood region" 
 comprising a small
neighborhood of that sharp peak. There is hardly any loss of generality in assuming this because,

unless it is true, we would consider the data too meager to permit any useful new inferences and

although the Bayesian procedure would still be valid in principle we would, like Ockham, `remove
the problem from our discourse' as being unproductive.

Parameters Unknown: Consider for the moment only the k'th model and drop the index k.

Let there be m parameters � � f�1 � � ��mg in the model and expand logL(�) about the maximum

likelihood point �̂ = f�̂1 � � � �̂mg:

logL(�1 � � ��m) = logLmax +
1

2

mX
i;j=1

@2 logL

@�i@�j
(�i � �̂i) (�j � �̂j) + � � � (24{7)

Then near the peak a good approximation is a multivariate gaussian function:

L ' Lmax exp

�
�1

2
(� � �̂)0 ��1 (� � �̂)

�
; (24{8)

with the \inverse covariance matrix"

(��1)i;j � �
�
@2 logL

@�i @�j

�
�=�̂

(24{9)

Our supposition is that the prior density does not vary appreciably over the high likelihood region


; then if we were estimating the parameters �j , in the approximation (24{8) we should be led to
estimates of the form
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(�j)est = �̂j �
p
�jj (24{10)

and the integral (24{2) is

p(DjM; I)' Lmax (2�)
m=2

p
det(�) p(�̂jM; I) (24{11)

Let us interpret this result in terms of parameter space volumes. We may de�ne the high likelihood

region 
 more explicitly by the conditions that:

(1) It is as compact as possible; within 
 the likelihood everywhere exceeds some nominal
threshold value L0. The volume of this region is then

V (
) =

Z
L>L0

d�1 � � �d�m : (24{12)

(2) The integrated likelihood should be given by Lmax V (
):

Lmax V (
) =

Z
L(�) dm� = Lmax (2�)

m=2
p
det � : (24{13)

Then a rectangular function equal to Lmax on 
, zero elsewhere, is a crude approximation to

the likelihood function and it has, in the present approximation, the same implications for model
comparison as does the actual likelihood function. These conditions determine the e�ective high{

likelihood volume of parameter space without any need to calculate the threshold L0:

V (
) = (2�)m=2
p
det � (24{14)

Note that this is just the normalization constant for the above multivariate gaussian function;y

Z
exp

�
�1

2
(� � �̂)0 ��1 (� � �̂)

�
� d�1 � � �d�m

V (
)
= 1 : (24{15)

Exercise (24.1). Evaluate the threshold L0 and the dimensions (�� �̂) of the high{likelihood
region 
 by direct evaluation of the integral (24{12). Note that the matrix �, being real,

symmetric, and positive de�nite, can be diagonalized: � = U �U�1, where U is an (m �m)
real orthogonal matrix; that is, its transpose is U 0 = U�1 so det(U) = �1, and �ij = �i �ij
is the diagonalized matrix. Now make the \spherical" change of variables from f�1 � � ��mg to
fx1 � � �xmg, where

(�k � �̂k) =

mX
i=1

Uki

p
�i xi

and perform the integrations in the x{space. Show that, in x{space, the region 
 is the interior

of an m{dimensional sphere of radius R ' (m=e)1=2; and that the exact volume of such a sphere

is �m=2Rm=(m=2)!. As a check, in the cases m = (1; 2; 3) this reduces to (2R; �R2; 4�R3=3)
respectively, as it should.

y Indeed, the maximumdensity for any continuous distribution p(x1 � � �xn) is dimensionally the reciprocal

of an n-dimensional volume, which can always be interpreted as the volume of a high{probability region.
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The right{hand side of (24{11) becomes Lmax V (
) p(�̂jM; I). But since by hypothesis p(�jM; I)
does not vary appreciably over 
, the quantity

W � 1

Lmax

Z
L(�)p(�jMI) dm� ' V (
) p(�̂jM; I) (24{16)

is for all practical purposes just the amount of prior probability contained in the high likelihood

region 
, and our fundamental model comparison rule now becomes
p(Mj jD; I)
p(MkjD; I)

=
p(Mj jI)
p(MkjI)

� (Lj)max

(Lk)max

� Wj

Wk

(24{17)

in which we see revealed, by comparison with (24{6), the Ockham factor (Wj=Wk) arising from the
internal parameter spaces of the models. In (24{17), the likelihood factor depends only on the data

and the model, while the Ockham factor depends also on the prior information about its internal
parameters. If two di�erent models achieve the same likelihoods (Lj)max, then in sampling theory

terms they account for the data equally well, and one would think that we have no basis for choice
between them. Yet Bayes' theorem tells us that there is an another quality in the models; the prior

information which may still give strong grounds for preference of one over the other. Indeed, the
Ockham factor may be so strong that it reverses the likelihood judgment.

But Where is the Idea of Simplicity?

The relation (24{17) has much meaning that unaided intuition could not (or at least, did not) see.

If the data are highly informative compared to the prior information, then the relative merit of two

models is determined by the product of two factors;

(1) How high a likelihood can be attained on the parameter space of a model?

(2) How much prior probability is concentrated in the high{likelihood region 
 picked
out by the data?

But neither of these seems concerned with the simplicity of the model (which seems for most of

us to refer to the number of di�erent assumptions that are made { for example, the number of
di�erent parameters that are introduced { in de�ning a model).

To understand this, let us ask: \How do we all decide these things intuitively?" Having observed
some facts, what is the real criterion that leads us to prefer one explanation of them over another?
Suppose that two explanations, A and B, could account for some proven historical facts equally
well. But A makes four assumptions, each of which seemed to us already highly plausible; while B

makes only two assumptions, but they seem strained, far{fetched, and unlikely to be true. Every
historian �nds himself in situations like this; and he does not hesitate to opt for explanation A,

although B is intuitively simpler. Thus our intuition asks, fundamentally, not how simple the
hypotheses are; but rather how plausible they are.

But there is a loose connection between simplicity and plausibility, because the more compli-
cated a set of possible hypotheses, the larger the manifold of conceivable alternatives, and so the

smaller must be the prior probability of any particular hypothesis in the set.

Now we see why `simplicity' could never be given a satisfactory de�nition (that is, a de�nition

that accounted in a satisfactory way for these inferences); it was a poorly chosen word, directing
one's attention away from the essential component of the inference. But from Centuries of unques-
tioned acceptance, the idea of `simplicity' became implanted with such an unshakable mindset that

several workers, even after applying Bayes' theorem where the contrary fact stares you in the face,
continued doggedly to try to interpret the Bayesian analysis in terms of simplicity!z

z Indeed, one author, for whom Ockham's razor was by de�nition concerned with simplicity, rejected
Bayesian analysis because of its failure to exhibit that error.
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Generations of philosophers opined vaguely that `simple hypotheses are more plausible' without
giving any logical reason why this should be so. We suggest that this should be turned around:

we should say rather that `more plausible hypotheses tend to be simpler'. An hypothesis that we
consider simpler is one that has fewer equally plausible alternatives.

None of this could be comprehended at all within the con�nes of orthodox statistical theory,

whose ideology did not allow the concept of a probability for a model or for a �xed but unknown
parameter. Orthodoxy tried to compare models entirely in terms of their di�erent sampling distri-

butions, which took no note of either the simplicity of the model or the prior information! But it

was unable to do even this, because then all the parameters within a model became `nuisance pa-
rameters' and that same ideology denied one any way to deal with them.? Thus orthodox statistics

was a total failure on this problem, and this held up progress for most of the 20'th Century.

It is remarkable that, although the point at issue is trivial mathematically, generations of
mathematically competent people failed to see it because of that conceptual mindset. But once

the point is seen, it seems intuitively obvious and one cannot comprehend how anyone could ever
have imagined that `simplicity' alone was the criterion for judging models. This just reminds us

again that the human brain is an imperfect reasoning device; although it is fairly good at drawing

reasonable conclusions, it often fails to give a convincing rationale for those conclusions. For this
we really do need the help of probability theory as logic.

Of course, Bayes' theorem does recognize simplicity as one component of the inference. But by

what mechanism does this happen? Although Bayes' theorem always gives us the correct answer
to whatever question we ask of it, it often does this in such a slick, e�cient way that we are left

bewildered and not quite understanding how it happened. The present problem is a good example
of this, so let us try to understand the situation better intuitively.

Denote by Mn a model for which � = f�1; : : : ; �ng is n{dimensional, ranging over a parameter
space Sn. Now introduce a new model Mn+1 by adding a new parameter �n+1 and going to a

new parameter space Sn+1, in such a way that �n+1 = 0 represents the old model Mn. We shall
presently give an explicit calculation with this scenario, but �rst let us think about it in general

terms.

On the subspace Sn the likelihood is unchanged by this change of model; p(Dj�;Mn+1; I) =

p(Dj�;Mn; I); � 2 Sn: But the prior probability p(�jMn+1; I) must now be spread over a larger
parameter space than before and will, in general, assign a lower probability to a neighborhood 


of a point in Sn than did the old model.

For a reasonably informative experiment, we expect that the likelihood will be rather strongly
concentrated in small subregions 
n 2 Sn and 
n+1 2 Sn+1 . Therefore, if with Mn+1 the

maximum likelihood point occurs at or near �n+1 = 0, 
n+1 will be assigned less prior probability

than is 
n with modelMn, and we have p(DjMn; I) > p(DjMn+1; I); the likelihood ratio generated
by the data will favor Mn over Mn+1. This is the Ockham phenomenon.

Thus, if the old model is already exible enough to account well for the data, then as a general

rule Bayes' theorem will, like Ockham, tell us to prefer the old model. It is intuitively simpler if by
`simpler' we mean a model that occupies a smaller volume of parameter space, and thus restricts us
to a smaller range of possible sampling distributions. Generally, the inequality will go the other way
only if the maximum likelihood point is far from �n+1 = 0 (i.e. a signi�cance test would indicate

a need for the new parameter), because then the likelihood will be so much smaller on 
n than on

n+1 that it more than compensates for the lower prior probability of the latter; as noted, Ockham
would not disagree.

But intuition does not tell us at all, quantitatively, how great this discrepancy in likelihoods

must be in order to bring us to the point of indi�erence between the models. Furthermore, having

? This and other criticisms of orthodox hypothesis testing theory were made long ago by Pratt (1961).
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seen this mechanism, it is easy to invent cases (for example, if the introduction of the new parameter
is accompanied by a redistribution of prior probability on the old subspace Sn) in which Bayes'

theorem may contradict Ockham because it is taking account further circumstances undreamt of
in Ockham's philosophy. So we need speci�c calculations to make these things quantitative.

An Example: Linear Response Models

Now we give a simple analysis that illustrates the above conclusions and allows us to calcu-
late de�nite numerical values for the likelihood and Ockham factors. We have a data set D �
f(x1; y1) � � �(xn; yn)g consisting of measured values of (x; y) in n pairs of observations. We may
think of x as the `cause' and y as the `e�ect' although this is not required. For the general relations

below the `independent variables' xi need not be uniformly spaced or even monotonic increasing
in the index i. From these data and any prior information we have, we are to decide between two

conceivable models for the process generating the data. For model M1 the responses are, but for
irregular measurement errors ei, linear in the cause:

M1 : yi = �xi + ei ; 1 � i � n (24{18)

while for model M2 there is also a quadratic term:

M2 : yi = �xi + �x2i + ei ; (24{19)

which represents, if � is negative, an incipient saturation or stabilizing e�ect (if � is positive, an

incipient instability). We may think, for concreteness, of xi as the dose of some medicine given
to the i'th patient, yi as the resulting increase in blood pressure. Then we are trying to decide

whether the response to this medicine is linear or quadratic in the dosage. But this mathematical
model applies equally well to many di�erent scenarios.y Whichever model is correct, the errors of

measurement of yi are supposed to be the same, and we assign a joint sampling distribution to
them:

p(e1 � � �enjI) =
nY
i=1

1p
2��2

� exp
�
� e2

i

2�2

�
=
� w
2�

�n=2
exp

n
�w
2
�ie

2

i

o
(24{20)

where w � 1=�2 is the `weight' parameter, more convenient in calculations than �2.

Digression: The Old Sermon Still Another Time: Again, we belabor the meaning of this,
as discussed in Chapter 7. In orthodox statistics, a sampling distribution is always referred to as
if it represented an `objectively real' fact, the frequency distribution of the errors. But we doubt

whether anybody has ever seen a real problem in which one had prior knowledge of any such

frequency distribution, or indeed prior knowledge that any limiting frequency distribution exists.

y For example, xi might be the amount of ozone in the air in the i'th year, yi the average temperature
in January of that year. Or, xi may be the amount of some food additive ingested by the i'th Canadian
rat, yi the binary decision whether that rat did or did not develop cancer. Or, xi may be the amount of
acid rain falling on Northern Germany in the i'th year, yi the number of pine trees that died in that year;
and so on. In other words, we are now in the realm of what were called `linear response models' in the
Preface, and the results of these calculations have a direct bearing on many currently controversial health
and environmental issues. Of course, many real problems will require more sophisticated models than we
are considering now; but having seen this simple calculation it will be clear how to generalize it in many
di�erent ways.
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How could one ever acquire information about the long{run results of an experiment that has never
been performed? That is part of the Mind{Projecting Mythology that we discard.

We recognize, then, that assigning this sampling distribution is only a means of describing

our own prior state of knowledge about the measurement errors. The parameter � indicates the
general magnitude of the errors that we expect; The prior information I might, for example, be

the variability observed in past examples of such data; or in a physics experiment it might not
be the result of any observations, but rather obtained from the principles of statistical mechanics,

indicating the level of Nyquist noise for the known temperature of the apparatus.

In particular, the absence of correlations in (24{20) is not an assertion that no correlations
exist in the real data; it is only a recognition that we have no knowledge of such correlations,

and therefore to suppose correlations of either sign is as likely to hurt as to help the quality of
our inferences. Thus in one sense, by being noncommittal about it, we are only being honest

and frankly acknowledging our ignorance. But in another sense, we are taking the safest, most

conservative course; using a sampling distribution which will yield reasonable results whether or
not correlations actually exist. But if we knew of any such correlations, we would be able to make

still better inferences (although not much better) by use of a sampling distribution which contains
them.

The reason for this is that correlations in a sampling distribution tell the robot that some

regions of the vector sample space are more likely than others even though they have the same
error magnitudes; then some details of the data that it would have to dismiss as probably noise,

can be recognized as providing further evidence about systematic e�ects in the model.

Back to the Problem: The sampling distribution for model M1 is then

M1 : p(Dj�M1) =
� w
2�

�n=2
exp

(
�w
2

nX
i=1

(yi � �xi)
2

)
(24{21)

The sum is

� =
X
i

(y2i � 2�yixi + �2x2i ) = n(y2 � 2�xy + �2x2) (24{22)

where the bars denote, as before, averages over the data. The maximum likelihood estimate (MLE)
of � is then found from @�=@� = n(�2xy + 2�x2) = 0 , or,

� = �̂ � xy

x2
(24{23)

which in this case is also called the `ordinary least squares' (OLS) estimate. The likelihood (24{21)
for model M1 is then

L(�;M1) =
� w
2�

�n=2
exp

n
�nw

2
[y2 � �̂2x2 + x2(�� �̂)2]

o
(24{24)

and we note in passing that, if we were using this to estimate � from the data, our result would be

(�)est = �̂� 1p
nwx2

(24{25)

Now, using (24{23), the `global' sampling distribution for model M1 in (24{3) contains two factors:

p(DjM1I) =

Z
p(Dj�M1) p(�jM1I) d� = Lmax(M1) �W (24{26)
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where

Lmax(M1) =
� w
2�

�n=2
exp

n
�nw

2

�
y2 � �̂2x2

�o
=
� w
2�

�n=2
exp

(
nw

2

xy2 � x2 y2

x2

)
(24{27)

W1 =

Z
exp

n
�nw

2
x2(�� �̂)2

o
p(�jM1I) d� : (24{28)

Now we are obliged to use a normalized prior for �; almost always it will be known that j�j cannot
be enormously large (else there would be such a catastrophe that we would not be concerned with

this problem); but we would seldom have any more speci�c prior information about it. We can
indicate this by assigning a prior density

p(�jM1I) =
1p
2��2

exp

�
� �2

2�2

�
(24{29)

which says that we do not know whether � is positive or negative, but it is highly unlikely that

j�j is much greater than �. As we saw in Chapter 6, when we are estimating parameters within a
single given model and have such vague prior information about them, the exact analytical form of

the prior makes no di�erence in the conclusions. That is, the e�ect of di�erent reasonable priors
�rst appears in our conclusions in perhaps the tenth decimal place; but since we are calculating

those �nal conclusions only to three or four decimal places, the e�ect of di�erent priors is not just
negligibly small; it is strictly nil. All priors that are essentially equal to a constant C = p(�̂jM; I)

over the region 
 of high likelihood, lead to the same conclusions; even the value of the constant
C cancels out. But when we are comparing di�erent models, C does not cancel out; it expresses

the prior range (in this case, C ' 1=2�) of values that � might have. Then we are free to choose
a Gaussian analytical form which makes it easy to do the integrations. Indeed, this choice can be

justi�ed also as representing the actual state of knowledge that we have in real problems. Then the

likely error � of our measurements is so much smaller than � that over the high likelihood region

, the prior density for � is essentially constant and equal to (2�)�1. Had we chosen a rectangular

prior with width 2�, it would have led to just the same result.

With the prior (24{29) we can do the integration (24{28) exactly, with the result

W1 =
1p

1 + nwx2�2
exp

(
� nwx2 �̂2

2(1 + nwx2�2)

)
(24{30)

But this can be simpli�ed greatly. In the �rst place, we see from (24{25) that the accuracy with

which the experiment can measure � is �=
p
nx2, and � is surely at least 100 times this, so

nwx2�2 = nx2
�2

�2
=

�
prior range for �

accuracy of the measurement of �

�2
(24{31)

and this is typically very large numerically, of the order of 104 or greater. Therefore (24{30) may
be written

W1 =
1p

nwx2�2
exp

�
� �̂2

2�2

�
(24{32)
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But now � is surely also at least 100 times greater than �̂; so �̂1=2�2 is less than 10�4; and the
Ockham factor reduces, to all the accuracy we could use, simply to

W1 =
accuracy of � measurement

prior range for �
(24{33)

************************** MORE HERE!! *******************************

COMMENTS

Religious scholars who failed to heed the teachings of William of Ockham about issues amenable
to reason and issues amenable only to faith, were doomed to a lifetime of generating nonsense. Let

us note some of the forms this nonsense has taken.

Final Causes

It seems that any discussion of scienti�c inference must deal, sooner or later, with the issue of belief
or disbelief in �nal causes. Expressed views range all the way from Jacques Monod's forbidding us

even to mention purpose in the Universe, to the religious fundamentalist who insists that it is evil
not to believe in such a purpose.y We are astonished by the emotional, dogmatic intensity with

which opposite views are proclaimed, by persons who do not have a shred of supporting factual

evidence for their views.

But almost everyone who has discussed this has supposed that by a `�nal cause' one means
some supernatural force that suspends Natural Law and takes over control of molecular events

(that is, alters molecular positions and/or velocities in a way inconsistent with the equations of
motion) in order to ensure that some desired �nal condition is attained. In our view, almost all

past discussions have been awed by failure to recognize that operation of a �nal cause does not

imply controlling molecular details.

When the author of a textbook says: \My purpose in writing this book was to � � �", he
is disclosing that there was a true \�nal cause" governing many activities of writer, pen, paper,

secretary, word processor, typesetter, printer, extending usually over several years. When a chemist
imposes conditions on his system which forces it to have a certain volume and temperature, he is

just as truly the wielder of a �nal cause dictating the �nal thermodynamic state that he wished it

to have. A bricklayer and a cook are likewise engaged in the art of making �nal causes. But { and
this is the point usually missed { these �nal causes are macroscopic; they do not determine any

particular \molecular" details. In all cases, had the �ne details been di�erent in any one of billions
of ways, the �nal cause could have been satis�ed just as well.

The �nal cause may then be said to possess an entropy, indicating the number of microscopic

ways in which its purpose could have been realized; and the larger that entropy, the greater is the
probability that it will be realized. Thus the Principle of Maximum Entropy applies also here.

In other words, while the idea of a microscopic �nal cause runs counter to all the instincts of a
scientist, a macroscopic �nal cause is a perfectly familiar and real phenomenon, which we all invoke
daily. We can hardly deny the existence of purpose in the Universe when virtually everything we
do is done with some de�nite purpose in mind. Indeed, anybody who fails to pursue some de�nite

long{run purpose in the conduct of his life, is dismissed as an idler by his colleagues. Obviously,
this is just a familiar fact with no religious connotations; every scientist believes in macroscopic

�nal causes without thereby believing in supernatural contravention of the laws of physics. The

y For some, reasoning itself is evil: as one TV evangelist put it, \Reasoning is a sure sign that one is not

trusting God ."
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wielder of the �nal cause is not suspending physical law; he is merely choosing the Hamiltonian
with which the molecules of a system interact, whatever their precise microstate.

But while all this has no religious connotations, neither does it have any anti{religious ones.
Turning to the Universe as a whole, nothing compels us to suppose { or forbids us to suppose { that

some kind of conscious and purposive God is the ultimate controlling force; even one in charge of
all molecular details. But on what grounds does one suppose that He is concerned with human

welfare, much less that He created the solar system speci�cally for our bene�t?? Indeed, how do
we know that the opposite is not true? Perhaps God regards all life as an accidental cancerous

growth that can be tolerated for the moment, but which must be wiped out if it starts interfering
with His real design. How could anyone disprove that hypothesis? In a similar way, we tolerate the

existence of insect life out in the forest { as long as it stays there and does not interfere with our
purposes. But when the bugs creep into our gardens, houses, and granaries, we wipe then out.

Darwinian Evolution vs. Creationism

These considerations seem always to invoke another issue, for reasons that we do not understand
except that it is suggested by the book of Genesis in the Bible (although the issue itself makes no

reference to any particular religion). For some, belief in detailed �nal causes for everything is tied
to the dogma that every form of life must have been created by God for some speci�c purpose, and

this becomes a premise from which to attack the idea of Darwinian evolution.

Our problem with this is that we are unable to see any functional di�erence between Darwinian

evolution and Creationism; in what way would the observable facts be any di�erent? Since the

extinction of species and appearance of new species is not a mere `theory' but an unquestioned
fact (there are no dinosaurs or dodos running about today, and there is no evidence that humans

or horses existed in the time of the dinosaurs and plenty of evidence that they did not), one who
believes in an omnipotent God as the controlling force behind it all must, it seems to us, also believe

that whatever may be the facts, those must have been His intention; otherwise He could not be
omnipotent.

So when Darwin points out that there is a simple mechanism (natural selection) that can bring
about automatically the changes that we observe, in what way does this contradict the hypothesis

of an omnipotent God? Since that mechanism obviously exists, a believer in such a God must
also believe that He created that mechanism for the purpose of carrying out His plan. Indeed,

a God who failed to make use of such an obvious labor{saving device would seem rather stupid.
Far from attacking Darwin, creationists ought to thank him profusely for showing them how to

make their position so much more rational. We see this as much like the phenomenon noted in our

opening paragraph: a false premise that is irremovable because it is built into a model that is never
questioned.

Whatever the facts of biology { or physics, or chemistry, or geology, or astronomy { one
is always free to postulate that behind it all is a purposive God; and this hypothesis cannot be
con�rmed or refuted by observation because it is consistent with all facts whatever they may be. So
everyone is free to believe what he wishes about this, and whatever new knowledge we may acquire

in the future will never require him to change this opinion. But this is hardly a new discovery; a
famous exchange about it is reported to have occurred in 18'th Century France:

? Some such hypothesis seems to have been considered obvious by nearly everyone except Spinoza up to
the time of Newton; indeed, Newton himself thought that if the solar system were to drift gradually into
a con�guration incompatible with human life, it would be necessary for God to intervene and nudge the
planets back on their proper courses to save us. This seems hopelessly arrogant to us today, as Einstein
once noted in reply to a question from a news reporter. Much of the current discussion merely elaborates
views that Einstein expressed many years ago.
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Act I: Laplace sends Napoleon a just completed volume of his M�echanique C�eleste.
Although Napoleon is incapable of comprehending a word of it, when next they meet he

has to say something about it in acknowledgment.

Napoleon: \How is it that, although you say so much about the Universe, you
say nothing about its Creator?"

Laplace: \No, Sire, I had no need of that hypothesis."

Act II: Napoleon reports this conversation to Lagrange, who will never pass up an op-

portunity to get in a holier{than{thou dig at the atheist Laplace:

Lagrange: \Ah, but it is such a good hypothesis: it explains so many things!"

Act III: Napoleon reports Lagrange's comment back to Laplace, who has learned to

expect such posturing and is ready for it:

Laplace: \Indeed, Sire, Monsieur Lagrange has, with his usual sagacity, put his

�nger on the precise di�culty with the hypothesis: it explains everything, but
predicts nothing."

In other words, the hypothesis of a God is, as Laplace saw, logically disconnected from the subject
matter of science. That is the reason why scientists { Lagrange just as much as Laplace { have no

way of using the hypothesis in the conduct of science; and why science in turn can o�er no evidence
for or against the hypothesis. We need not take such extreme positions as either Monod or the

religious fundamentalists; it is su�cient if we recognize that, because of their logical independence,

we cannot use their relation to advance either science or religion { or to disprove either. Curiously,
nearly everyone who raises such issues does so in the belief that by denigrating science he is

somehow advancing religion; hardly anyone, except perhaps Richard Dawkins (1987), imagines
that by denigrating religion one is advancing science.

After all this, I shall surely be accused of cowardice if I fail to reveal my own personal views. Of

course, I do not believe in any theological system as actual fact, because for a scientist supernatural
explanations do not explain anything and there is no factual evidence for them in historical records

or arch�ology. But I recognize that, as a human institution, religion has �lled a need, brought
comfort to many, and that over the Centuries human behavior has undoubtedly been better than

it would have been without religion. So I do not advocate abandoning religion; only that religion
should now become more rational by abandoning claims of miracles, which only discredit it in the

minds of educated persions today. It would be greatly in their own interest to accept and use the

truths of science.y

For me, somewhat the same purpose is served instead by classical music. Thus, while I do

not participate in any religious activities, I will spend hours at the piano striving for exactly the

right phrasing of a short passge in a Beethoven sonata; and feel great satisfaction when I �nally
succeed. But whatever `reality' can be attributed to either religious or musical feelings is just what

we ourselves choose to attribute to them; it is in the eye of the beholder.

This discussion has taken us rather far a�eld, so we conclude it by listing where interested
readers may �nd a great deal about what modern scholarship has to say about the basis of Chris-
tianity and the Bible as historical fact. The Old Testament is analyzed in vast detail by Robert
H. Pfei�er (1948). F. C. Conybeare (1958) gives what we should call a rational analysis { indeed,

y Although I was raised as a Methodist Christian, I now recognize that the Jewish religion comes closer
to this goal than does Christianity, because it lays more emphasis on ethical teachings, and less on some
arbitrary system of theology tied to miracles.
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the only one known to us { of the origins of the New Testament, as a beautiful example of com-
plex plausible reasoning leading to virtually certain conclusions. Also, there is a peculiar di�culty

about the existence of a town called Nazareth in these early times, discussed by W. B. Smith
(1905). However, the �eld has erupted into controversy again in recent years, with many di�erent

conclusions asserted for many di�erent motives, by persons who simply ignore the facts of science.
For an account of this, see L. T. Johnson (1996).
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CHAPTER 27

INTRODUCTION TO COMMUNICATION THEORY

We noted in Chapter 11 that one of the motivations behind this work was the attempt to see
Gibbsian statistical mechanics and Shannon's communication theory as examples of the same line
of reasoning. A generalized form of statistical mechanics appeared as soon as we introduced the
notion of entropy, and we ought now to be in a position to treat communication theory in a similar
way.

One di�erence is that in statistical mechanics the prior information has nothing to do with
frequencies (it consists of measured values of macroscopic quantities such as pressure), and so
we have little temptation to commit errors. But in communication theory the prior information
consists, typically of frequencies; and this makes the probability{frequency conceptual pitfalls much
more acute. For this reason it seemed best to take up communication theory only after we had seen
the general connections between probability and frequency, in a variety of conceptually simpler
applications.

Origins of the Theory

First the di�cult matter of giving credit where credit is due. All major advances in understanding
have their precursors, whose full signi�cance is never recognized at the time. Relativity theory had
them in the work of Mach, Fitzgerald, Lorentz and Poincar�e, to mention only the most obvious
examples. Communication theory had many precursors, in the work of Gibbs, Nyquist, Hartley,
Szilard, von Neumann, and Wiener. But there is no denying that the work of Shannon (1948)
represents the arrival of the main signal, just as did Einstein's of 1905. In both cases ideas which
had long been, so to speak, \in the air" in a vague form, are grasped and put into sharp focus.

Shannon's papers were so full of important new concepts and results that they exercised not
only a stimulating e�ect, but also a paralyzing e�ect. During the �rst few years after their appear-
ance it was common to hear the opinion expressed, rather sadly, that Shannon had anticipated and
solved all the problems of the �eld, and left nothing else for others to do.

The post{Shannon developments, with few exceptions, can be classed into e�orts in two entirely
di�erent directions. On the applications side we have the Expansionists (who try to apply Shannon's
ideas to other �elds, as we do here), the Entropy Calculator (who works out the entropy of a
television signal, the French Language, a chromosome, or almost anything else you can imagine;
and then �nds that nobody knows what to do with it), and the Universalist (who assures us that
Shannon's work will revolutionize all intellectual activity; but is unable to o�er a speci�c example
of anything that has been changed by it).

We should not be overly critical of these e�orts because, as J. R. Pierce has remarked, it
is very hard to tell at �rst which ones make sense, which are pure nonsense, and which are the
beginning of something that will in time make sense. The writer's e�orts have received all three
classi�cations from various quarters. We expect that, eventually, the ideas introduced by Shannon
will be indispensable to the linguist, the geneticist, the television engineer, the neurologist, the
economist. But we share with many others a feeling of disappointment that 40 years of e�ort along
these lines has led to so little in the way of really useful advances in these �elds.

During this time there has been an overabundance of vague philosophy, and of abstract math-
ematics; but outside of coding theory a rather embarrassing shortage of examples where speci�c
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real problems have been solved by using this theory. We believe that the reason for this is that
conceptual misunderstandings, almost all of which amount to the Mind Projection Fallacy, have
prevented workers from asking the right questions. In order to apply communication theory to
other problems than coding, the �rst and hardest step is to state precisely what is the speci�c

problem that we want to solve?

In almost diametric opposition to the above e�orts, as far as aim was concerned, were the
mathematicians, who viewed communication theory simply as a branch of pure mathematics. Char-
acteristic of this school was a belief that, before introducing a continuous probability distribution,
you have to talk about set theory, Borel �elds, measure theory, the Lebesgue{Stieltjes integral,
and the Radon{Nikodym theorem. The important thing was to make the theorems rigorous by the

criteria of rigor then fashionable among mathematicians, even if in so doing we limit their scope
for applications. The book on information theory by A. I. Khinchin (1957) can serve as a typical
example of the style prevalent in this literature.

Here again, severe criticism of these e�orts is not called for. Of course, we want our principles
to be subjected to the closest scrutiny the human mind can bring to bear on them; if important
applications exist, the need for this is so much the greater. However, the present work is not
addressed to mathematicians, but to persons concerned with real applications. So we shall dwell
on this side of the story only to the extent of pointing out that the rigorized theorems are not the
ones relevant to problems of the real world. Typically, they refer only to situations that do not
exist (such as in�nitely long messages) and as a result they degenerate into \nonsense theorems"
which assign probability 1 to an impossible event, therefore zero to all possible events. We have no
way of using such results, because our probabilities are always conditional on our knowledge of the
real world. Now let's turn to some of the speci�c things in Shannon's papers.

The Noiseless Channel.

We deal with the transmission of information from some sender to some receiver. We shall speak of
them in anthropomorphic terms, such as \the man at the receiving end," although either or both
might actually be machines, as in telemetry or remote control systems. Transmission takes place
via some channel, which might be a telephone or telegraph circuit, a microwave link, a frequency
band assigned by the FCC, the German language, the postman, the neighborhood gossip, or a
chromosome. If, after having received a message, the receiver can always determine with certainty
which message was intended by the sender, we say that the channel is noiseless.

It was recognized very early in the game, particularly by Nyquist and Hartley, that the capa-
bility of a channel is not described by any property of the speci�c message it sends, but rather by
what it could have sent. The usefulness of a channel lies in its readiness to transmit any one of a
large class of messages, which the sender can choose at will.

In a noiseless channel, the obvious measure of this ability is simply the maximum number,
W (t), of distinguishable (at the destination) messages which the channel is capable of transmitting
in a time t. In all cases of interest to us, this number goes eventually into an exponential increase for
su�ciently large t: W (t) / expfCtg, so the measure of channel performance which is independent
of any particular time interval is the coe�cient C of this increase. We de�ne the channel capacity

as

C � lim
t!1

�
1

t
logW (t)

�
: (27{1)

The units in which C is measured will depend on which base we choose for our logarithms. Usually
one takes base 2, in which C is given in \bits per second," one bit being the amount of information
contained in a single binary (yes{no) decision. For easy interpretation of numerical values the bit
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is by far the best unit to use; but in formal operations it may be easier to use the base e of natural
logarithms. Our channel capacities are then measured in natural units, or \nits per second." To
convert, note that 1 bit = (ln 2) = 0:69315 nits, or 1 nit = 1:4427 bits.

The capacity of a noiseless channel is a de�nite number, characteristic of the channel, which
has nothing to do with human information. Thus, if a noiseless channel can transmit n symbols
per second, chosen in any order from an alphabet of a letters, we have W (t) = ant, or C = n log2 a
bits/second = n loge a nits/second. Any constraint on the possible sequences of letters can only
lower this number. For example, if the alphabet is A1; A2; : : : ; Aa, and it is required that in a long
message of N = nt symbols the letter Ai must occur with relative frequency fi, then the number
of possible messages in time t is only

W (t) =
N !

(Nf1)! : : :(Nfa)!
(27{2)

and from Stirling's approximation, as we found in Chapter 11,

C = �n
X
i

fi log fi nits/second : (27{3)

This attains its maximum value, equal to the previous C = n log a, in the case of equal frequencies,
fi = 1=a. Thus we have the interesting result that a constraint requiring all letters to occur with
equal frequencies does not decrease channel capacity at all. It does, of course, decrease the number
W (t) by an enormous factor; but the decrease in logW is what matters, and this grows less rapidly
than t, so it makes no di�erence in the limit. In view of the entropy concentration theorem of
Chapter 11, this can be understood in another way: the vast majority of all possible messages are
ones in which the letter frequencies are nearly equal.

Suppose now that symbol Ai has transmission time ti, but there is no other constraint on
the allowable sequences of letters. What is the channel capacity? Well, consider �rst the case of
messages in which letter Ai occurs ni times, i = 1; 2; : : : ; a. The number of such messages is

W (n1 : : :na) =
N !

n1! : : :na!
(27{4)

where

N =
aX
i=1

ni : (27{5)

The total number of di�erent messages that could have been transmitted in time t is then

W (t) =
X
ni

W (n1 : : :na) (27{6)

where we sum over all choices of (n1 : : :na) compatible with Ni � 0 and
aX
i=1

niti � t : (27{7)

The number K(t) of terms in the sum (27{6) satis�es K(t) � (Bt)a for some B < 1. This is
seen most easily by imagining the ni as coordinates in an a{dimensional space and noting the
geometrical meaning of K(t) as the volume of a simplex.

Exact evaluation of (27{6) would be quite an unpleasant job. But it's only the limiting value
that we care about right now, and we can get out of the hard work by the following trick. Note
that W (t) cannot be less than the greatest term Wm = Wmax(n1 : : :na) in (27{6) nor greater than
WmK(t):
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logWm � logW (t) � logWm + a log(Bt) (27{8)

and so we have

C � lim
t!1

1

t
logW (t) = lim

t!1

1

t
logWm (27{9)

i.e., to �nd the channel capacity, it is su�cient to maximize logW (n1 : : :na) subject to the con-
straint (27{7). This rather surprising fact can be understood as follows. The logarithm of W (t) is
given, crudely, by logW (t) = logWmax + log [number of reasonably large terms in (27{6)]. Even
though the number of large terms tends to in�nity as ta, this is not rapid enough to make any dif-
ference in comparison with the exponential increase of Wmax. As explained by Schr�odinger (1948),
this same mathematical fact is the reason why, in statistical mechanics, the Darwin{Fowler method
and the method of most probable distribution lead to the same results in the limit of large systems.

We can solve the problem of maximizing logW (n1 : : :na) by the same Lagrange multiplier
argument used in Chapter 11. The problem is not quite the same, however, because now N is also
to be varied in �nding the maximum. Using the Stirling approximation, which is valid for large ni,
we have

logW (n1 : : :na) � N logN �
aX
i=1

ni log ni: (27{10)

The variational problem, with � a Lagrangian multiplier, is

�[logW + �
X

niti] = 0 (27{11)

but since �N =
P

�ni, we have

� logW = �N logN � �N �
X
i

(�ni logni � �ni)

= �
X

�ni log(ni=N):

(27{12)

Therefore (27{11) reduces to
aX
i=1

[log(ni=N) + �ti]�ni = 0 (27{13)

with the solution

ni = Ne��ti : (27{14)

To �x the value of � we require

N =
X

ni = N
X

e��ti : (27{15)

With this choice of ni, we �nd
1

t
logWm = �

1

t
log(ni=N) =

1

t

X
ni(�ti): (27{16)

In the limit, t�1
P

niti ! 1, and so

C = lim
t!1

1

t
logW (t) = �: (27{17)

Our �nal result can be stated very simply: To calculate the capacity of a noiseless channel in which

symbol Ai has transmission time ti and which has no other constraints on the possible messages,

de�ne the partition function Z(�) �
P

i e
��ti . Then the channel capacity C is the real root of

Z(�) = 1 (27{18)
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You see already a very strong resemblance to the reasoning and the formalism of statistical me-
chanics, in spite of the fact that we have not yet said anything about probability.

From (27{15) we see that W (n1 : : :na) is maximized when the relative frequency of symbol Ai

is given by the canonical distribution

fi =
ni

N
= e��ti = e�Cti : (27{19)

Some have concluded from this that the channel is being \used most e�ciently" when we have
encoded our messages so that (27{19) holds. But that would be quite mistaken because, of course,
in time t the channel will actually transmit one message and only one; and this remains true
regardless of what relative frequencies we use. Equation (27{19) tells us only that { in accordance
with the entropy concentration theorem { the overwhelming majority of all possible messages that
the channel could have transmitted in time t are ones where the relative frequencies are canonical.

On the other hand, we have a generalization of the remark following (27{74); if we impose
an additional constraint requiring that the relative frequencies are given by (27{19), which might
be regarded as de�ning a new channel, the channel capacity would not be decreased. But any
constraint requiring that all possible messages have letter frequencies di�erent from (27{19) will
decrease channel capacity.

There are many other ways of interpreting these equations. For example, in our above argu-
ments we supposed that the total time of transmission is �xed and we wanted to maximize the
number W of possible messages amount which the sender can choose. In a practical communication
system, the situation is usually the other way around; we know in advance the extent of choice
which we demand in the messages which might be sent over the channel, so that W is �xed. We
then ask for the condition that the total transmission time of the message be minimized subject to
a �xed W .

It is well known that variational problems can be transformed into several di�erent forms, the
same mathematical result giving the solution to many di�erent problems. A circle has maximum
area for a given perimeter; but also it has minimum perimeter for a given area. In statistical
mechanics, the canonical distribution can be characterized as one with maximum entropy for a
given expectation of energy; or equally well as the one with minimum expectation of energy for a
given entropy. Similarly, the channel capacity found from (27{18) gives the maximum attainable
W for a given transmission time, or equally well the minimum attainable transmission time for a
�xed W .

As another extension of the meaning of these equations, note that we need not interpret the
quantity ti as a time; it can stand equally well for the \cost" as measured by any criterion, of
transmitting the i'th symbol. Perhaps the total length of time the channel is in operation is of no
importance, because the apparatus has to sit there in readiness whether it is being used or not.
The real criterion might be, for example, the amount of energy that a space probe must dissipate
in transmitting a message back to earth. In this case, we could de�ne ti as the energy required to
transmit the i'th symbol. The channel capacity given by Equation (27{18) would then be measured,
not in bits per second but in bits per joule, and its reciprocal is equal to the minimum attainable
number of joules needed per bit of transmitted information.

A more complicated type of noiseless channel, also considered by Shannon, is one where the
channel has a memory; it may be in any one of a set of \states" fS1 : : :Skg and the possible future
symbols, or their transmission times, depend on the present state. For example, suppose that if
the Channel is in state Si, it can transmit symbol An, which leaves the channel in state Sj , the
corresponding transmission time being tinj . Surprisingly, the calculation of the channel capacity in
this case is quite easy.

LetWi(t) be the total number of di�erent messages the channel can transmit in time t, starting
from state Si. Breaking down Wi(t) into several terms according to the �rst symbol transmitted,
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we have the same di�erence equation that we used to introduce the partition function in Chapter
8:

Wi(t) =
X
jn

Wj(t� tinj) (27{20)

where the sum is over all possible sequences Si ! An ! Sj . As before, this is a linear di�erence
equation with constant coe�cients, so its asymptotic solution must be an exponential function:

Wi(t) � Bi exp(Ct) (27{21)

and from the de�nition (27{1) it is clear that, for �nite k, the coe�cient C is the channel capacity.
Substituting (27{21) into (27{20), we obtain

Bi =
kX

j=1

Zij(C)Bj (27{22)

where

Zij(�) =
X
n

exp(��tinj) (27{23)

is the \partition matrix." Compare this argument with our �rst derivation of a partition function
in Chapter 8. If the sequence Si ! An ! Si is impossible, we set tinj =1. By this device we can
understand the sum in (27{23) as extending over all symbols in the alphabet.

Equation (27{22) says that the matrix Zij has an eigenvalue equal to unity. Thus, the channel
capacity is simply the greatest real root of D(�) = 0, where

D(�) � det[Zij(�)� �ij ]: (27{24)

This is one of the prettiest results given by Shannon. In the case of a single state, k = 1, it reduces
to the previous rule, Equation (27{18).

The problems solved above are, of course, only especially simple ones. By inventing channels
with more complicated types of constraints on the allowable sequences (i.e. with a long memory),
you can generate mathematical problems as involved as you please. But it would still be just
mathematics { as long as the channel is noiseless, there would be no di�culties of principle. In
each case you simply have to count up the possibilities and apply the de�nition (27{1). For some
weird channels, you might �nd that the limit therein does not exist, in which case we cannot speak
of a channel capacity, but have to characterize the channel simply by giving the function W (t).

The Information Source.

When we take the next step and consider the information source feeding our channel, fundamentally
new problems arise. There are mathematical problems aplenty, but there are also more basic
conceptual problems, which have to be considered before we can state which mathematical problems
are the signi�cant ones.

It was Professor Norbert Wiener who �rst suggested the enormously fruitful idea of representing
an information source in probability terms. He applied this to some problems of �lter design, which
we take up briey in a later Chapter. This work was an essential step in developing a way of thinking
which led to communication theory.

It is perhaps di�cult nowadays for us to realize what a big step this was. Previously, com-
munication engineers had considered an information source simply as a man with a message to
send; for their purposes an information source could be characterized simply by describing that
message. But Wiener suggested instead that an information source be characterized by giving the
probabilities pi that it will emit various messages Mi. Already we see the conceptual di�culties
faced by a frequency theory of probability { the man at the sending end presumably knows perfectly
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well which message he is going to send. What, then, could we possibly mean by speaking of the
probability that he will send something? There is nothing analogous to \chance" operating here.

By the probability pi of a message, do we mean the frequency with which he sends that
particular message? The question is absurd { a sane man sends a given message at most once,
and most messages never. Do we mean the frequency with which the message Mi occurs in some
imaginary \ensemble" of communication acts? Well, it's all right to state it that way if you want
to, but it doesn't answer the question. It merely leads us to restate the question as: what de�nes
that ensemble? How is it to be set up? Calling it by a di�erent name doesn't help us. What

information is that entropy H = �
P

pi log pi really measuring?

We take a halting �rst step toward answering this if we suppose that Shannon's H measures,
not the information of the sender, but the ignorance of the receiver, that is removed by receipt of the
message. Indeed, most later commentators make this interpretation. Yet on second thought, this
does not make sense either; for Shannon proceeds to develop theorems relating H to the channel
capacity C required to transmit the messages Mi. But how well a channel can transmit messages
obviously depends on properties of the channel and the messages; and not at all on the state of
ignorance of the receiver! You see the conceptual mess that the �eld has been in, for 40 years.

Right at this point we have to state clearly: what is the speci�c problem we want solved. A
probability distribution is a means of describing a state of knowledge. But whose state of knowledge
do we want to talk about? Evidently, not the man at the sending end or the one at the receiving
end; and Shannon o�ers us no explicit help on this. But implicitly, the answer seems to be clear; in
view of the theorems he gives, he cannot be describing the \general philosophy" of communication
between sender and receiver, as so many have supposed. He is thinking of the theory as something of
practical value to an engineer whose job is to design the technical equipment in the communication
system. In other words, the state of knowledge Shannon is describing is that of the communication

engineer when he designs the equipment. It is his ignorance about the messages to be sent that is
measured by H .

Although this viewpoint would seem perfectly natural for an engineer employed by the Bell
Telephone Laboratories, as Shannon was at the time, you will not �nd it actually expressed in
his words, or in the later literature based on the viewpoint which sees no distinction between
probability and frequency. For on the frequentist view, the notion of a probability for a person

with a certain state of knowledge simply doesn't exist, because probability is thought to be a
real physical phenomenon which exists independently of human information. But the problem of
choosing some probability distribution to represent the information source still does exist; it cannot
be evaded. It is now clear that the whole content of the theory depends on how we do this.

We have already emphasized several times that in probability theory we never solve an actual
problem of practice. We solve only some abstract mathematical model of the real problem. Setting
up this model requires not only mathematical ability, but also a great deal of practical judgment.
If our model does not correspond well to the actual situation then our theorems, however rigorous
the mathematicians may have made them, can be more misleading than helpful. This is so with
a vengeance in communication theory, because not only the quantitative details, but even the
qualitative nature of the theorems that can be proved, depend on which probability model we use
to represent an information source.

The purpose of this probability model is to describe the communication engineer's prior knowl-
edge about what messages his communication system may be called upon to send. In principle,
this prior knowledge could be of any sort; in particular, nothing prevents it from being semantic
in nature. For example, he might know in advance that the channel will be used only to transmit
stock market quotations; and not quotations from the Bible or obscene limericks. That is a per-
fectly valid kind of prior information, which would have de�nite implications for the probabilities
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pi by restricting the sample space in de�nite, speci�c ways, although they might be hard to state
in general mathematical terms.

We stress this point because some critics harp away incessantly on the theme that information
theory does not consider semantic meaning, and hold this to be a basic defect of our whole phi-
losophy. They could not be more mistaken; the issue of semantic meaning is not a philosophical
one but a technical one. The only reason why we do not consider semantic meaning is that we do
not know how to do it as a general procedure, although we could certainly do it \by hand" in the
context of a speci�c, �nite set of possible messages. Probably all of us have tried to restore some
corrupted text by drawing upon our perception of its semantic meaning; but how do you teach a
computer to do this?.

So let us assure those critics: if you will show us a de�nite, usable algorithm for assessing
semantic meaning, we are most eager to incorporate this too into information theory. In fact, our
present inability to do this is a serious handicap in many applications, from image restoration to
pattern recognition to arti�cial intelligence. We need your constructive help, not your criticisms.

But in traditional Shannon{type communication theory the only kind of prior knowledge con-
sidered is \statistical" because this is amenable to mathematical treatment at once. That is, it
consists of frequencies of letters, or combinations of letters, which have been observed in past sam-
ples of similar messages. Then a typical practical problem { indeed, the actual problem of writers
of those popular text compression computer programs { is to design encoding systems which will
transmit binary digits representing English text, reliably and at the maximum possible rate, given
an available channel with known properties. This would be also the actual problem of designers
of computer hardware like disk drives and modems, if they became a little more sophisticated.
The designer will then, according to the usual viewpoint, need accurate data giving the correct
frequencies of English text. Let's think about that a little.

Does the English Language have Statistical Properties?

Suppose we try to characterize the English language, for purposes of communication theory, by
specifying the relative frequencies of various letters, or combinations of letters. Now we all know
that there is a great deal of truth in statements such as \the letter E occurs more frequently than
the letter Z." Long before the days of communication theory, many people made obvious common{
sense use of this knowledge. One of the earliest examples is the design of the Morse telegraphic
code, in which the most frequently used letters are represented by the shortest codes { the exact
prototype of what Shannon formalized and made precise a century later.

The design of our standard typewriter keyboard makes considerable use of knowledge of letter
frequencies. This knowledge was used in a much more direct and drastic way by Ottmar Mergen-
thaler, whose immortal phrase

ETAOIN SHRDLU

was a common sight in the newspapers many years ago when linotype machines �rst came into use
(an inexperienced operator, who allowed his �ngers to brush lightly across the keys, automatically
set this in type). But already we are getting into trouble, because there does not seem to be
complete agreement even as to the relative order of twelve most common letters in English, let
alone the numerical values of their relative frequencies. For example, according to Pratt (1942) the
above phrase should read

ETANOR ISHDLF
while Tribus (1961) gives it as

ETOANI RSHDLC:
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As we go into the less frequently used letters, the situation becomes still more chaotic.

Of course, we readily see the reason for these di�erences. People who have obtained di�erent
values for the relative frequencies of letters in English have consulted di�erent samples of English
text. It is obvious enough that the last volume of an encyclopedia will have a higher relative
frequency for the letter Z than the �rst volume. The word frequencies would be very di�erent in a
textbook on organic chemistry, a treatise on the history of Egypt, and a modern American novel.
The writing of educated people would reveal systematic di�erences in word frequencies from the
writing of people who had never gone beyond grade school. Even within a much narrower �eld, we
would expect to �nd signi�cant di�erences in letter and word frequencies in the writings of James
Michener and Ernest Hemingway. The letter frequencies in the transcript of a tape recording of
a lecture will probably be noticeably di�erent from those one would produce if he sat down and
wrote out the lecture verbatim.

The fact that statistical properties of a language vary with the author and circumstances of
writing is so clear that it has become a useful research tool. A doctoral thesis in classics submitted to
Columbia University by James T. McDonough (1961) contains a computer{run statistical analysis
of Homer's Iliad. Classicists have long debated whether all parts of the Iliad were written by the
same man, and indeed whether Homer is an actual historical person. The analysis showed stylistic
patterns consistent throughout the work. For example, 40.4% of the 15,693 lines end on a word
with one short syllable followed by two long ones, and a word of this structure never once appears
in the middle of a line. Such consistency in a thing which is not a characteristic property of the
Greek language, seems rather strong evidence that the Iliad was written by a single person in a
relatively short period of time, and it was not, as had been supposed by some nineteenth century
classicists, the result of an evolutionary process over several centuries.

Of course, the evolutionary theory is not demolished by this evidence alone. If the Iliad was
sung, we must suppose that the music had the very monotonous rhythmic pattern of primitive
music, which persisted to a large extent as late as Bach and Haydn. Characteristic word patterns
may have been forced on the writers, by the nature of the music.

Archaeologists tell us that the siege of Troy, described in the Iliad, is not a myth but an his-
torical fact which occurred about 1200 B. C., some four centuries before Homer. The decipherment
of Minoan Linear B script by Michel Ventris in 1952 established that Greek existed already as a
spoken language in the Aegean area several centuries before the siege of Troy; but the introduction
of the Phoenician alphabet, which made possible a written Greek language in the modern sense,
occurred only about the time of Homer.

The considerations of the last two paragraphs still suggest an evolutionary development. You
see that the question is very complex and far from settled; but we �nd it fascinating that a statistical
analysis of word and syllable frequencies, representing evidence which has been there in the Iliad
for some 28 Centuries for anyone who had the wit to extract it, is �nally recognized as having a
de�nite bearing on the problem.

Well, to get back to communication theory, the point we are making is simply this: it is utterly
wrong to say that there exists one and only one \true" set of letter or word frequencies for English
text. If we use a mathematical model which presupposes the existence of such uniquely de�ned
frequencies, we might easily end up proving things which, while perfectly valid as mathematical
theorems, are worse than useless to an engineer who is faced with the job of actually designing a
communication system to transmit English text most e�ciently.

But suppose our engineer does have extensive frequency data, and no other prior knowledge.
How is he to make use of this in describing the information source? Many of the standard results
of communication theory can, from the viewpoint we are advocating, be seen as simple examples
of maximum{entropy inference; i.e., as examples of the same kind of reasoning as in statistical
mechanics.
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Optimum Encoding: Letter Frequencies Known.

Suppose our alphabet consists of di�erent symbols A1; A2; : : : ; Aa, and we denote a general symbol
by Ai, Aj , etc. Any message of N symbols then has the form Ai1Ai2 : : :AiN . We denote this
message by M , which is a shorthand expression for the set of indices: M = fi1i2 : : : iNg. The
number of conceivable messages is aN . By

P
M we mean a sum over all of them. Also, de�ne

Nj(M) � (number of times the letter Aj appears in message M)

Nij(M) � (number of times the digram AiAj appears in M)
and so on.

Consider �rst an engineer E1, who has a set of numbers (f1 : : : fa) giving the relative frequencies
of the letters Aj , as observed in past samples of messages, but has no other prior knowledge. What
communication system represents rational design on the basis of this much information, and what
channel capacity does E1 require in order to transmit messages at a given rate of n symbols per
second?

To answer this, we need the probability distribution p(M) which E1 assigns to the various
conceivable messages. Now Mr. E1 has no deductive proof that the letter frequencies in the future
messages will be equal to the fi observed in the past. On the other hand, his state of knowledge
a�ords no grounds for supposing that the frequency of Ai will be greater than fi rather than less,
or vice versa. So he is going to suppose that frequencies in the future will be more or less the same
as in the past, but he is not going to be too dogmatic about it. He can do this by requiring of
the distribution p(M) only that it yield expected frequencies equal to the known past ones. Put
di�erently, if we say that our distribution p(M) \contains" certain information, we mean that that
information can be extracted back out of it by the usual rule of estimation. In other words, E1 will
impose the constraints

hNii =
X
M

Ni(M)p(M) = Nfi; i = 1; 2; : : : ; a: (27{25)

Of course, p(M) is not uniquely determined by these constraints, and so E1 must at this point
make a free choice of some distribution.

We emphasize again that it makes no sense to say there exists any \physical" or \objective"
probability distribution p(M) for this problem. This becomes especially clear if we suppose that
only a single message is ever going to be sent over the communication system, but we still want it to
be transmitted as quickly and reliably as possible, whatever that message turns out to be (perhaps
we know that the system will be destroyed by impact on Ganymede immediately afterward); thus
there is no conceivable way in which p(M) could be measured as a frequency. But this would in no
way a�ect the problem of engineering design which we are considering.

In choosing a distribution p(M), it would be perfectly possible for E1 to assume some message
structure involving more than single letters. For example, he might suppose that the digram A1A2

is twice as likely as A2A3. But from the standpoint of E1 this could not be justi�ed, for as far

as he knows, a design based on any such assumption is as likely to hurt as to help. From E1's
standpoint, rational conservative design consists just in carefully avoiding any such assumptions.
This means, in short, that E1 should choose the distribution p(M) by maximum entropy consistent
with (27{25).

All the formalism of the maximum{entropy inference developed in Chapter 11 now becomes
available to E1. His distribution p(M) will have the form

log p(M) + �0 + �1N1(M) + �2N2 + : : :+ �aNa(M) = 0 (27{26)

and in order to evaluate the Lagrangian multipliers �i, he will use the partition function
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Z(�1 : : :�a) =
X
M

exp[��1N1(M)� : : :� �aNa(M)] = zN (27{27)

where

z ���1 + : : :+ e��a : (27{28)

From (27{25) and the general relation

hNii = �
@

@�i
logZ(�1 : : :�a) (27{29)

we �nd

�i = � log(zfi); 1 � i � a (27{30)

and, substituting back into (27{26), we �nd the distribution which describes E1's state of knowledge
is just the multinomial distribution:

p(M) = fN1

1 fN2

2 : : : fNa

a (27{31)

which is a special case of an exchangeable sequence; the probability of any particular message
depends only on how many times the letters A1; A2; : : : appear, not on their order. The result (27{
31) is correctly normalized,

P
M p(M) = 1, as we see from the fact that the number of di�erent

messages possible for speci�ed Ni is just the multinomial coe�cient

N !

N1! : : :Na!
:

The entropy per symbol of the distribution (27{31) is

H1 = �
1

N

X
M

p(M) log p(M) =
logZ

N
+

aX
i=1

�ifi = �
aX
i=1

fi log fi: (27{32)

Having found the assignment p(M), he can encode into binary digits in the most e�cient way by a
method found independently by Shannon (1948, Sec. 9) and R. M. Fano. Arrange the messages in
order of decreasing probability, and by a cut separate them into two classes so the total probability
of all messages to the left of the cut is as nearly as possible equal to the probability of the messages
on the right. If a given message falls in the left class the �rst binary digit in its code is 0; if in
the right, 1. By a similar division of these classes into subclasses with as nearly as possible a total
probability of 1/4, we determine the second binary digit, etc. It is left for you to prove that (1)
the expected number of binary digits required to transmit a symbol is equal to H1, when expressed
in bits, and (2) in order to transmit at a rate of n of the original message symbols per second, E1

requires a channel capacity C � nH1, a result �rst given by Shannon.

The preceding mathematical steps are so well{known that they might be called trivial. How-
ever, the rationale which we have given them di�ers essentially from that of conventional treatments,
and in that di�erence lies the main point of this section. Conventionally, one would use the fre-
quency de�nition of probability, and say that E1's probability assignment p(M) is the one resulting
from the assumption that there are no intersymbol inuences. Such a manner of speaking carries
a connotation that the assumption might or might not be correct, and the implication that its
correctness must be demonstrated if the resulting design is to be justi�ed; i.e. that the resulting
encoding rules might not be satisfactory if there are in fact intersymbol inuences unknown to E1.

On the other hand, we contend that the probability assignment (27{26) is not an assumption
at all, but the opposite. Eq. (27{26) represents, in a certain na��ve sense which we shall come
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back to later, the complete absence of any assumption on the part of E1, beyond speci�cation of
expected single{letter frequencies, and it is uniquely determined by that property. Because of this,
the design based on (27{26) is the safest one possible on his state of knowledge.

By that we mean the following. If, in fact, strong intersymbol correlations do exist unknown
to E1 (for example, Q is always followed by U), his encoding system will still be able to handle the
messages perfectly well, whatever the nature of those correlations. This is what we mean by saying
that the present design is the most conservative one; that it assumes nothing about correlations
does not mean that it assumes no correlations and will be in trouble if correlations are in fact
present. On the contrary, it means that it is prepared in advance for whatever kind of correlations

might exist ; they will not cause any deterioration in performance. We stress this point because it
was not noted by Shannon, and it does not seem to be comprehended in the more recent literature.

But if he had been given this additional information about some particular kind of correlations,
he could have used it to arrive at a new encoding system which would be still more e�cient (i.e.
would require a smaller channel capacity), as long as messages with only the speci�ed type of

correlation were transmitted . But if the type of correlations in the messages were suddenly to
change, this new encoding system would likely become worse than the one just found.

Better Encoding From Knowledge of Digram Frequencies.

Here is a rather long mathematical derivation which has, however, useful applications outside the
particular problem at hand. Consider a second engineer, E2. He has a set of numbers fij , 1 � i � a,
1 � j � a, which represent the expected relative frequencies of the digrams AiAj . E2 will assign
message probabilities p(M) so as to agree with his state of knowledge,

hNiji =
X
M

Nij(M)p(M) = (N � 1)fij (27{33)

and in order to avoid any further assumptions which are as likely to hurt as to help as far as

he knows, he will determine the probability distribution over messages p(M) which has maximum
entropy subject to these constraints. The problem is solved if he can evaluate the partition function

Z(�ij) =
X
M

exp

2
4�

aX
ij=1

�ijNij(M)

3
5 : (27{34)

This can be done by solving the combinatorial problem of the number of di�erent messages with
given fNijg, or by observing that (27{34) can be written in the form of a matrix product:

Z =
aX

ij=1

�
QN�1

�
ij

(27{35)

where the matrix Q is de�ned by

Qij � e��ij : (27{36)

The result can be simpli�ed formally if we suppose that the messageAi1 : : :AiN is always terminated
by repetition of the �rst symbol Ai1 , so that it becomes Ai1 : : :AiNAi1 . The digram AiNAi1 is added
to the message and an extra factor exp(��ij) appears in (27{34). The modi�ed partition function
then becomes a trace:

Z0 = Tr(QN) =
aX

k=1

qNk (27{37)

where the qk are the roots of jQij � q�ij j = 0. This simpli�cation would be termed \use of periodic
boundary conditions" by the physicist. Clearly, the modi�cation leads to no di�erence in the limit
of long messages; as N ! 1,



2713 Chap. 27: INTRODUCTION TO COMMUNICATION THEORY 2713

lim
1

N
logZ = lim

1

N
logZ0 = log qmax (27{38)

where qmax is the greatest eigenvalue of Q. The probability of a particular message is now a special
case of (27{82):

p(M) =
1

Z
exp[�

X
�ijNij(M)] (27{39)

which yields the entropy as a special case of (27{82):

S = �
X
M

p(M) log p(M) = logZ +
X
ij

�ijhNiji: (27{40)

In view of (27{33) and (27{38), Mr. E2's entropy per symbol reduces, in the limit N !1, to

H2 =
S

N
= log qmax +

X
ij

�ijfij (27{41)

or, since
P

ij fij = 1, we can write (27{41) as

H2 =
X
ij

fij(log qmax + �ij) =
X
ij

fij log

�
qmax

Qij

�
: (27{42)

Thus to calculate the entropy we do not need qmax as a function of the �ij (which would be
impractical analytically for a > 3), but we need �nd only the ratio qmax=Qij as a function of the
fij . To do this, we �rst introduce the characteristic polynomial of the matrix Q:

D(q) � det(Qij � q�ij) (27{43)

and note, for later purposes, some well-known properties of determinants. The �rst is

D(q)�ik =
aX

j=1

Mij(Qkj � q�kj) =
X
j

MijQkj � qMik (27{44)

and similarly,

D(q)�ik =
X
j

MjiQjk � qMki (27{45)

in which Mij is the cofactor of (Qij � q�ij) in the determinant D(q); i.e. (�)i+jMij is the deter-
minant of the matrix formed by striking out the ith row and jth column of the matrix (Q� q1). If
q is any eigenvalue of Q, the expression (27{44) vanishes for all choices of i and k.

The second identity applies only when q is an eigenvalue of Q. In this case, all minors of the
matrix M are known to vanish. In particular, the second order minors are

MikMjl �MilMjk = 0; if D(q) = 0: (27{46)

This implies that the ratios (Mik=Mjk) and (Mki=Mkj) are independent of k; i.e. that Mij must
have the form

Mij = aibj ; if D(q) = 0: (27{47)

Substitution into (27{44) and (27{47) then shows that the quantities bj form the right eigenvectors
of Q, while ai is a left eigenvector:X

j

Qkjbj = qbk; if D(q) = 0 (27{48)

X
i

aiQik = akq; if D(q) = 0: (27{49)
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Suppose now that any eigenvalue q of Q is expressed as an explicit function q(�11; �12; : : : ; �aa) of
the Lagrangian multipliers �ij. Then, varying a particular �kl while keeping the other �ij �xed,
q will vary so as to keep D(q) identically zero. By the rule for di�erentiating the determinant
(27{43), this gives

dD

d�kl
=

@D

@�kl
+
@D

@q

@q

@�kl
= �MklQkl �

@q

@�kl
Tr(M) = 0 (27{50)

Using this relation, the condition (27{33) �xing the Lagrangian multipliers �ij in terms of the
prescribed digram frequencies fij , become

fij = �
@

@�ij
log qmax =

MijQij

qmaxTr(M)
: (27{51)

the single-letter frequencies are proportional to the diagonal elements of M :

fi =
aX

j=1

fij =
Mii

Tr(M)
(27{52)

where we have used the fact that (27{44) vanishes for q = qmax, i = k. Thus, from (27{51) and
(27{52), the ratio needed in computing the entropy per symbol is

Qij

qmax

=
fij

fi

Mii

Mij

=
fij

fi

bi

bj
(27{53)

where we have used (27{47). Substituting this into (27{42), we �nd that the terms involving bi
and bj cancel out, and E2's entropy per symbol is just

H2 = �
X
ij

fij log

�
fij

fi

�
= �

X
ij

fij log fij +
X
i

fi log fi: (27{54)

This is never greater than E1's H1, for from (27{82), (27{54),

H2 �H1 =
X
ij

fij log

�
fifj

fij

�
�
X
ij

fij

�
fifj

fij
� 1

�
= 0

where we used the fact that log x � x � 1 in 0 � x < 1, with equality if and only if x = 1.
Therefore,

H2 � H1 (27{55)

with equality if and only if fij = fifj , in which case E2's extra information was only what E1

would have inferred. To see this, note that in the message M = fi1 : : : iNg, the number of times
the digram AiAj occurs is

Nij(M) = �(i; i1)�(j; i2) + �(i; i2)�(i; i3) + � � �+ �(i; iN�1)�(j; iN) (27{56)

and so, if we ask E1 to estimate the frequency of digram AiAj , by the criterion of minimizing the
expected square of the error, he will make the estimate

hfiji =
hNiji

N � 1
=

1

N � 1

X
M

p(M)Nij(M) = fifj (27{57)
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using for p(M) the distribution (27{82) of E1. In fact, the solutions found by E1 and E2 are
identical if fij = fifj , for then we have from (27{51), (27{52), and (27{47),

Qij = e��ij = qmax

p
fifj : (27{58)

Using (27{38), (27{56), and (27{58), we �nd that E2's distribution (27{39) reduces to (27{82).
This is a rather nontrivial example of what we noted in Chapter 11, Eq. (11{74).

Relation to a Stochastic Model.

The quantities introduced above acquire a deeper meaning in terms of the following problem.
Suppose that part of the message has been received, what can Mr. E2 then say about the remainder
of the message? This is answered by recalling our product rule

p(ABjI) = p(AjBI)p(BjI)

or, the conditional probability of A, given B, is

p(AjBI) =
p(ABjI)

p(BjI)
(27{59)

a relation which in conventional theory, which never mentions prior information I , is taken as the
de�nition of a conditional probability (i.e., the ratio of two \absolute" probabilities). In our case,
let I stand for the general statement of the problem leading to the solution (27{39), and let

B � \The �rst (m� 1) symbols are fi1i2 : : : im�1g."

A � \The remainder of the message is fim : : : iNg."

Then p(ABjI) is the same as p(M) in (27{39). Using (27{56), this reduces to

p(ABjI) = p(i1 : : : iN jI) = Z�1Qi1i2Qi2i3 � � �QiN�1 iN (27{60)

and in

p(BjI) =
aX

im=1

� � �
aX

iN=1

p(i1 : : : iN jI) (27{61)

the sum generates a power of the matrix Q, just as in the partition function (27{35). Writing, for
brevity, im�1 = i, im = j, iN = k, and

R �
1

Z
Qi1i2 � � �Qim�2im�1 ; (27{62)

we have

p(BjI) = R

aX
k=1

(QN+m+1)ik = R

aX
jk=1

Qij(Q
N�m)jk (27{63)

and so

p(AjBI) =
QijQimim+1

� � �QiN�1iNPa

k=1
(QN�m+1)ik

(27{64)

since all the Q's contained in R cancel out, we see that the probabilities for the remainder fim : : : iNg
of the message depend only on the immediately preceding symbol Ai, and not on any other details
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of B. This property de�nes a generalized Markov Chain. There is a huge literature dealing with
them; it is perhaps the most thoroughly worked out branch of probability theory, and we used a
rudimentary form of it in calculating the conditional sampling distributions in Chapter 3. The basic
tool, from which essentially all else follows, is the matrix pij of \elementary transition probabilities."
This is the probability pij = p(Aj jAiI) that the next symbol will be Aj , given that the last one
was Ai. Summing (27{64) over im+1 : : : iN , we �nd that for a chain of length N the transition
probabilities are

p
(N)

ij = p(Aj jAiI) =
Qij � TjP
k QikTk

(27{65)

where

Tj �
aX

k=1

(QN�m)jk: (27{66)

The fact that Tj depends on N and m is an interesting feature. Usually, one considers from the
start a chain inde�nitely prolonged, and so it is only the limit of (27{65) for N ! 1 that is ever
considered. This example shows that prior knowledge of the length of the chain can a�ect the
transition probabilities; however, the limiting case is clearly of greatest interest.

To �nd this limit we need a little more matrix theory. The equation D(q) = det(Qij�q�ij) = 0
has a roots (q1q2 : : : qa), not necessarily all di�erent, or real. Label them so that jq1j � jqqj � : : : �
jqaj. There exists a nonsingular matrix A such that AQA�1 takes the canonical \superdiagonal"
form:

AQA�1 = Q =

0
BB@
C1 0 0 � � �
0 C2 0 � � �
0 0 C3 � � �
...

...
... Cm

1
CCA (27{67)

where the Ci are sub-matrices which can have either the forms

Ci =

0
BBBB@

qi 1 0 0 � � �
0 qi 1 0 � � �
0 0 qi 1 � � �
0 0 0 qi 1
...

...
... 0 qi

1
CCCCA or, Ci =

0
BB@
qi

qi
. . .

qi

1
CCA : (27{68)

The result of raising Q to the n'th power is

Qn = AQ
n
A�1 (27{69)

and as n!1, the elements ofQ
n
arising from the greatest eigenvalue qmax = q1 become arbitrarily

large compared to all others. If q1 is nondegenerate, so that it appears only in the �rst row and
column of Q, we have

lim
N!1

�
Tj

qN�m1

�
= Aj1

aX
k=1

(A�1)1k; (27{70)

lim
N!1

�
TjP

k QikTk

�
=

Aj1

q1Ai1

; (27{71)

and the limiting transition probabilities are
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p
(1)

ij =
Qij

q1

Aj1

Ai1

=
Qij

q1

Mij

Mii

(27{72)

where we have used the fact that the elements Aj1 (j = 1; 2; : : : ; a) from an eigenvector of Q with
eigenvalue q1 = qmax, so that, referring to (27{47), (27{82), Aj1 = Kbj where K is some constant.
Using (27{51), (27{52), we have �nally,

p
(1)

ij =
fij

fi
: (27{73)

From this long calculation we learn many things. In the �rst place, for a sequence of �nite length
(the only kind that actually exists), the exact solution has intricate �ne details that depend on the
length. This, of course, could not be learned by those who try to jump directly into an in�nite set
at the beginning of a problem. Secondly, it is interesting that standard matrix theory was adequate
to solve the problem completely. Finally, in the limit of in�nitely long sequences the exact solution
of the maximum{entropy problem does indeed go into the familiar Markov chain theory. This gives
us a deeper insight into the basis of, and possible limitations on, Markov chain analysis.

Exercise 22-1: The exact meaning of this last statement might be unclear; in a classical
Markov chain the transition probabilities two steps down the chain would be given by the square
of the one{step matrix pij , three steps by the cube of that matrix, and so on. But our solution
determines those multi{step probabilities by summing (27{64) over the appropriate indices,
which is not obviously the same thing. Investigate this and determine whether the maximum
entropy multi{step probabilities are the same as the classical Markov ones, or whether they
become the same in some limit.

We see that the Maximum{Entropy Principle su�ces to determine explicit solutions to prob-
lems of optimal encoding for noiseless channels. Of course, as we consider more complicated con-
straints (trigram frequencies, etc.), pencil{and{paper methods of solution will become impossibly
di�cult (there is no `standard matrix theory' for them), and to the best of our knowledge we must
resort to computers.

Now Shannon's ostensibly strongest theorem concerns the limit as n ! 1 of the problem
with n-gram frequencies given; his H � lim Hn is held to be the \true" entropy of the English
language, which determines the \true" minimum channel capacity required to transmit it. We do
not question this as a valid mathematical theorem, but from our discussion above it is clear that
such a theorem can have no relevance to the real world, because there is no such thing as a \true"
n-gram frequency for English even when n = 1.

Indeed, even if such frequencies did exist, think for a moment about how one would determine
them. Even if we do not distinguish between capital and small letters and include no decimal digits
or punctuation marks in our alphabet, there are 2610 = 1:41�1014 ten{grams whose frequencies are
to be measured and recorded. To store them all on paper at 1000 entries per sheet would require
a stack of paper about 7000 miles high.

************************* MORE COMING! NOISY CHANNELS! *******************

When we turn to the noisy channel, fundamentally new features appear, and even the basic
theorems given by Shannon have been called into question by mathematicians. But they did not
have the tool of probability theory as logic; so let us see whether we are now in a better position
to deal with these problems.

The Noisy Channel

From a physical standpoint, the basic idea is that the transmitted messages are corrupted en route,
in an unpredictable and uncontrollable way, so that a given sent message can produce any one of
several!
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************************* MORE COMING! *******************

Fixing a Noisy Channel

Let us examine the simplest nontrivial case, where the noise acts independently (without memory)
on each separate letter transmitted. Suppose that each letter has independently the probability �

of being transmitted incorrectly. Then in a message of N letters the probability that there are r
errors is the binomial

p(r) =

�
N

r

�
�r (1� �)N�r (27{74)

and the expected number of errors is hri = N�. Then if N� << 1, we might consider the com-
munication system satisfactory for most purposes. However, it may be essential that the message
be transmitted without any error at all (as in sending a computer code instruction to a satellite
in orbit). The �eld of fancy error{correcting codes has a large literature and much sophisticated
theory; but a very popular and simple procedure is the checksum.

Suppose, as is usually the case in computer practice, that our \alphabet" consists of 28 = 256
di�erent characters sent as eight{bit binary numbers, called `bytes'. At the end of the message one
transmits one more byte, which is numerically the sum (mod 256) of the N previous ones. The
receiver recalculates this sum from the �rst N bytes received, and compares it with the transmitted
checksum. If they agree, then it is virtually certain that the transmission was error{free (if there
is an error, then there must be at least two errors which just happened to cancel each other out in
the checksum, and the probability of this is astronomically small, far less than �). If they disagree,
then it is certain that there was a transmission error, so the receiver sends back a \please repeat"
signal to the transmitter, and the process is repeated until error{free transmission is achieved.

Let us see just how good the checksum procedure is according to probability theory. Write,
for brevity,

q � (1� �)N+1: (27{75)

Then to achieve error{free transmission, there is

probability q that it will require (N + 1) symbols transmitted.

probability (1� q)q that 2(N + 1) symbols will be required.

probability (1� q)2q that 3(N + 1) symbols will be required,

� � � and so on.

The expected length of transmission to achieve error{free operation is then the sum

hLi = (N + 1)q[1 + 2(1� q) + 3(1� q)2 + 4(1� q)3 + � � �]: (27{76)

Since j1� qj < 1, the series converges to 1=q2, and so

hLi =
N + 1

(1� �)N+1
' NeN�; (27{77)

the approximation holding reasonably well if N >> 1. But if the message is so long that N� >> 1,
this procedure fails; there is almost no chance that we could transmit it without error in any feasible
time.

But now an ingenious device comes to the rescue, and shows how much a little probability
theory can help us to achieve exactitude. Let us break the long message into m shorter blocks of
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length n = N=m, and transmit each block with its own checksum. From (27{77) the expected total
transmission length is now

hLi = m
n + 1

(1� �)n+1
= N

n+ 1

n(1� �)n+1
(27{78)

It is evident that if the blocks are too long, then we shall have to repeat too many of them; if they
are too short, then we shall waste transmission time sending many unnecessary checksums. Thus
there should be an optimal block length, which minimizes (27{78). Providentially, this turns out
to be independent of N ; varying n, (27{78) reaches a minimum when

1 + n(n+ 1) log(1� �) = 0; or (1� �)n+1 = exp(�1=n) (27{79)

For all practical purposes, then, the optimal block length is

(n)opt =
1
p
�

(27{80)

and the minimum achievable expected length is

hLimin = N �
n+ 1

n
� exp

�
1

n

�
' N(1 + 2

p
�) (27{81)

By breaking a long message into blocks, we have made an enormous improvement. If � ' 10�4, then
it would be impractical to send an error{free message of length N = 100; 000 bytes in a single block;
for one expects about 10 errors in each transmission. The expected transmission length would be
about 22; 000N bytes, signifying that we would have to repeat the message, on the average, about
22; 000 times before achieving one error{free result. But the optimal block length is about n ' 100,
and by using this the expected length is reduced to hLi = 1:020N . This signi�es that we are sending
1000 blocks, of which each has one extra byte (which accounts for the factor (n+1)=n ' 1+

p
�) and

about 10 will probably need to be repeated (which corresponds to the factor exp(1=n) ' 1 +
p
�).

But the minimum in (27{78) is very broad; if 40 � n � 250, we have hLi � 1:030N . If � = 10�6,
then the block technique allows us to transmit error{free messages of any length with virtually no
penalty in transmission time [hLi ' 1:002N if n is anywhere near 1000].

To the best of our knowledge, the block technique is an intuitive ad hockery, not derived
uniquely from any optimality criterion; yet it is so simple to use and comes so close to the best
that could ever be hoped for [hLi = N ], that there is hardly any incentive to seek anything better.

In the early days of microcomputers, messages were sent to and from disks in block lengths of
128 or 256 bytes, which would be optimal if the error probability for each byte were of the order
� ' 10�5. At the time of writing (1991) they are being sent instead in blocks of 1024 to 4096 bytes,
suggesting that disk reading and writing is now reliable to error probabilities of the order of 10�8

or better. Of course, it is conservative design to use block lengths somewhat shorter than the above
optimal value, to hedge against deterioration in performance as the equipment wears out and the
error rate increases.

But let us note a point of philosophy; in this discussion, have we abandoned our stance of
probability theory as logic, and reverted to frequency de�nitions? Not at all! It is perfectly true
that if the error probability � is indeed an \objectively real" frequency of errors measured in
some class of repetitions of all this, then our hLimin is equally well the objectively real minimum
achievable average transmission length over that same class of repetitions.

But there are few cases where this is really known to be true; such experiments are costly in
time and resources. In the real world, they are never completed before the design becomes frozen
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and the manufactured product delivered to the customers. Indeed, reliability experiments on highly
reliable systems can never be really completed at all, because in the time it requires to do them,
our state of knowledge and technical capabilities will change, making the original purpose of the
test irrelevant.

Our present point is that probability theory as logic works as well, in the following sense,
whether our probabilities are or are not known to be real frequencies. As we saw in Chapter 8, it
is an elementary derivable consequence of probability theory as logic that our probabilities are the
best estimates of those frequencies that we can make on the information we have.

Then, whatever the evidence on which that probability assignment � was based, the above
equations still describe the most rational design that could have been made, here and now, on the

information we had. As noted, this remains true even if we know in advance that only a single
message is ever going to be sent over our communication system. Thus probability theory as logic
has a wider range of applications, even in situations where one sometimes pretends that he is using
a frequency de�nition for psychological reasons.

******************** A LITTLE MORE HERE! *****************************
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CHAPTER 30

MAXIMUM ENTROPY: MATRIX FORMULATION.

Back in Chapter 11, we saw how the principle of maximum entropy leads us to a general means of

assigning probabilities. From a theoretical standpoint, that discussion contained a fairly complete

treatment of the general formal properties of MAXENT distributions. But from a pragmatic

viewpoint, Chapter 11 was left incomplete, in a way that appears as soon as we try to apply the

formalism to real, nontrivial problems; we need more powerful mathematical tools.

There is a second point to be made: our MAXENT formalism contained as a special case the

standard Gibbs formalism of equilibrium statistical mechanics, via arguments very much shorter and

simpler than the \ergodic" approach of antiquity. In statistical mechanics, therefore, the MAXENT

principle is, at the very least, a useful pedagogical device, by which known results may be derived

more quickly. But, of course, the real test of any new principle in science is not its ability to

re{derive known results, but its ability to give new results, which could not be (or at least, had not

been) derived without it. But since we agree with standard formalism in all equilibrium problems,

the only place where new results are possible is in the extension to nonequilibrium problems, where

previously no general theory existed.y How is this extension to be made in our formalism?

It is one of the most satisfying things about this approach that both these needs { �nding a

mathematical technique for complicated problems, and setting up a general formalism for nonequi-

librium problems { are met by a single mathematical development. The basic mathematical facts

to be explained here were found long ago by John von Neumann [G�ottinger Nachrichten, 1927], but

their full signi�cance could be seen only after the MAXENT principle had been recognized, and

the re{interpretation of probability theory as extended logic had been developed.

Density Matrix Formulation

First, let us consider Statistical Mechanics in quantum theory. In Chapter 11 we have developed

a formalism in which the enumeration of the possible \states of nature" could take place simply

by listing all the stationary quantum states. In other words, quantities that are constants of the

motion are the only things that we have allowed ourselves to specify so far. Evidently, if we are

ever going to get to non{equilibrium theory, we have to generalize this to the case where we put

in information about things which are not constants of the motion, so something can happen when

we let the equations of motion take over. If we started out with the initial canonical probability

assignments of Chapter 11 and then solved the Schr�odinger equation for the time development, we

would �nd nothing at all happening. It would just sit there. Of course, that is as it ought to be

for the equilibrium case; but for the non{equilibrium case, we need a bit more.

Also, as just noted, even in the equilibrium case, we need to generalize this before we can

actually do the calculation for nontrivial physical problems, because in practice we don't have the

kind of information assumed above. The theory given so far presupposes an enumeration of the

exact energy levels in our system to start with. But in a realistic problem, we can't calculate these.

y The fundamental postulate of ergodic theory was that ensemble averages are equal to time averages.
It would follow that, in equilibrium problems where there is no time dependence, ensemble averages are
also equal to experimental values. Obviously, such a theory is helpless to deal with the time{dependent
nonequilibrium problems, where the very facts to be explained are that ensemble averages are not equal to
time averages; but they are still equal to experimental values.
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What we know is a Hamiltonian operator which, in the cases we can actually solve, can be split

into a term H0 which is big but simple and another term H1 which is complicated but small,

H = H0 +H1 (30{1)

Then we have to do some kind of perturbation theory in order to �nd approximate values for

the energy levels de�ned by the entire Hamiltonian. To �nd them exactly is a problem that we

haven't solved. It will happen in all nontrivial problems that H1 does not commute with H0. So

we have to learn how to generalize the mathematical machine so we can put in information about

quantities which don't commute with each other. We can't enumerate states of nature simply by

citing energy levels; in fact we don't even know the representation in which this would be possible.

For this reason, in any representation we can �nd, the relative phase of these quantum states has

to get into the picture even for equilibrium problems. The way to do this is to restate this theory

in terms of the density matrix.

First, let's recall our basic de�nition of the density matrix. This is perfectly standard material

which is in a hundred textbooks on quantum theory and statistical mechanics. Suppose we have

a state of knowledge about a system; and for the time being, don't worry about how we got this

state of knowledge. We just want to describe it. Our system contains n moving particles with

coordinates fx1(t); � � �xn(t)g, and in quantum theory we describe our state of knowledge about

them by a wave function, or \state vector"

	(x1 � � �xn)

But this describes the maximum amount of information permitted by quantum theory. In most

cases there are various states 	1;	2; : : : ; in which the system might be, and we don't know which

one it is. All we know is described by assigning some probability w1 to it being in state 	1. Now,

if we knew the system was in a de�nite quantum state 	i and we wanted to predict the value of

some physical quantity F like momentum or magnetization, we represent this by some Hermitian

operator Fop, whereupon the expectation of F in state 	 is, according to quantum theory,

hF ii =

Z
	�iFop	id� (30{2)

where
R
d� stands for an integration over all particle co{ordinates xi, and, if there are spin indices

si in the problem, for summation over all those. Now the 	i functions that we started with are

not necessarily orthogonal functions. They could be any old set of conceivable states of the system.

But each of them could be expanded in a complete orthogonal set. Let's say that uk are a complete

orthonormal set of functions in which we can expand any state of this system. For the moment, it

doesn't matter what states they are; just any set that we know is complete. We could expand 	i

in terms of those, getting some expansion coe�cients a
(i)

k
:

	i =
X
k

uka
(i)

k (30{3)

and then write

hF ii =

Z  X
k

uka
(i)

k

!�
Fop

0
@X

j

uja
(i)

j

1
A d�: (30{4)

Now the a�k and aj are constants which can be taken outside the integral,
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hF ii =
X
kj

a
�(i)

k a
(i)

j

Z
u�kFopujd� (30{5)

and the integral (or sum) Z
u�kFopujd� � Fkj (30{6)

de�nes the matrix elements Fkj of F in the uk representation, so that

hF ii =
X
kj

Fkja
(i)�

k a
(i)

j : (30{7)

The expectation of any quantity, if we are given the wave function 	i, is a quadratic form in these

matrix elements Fkj .

Now if we're in this �x where we don't know what the state is, the best expectation value we

can give you is not just one of these, but we have to average it also over these wi which represent

our uncertainty as to what the actual state is,

hF i =
X
i

wihF ii =
X
i

wi

X
jk

Fkja
(i)�

k a
(i)

j : (30{8)

Our expectation values are now double averages. Even if we know the exact quantum state,

there are still statistical things in quantum theory (or, to put it more cautiously, in the current

\Copenhagen" interpretation of that theory), which would allow us to give only expectations in

general. We're not even that well o�. We don't even know what the right state is, so we have to

average over the ignorance (wi) also.

When you have a thing like (30{8), the only thing you can possibly do with it is change the

order of summations and see what happens. Let us do that;

hF i =
X
jk

Fkj
X
i

wia
(i)�

k a
(i)

j

Now, de�ne a matrix � by X
i

wia
(i)�

k a
(i)

j = �jk (30{9)

then

hF i =
X
jk

Fkj�jk: (30{10)

The summation over j builds the matrix product F�; and then the summation over k is the sum

of the diagonal elements, which we call the trace. Or, we could have written the sum with � and F

interchanged. In this case we would now say the summation over k builds us the matrix product

�F , and then the summation over j gives the trace, so we could write this equally well as

hF i =
X
jk

Fkj�jk = Tr(F�) = Tr(�F ): (30{11)

This matrix � is, of course, called the density matrix , and you see that it is a Hermitian matrix,

��kj = �jk, or in matrix notation
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�y = �: (30{12)

The neat way to develop our quantum statistics, so the phases are taken into account automatically,

is in terms of the density matrix. From now on we will express expectations of any quantities we

want to talk about in the form (30{11). We started out with a problem of how you set up a

probability assignment which describes a certain state of knowledge; now we have the problem of

setting up a density matrix which describes a certain state of knowledge.

Take a speci�c case; suppose somebody measures the total magnetic moment of some spin

system and they give us a number M . We want to �nd a density matrix which describes what we

know about the spin system when we have just this number; or rather these three numbers, the

three components fMx;My;Mzg. At the very least we want the density matrix to satisfy

~M = h ~Mopi = Tr
�
� ~Mop

�
: (30{13)

In other words, if we give this density matrix to anybody else, and he tries to predict the moments

from the density matrix, he should be able to get back the numbers that were given to us, by fol-

lowing the usual rule for prediction in statistical mechanics. If he couldn't do that, then it wouldn't

make sense to say that the density matrix \contained" the given information fMx;My;Mzg.
y

In general, there are an in�nite number of density matrices which would all do this. Again,

we are faced with the problem of making a free choice of a density matrix, which is \honest" in

the sense that it doesn't assume things that we don't know, and spreads out the probability as

evenly as possible over all possibilities allowed by what we do know. We do this by maximizing

an entropy; but what is the appropriate entropy now? We started out in Chapter 11 with the

information entropy

SI = �
X
i

pi log pi

so, suppose we now take

SA = �
X
i

wi logwi (30{14)

and we might choose the density matrix which makes SA a maximum. But if we took that as our

measure of amount of uncertainty, we would be in big trouble. A sort of Gibbs paradox would show

up, as a consequence of the fact that the initial states 	i are not necessarily orthogonal to each

other. We can have 	1 and give it a probability w1; and to the state 	2 we give probability w2.

Now, let's make a continuous change in the problem such that 	1 ! 	2; our state of knowledge

shades continuously into: 	1 with a probability (w1 + w2). But nothing like that happens to SA.

In SA as 	2 ! 	1 the term w1 logw1 + w2 logw2 would have to be replaced suddenly by

(w1 + w2) log(w1 + w2):

If we took this quantity SA as the measure of uncertainty about the system, then you would have

this phenomenon of sudden discontinuities in our uncertainty when two wave functions became

exactly equal. But our intuitive state of knowledge has no discontinuity when we do that. It goes

y This is all we are doing when we choose � to satisfy (30{13); but for reasons we do not understand, this
step seems to cause major conceptual hangups for some, who think that we are \measuring an expectation
value". Of course, that just does not make sense; we are choosing a density matrix so that its expectation
agrees with the measurement.
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continuously from one case to another. That's one thing that would be wrong if we tried to use

this SA as a measure of uncertainty.

There's another thing that would be even worse, and perhaps easier to see. For a given density

matrix, there's no upper limit to the SA that we could get. If SA is going to be the thing that

counts, let's say we have 26 di�erent states, 	a to 	z . They all happen to be equal to 	1 but we

assign probabilities wa to wz to them. Now, of course, the summation

�

26X
a=1

wa logwa

over the alphabet (this notation is not quite consistent, but I think you see the point) { the

summation over all these terms could be a very large number. We can introduce thousands of

them. There would be no upper limit to the �
P

w logw we could get if we used this SA.

On the other hand, there's one property that is unique. SA has no upper bound, but it does

have a lower bound. SA for a given density matrix has an absolute minimum given by

SA � �Tr(� log�): (30{15)

There's one and only one way, in general, of setting up these states 	i and corresponding proba-

bilities wi so that this lower bound is reached. When we say \in general," we mean if there are no

degeneracies in the eigenvalues of �. The simple proof is given in many places, for example Jaynes

(1957b), but the reader should be able to work it out for himself.

Well, now what does log � mean? There's a theorem in matrix theory that says: if � commutes

with its Hermitian conjugate [��y = �y�], there is a matrix S such that the eigenvalues f�1; �2; � � �g

of � are displayed explicitly:

S�S�1 =

0
BB@
�1

�2
. . .

�n

1
CCA (30{16)

Since � is itself Hermitian, this necessary and su�cient condition is met, so we can always �nd some

similarity transformation which would have made it diagonal. Now, in the representation where �

is diagonal, then by log � we mean the diagonal matrix

log � =

0
BB@
log �1

log �2
. . .

log �n

1
CCA (30{17)

If we choose for our basis uk the particular set of functions 	i for which SA does reach its absolute

minimum value, then the diagonal elements of � are just the probabilities wi assigned to these

states. In other words, the choice of possible states 	i which makes SA a minimum for a given �,

is the one for which the probabilities wi are the eigenvalues of this matrix �.

If states 	1 and 	2 are not orthogonal and you tell me the system is in state 	1, then, of

course, the present Copenhagen interpretation says: the probability that, if I did a measurement,

I would actually �nd it in 	2, is not zero. It's the scalar product squared, j(	1;	2)j
2; sometimes

called a transition probability from one state to another. We are not writing down the probabilities
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of mutually exclusive events unless we choose our states 	i to be orthogonal, and that's just what

we do by making the choice that minimizes SA. I'm going to say now that the von Neumann

information entropy SI for a density matrix is this unique minimum value of SA:

SI � (SA)min = �Tr(� log�) = �
X

�i log �i (30{18)

which is just the Shannon entropy that we used in Chapter 11, now based on the eigenvalues �i of �.

For a system described by the density matrix �, (30{18) is the quantity that measures the e�ective

number of microstates in which the system might be. There are a number of other arguments why

you choose (30{18) rather than some other expressions that you could think of, and they are also

given in this previously mentioned paper.

Generality of the Formalism. This makes another point evident; we have been thinking in terms

of quantum theory, where the density matrix is a virtual necessity for any nontrivial calculation.

But since the entropy expressions are really the same, we can equally well consider any problem

with discrete probabilities fp1 � � �png which has nothing to do with quantum theory (they might

refer to a problem in economics), and de�ne a matrix with the pi down the main diagonal:

� =

0
BB@
p1

p2
. . .

pn

1
CCA (30{19)

Then everything we can do with the probabilities fp1 � � �png we can do as well with the matrix �.

If it is a help for any calculation, we are free to carry out similarity transformations and work with

�0 � S�S�1 (30{20)

which has o�{diagonal elements. Thus all the following formalism, developed originally for quantum

theory, can be used as well for any problem with discrete probabilities. The expectation of any

quantity fq1; q2; � � �g which we wrote before as hqi =
P

piqi, can now be written equally well as

hqi = Tr�q, where q is a vector with components qi. The only di�erence is that in quantum theory

it is generally the matrix �0 that we meet with �rst, and it may be a di�cult problem to �nd � from

it. In practice, we must resort usually to some approximation method, of which a perturbation

expansion is probably the best developed example.

So, from this point on we may interpret the equations either as referring to quantum theory,

or to general problems with discrete probabilities pi

Setting up the Formalism: Now, we are back at the same problem that we studied in Chapter

11, but the Fk are matrices, and the constraints are

hF ik = Tr(�Fk); k = 1; 2; : : : ; m: (30{21)

We are to �nd the density matrix that maximizes SI � �Tr� log � while agreeing with the conditions

(30{21). Now, the formal solution of this goes through in exactly the same way as we did in Chapter

11. You recall that our proof back then was based on the fact that when we have an ordinary discrete

probability distribution

nX
i=1

pi log pi �

nX
i=1

pi log ui (30{22)
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The inequality, given by J. Willard Gibbs (1902), becomes an equality if, and only if, pi = ui.

Now, we have a precisely similar situation here. You can prove that if � and � are any two density

matrices, there is an inequality

Tr (� log�) � Tr (� log �) (30{23)

with equality if and only if � = �. We'll leave this as an \exercise for the reader" to prove. The

argument goes through in much the same way that we did it before. The density matrix that

maximizes SI subject to these constraints is again given by

� =
1

Z(�1 : : :�m)
exp f��1F1 � � � � � �mFmg (30{24)

One would guess, of course, that it generalizes in some such way as this, but intuition would not

tell us whether the proper generalization was exactly this form. All the formal properties that we

noted in Chapter 11 follow from this distribution in just the same way that we gave before { with

one exception, arising from the fact that the Fk do not necessarily commute, which we'll get to

after we've developed our mathematics a little bit more.

Of course the number one must have expectation value of one

h1i = Tr(�1) = Tr(�): (30{25)

This is one more condition just like the one that
P

pi had to be equal to one. The normalizing

factor which will guarantee this, is evidently

Z(�1 : : :�m) = Tr exp f��1F1 � � � � � �mFmg (30{26)

which is the partition function that we used already in Chapter 9 to solve combinatorial problems.

Perhaps we ought to say a word about what is meant by the exponential of a matrix. If we

have a function of an ordinary number x that we can expand in a power series,

f(x) =

1X
n=0

anx
n; (30{27)

of course, there is nothing to stop us from de�ning the same function of a matrix M by the same

power series,

f(M) �

1X
n=0

anM
n: (30{28)

Then the question arises; does this converge to a de�nite matrix and if so does the resulting matrix

function f(M) have any useful properties? There is a theorem: if the original power series converged

for x equal to each of the eigenvalues of the matrix M , then the matrix power series is guaranteed

to converge to a de�nite matrix f(M). This is obvious from (30{17) if M can be diagonalized; but

it remains true for any square matrix. Now in particular the exponential function,

ex =

1X
n=0

xn

n!
(30{29)
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converges so well that it has in�nite radius of convergence and, therefore, the exponential of a

square matrix with �nite elements is guaranteed to exist and to be a well de�ned matrix.

The choosing of the �k is again something which we do in order to make the expectation values

agree with the given data. Again it's going to turn out that same formal relations hold when we

are talking matrices. Again we have to solve

hFki = �
@

@�k
logZ (30{30)

for the �k. But to prove that this is right, we have to give a mathematical argument that is a

little more involved than that needed to prove (11{43), because the di�erent Fk need not commute

with each other. It turns out that this argument is also fundamental to everything that we want

to discuss from now on, so let's take time out for it now.

Heims Perturbation Theory

We want to develop a general perturbation theory in which if there's a complicated problem we can

break it down into a simple problem plus a small change. We want to expand this density matrix

in powers of some small perturbation, and the perturbation theory we get for equilibrium will also

be exactly the one we need for our irreversible theory.

This was worked out in about 1959 by the writers', former student, Steve Heims. It appears

in his doctoral thesis (Stanford, 1962) and we published a condensed account of it in the appendix

to a paper on gyromagnetic e�ects [Revs. Mod. Physics 34, 143 (1962)]. You see we have always

the problem of evaluating exponentials of matrices. First, I would like to work out the well{known

perturbation expansion of this, then convert it into the Heims expansion for expectations. We have

a matrix A, and the matrix eA is something that we can calculate. That is simple; but the thing

we really want to calculate is

exp (A + something else)
or

eA+�B = eA

"
1 +

1X
n=1

�nSn

#
: (30{31)

We indicate that this something else is small by putting � in it and expanding in powers of �. You

see this is the typical situation we would have if we tried to evaluate a density matrix

� =
1

Z
exp f��1F1 � � � � � �mFmg : (30{32)

Some of these operators might be simple so we could evaluate their exponentials; then some others

might be complicated and not commute with the others, and they would mess up the whole problem.

At that point we would resort to approximations. To put it in general form, let's talk just A and

B for a while. Form a quantity

e�xA ex(A+�B)

where x is an ordinary number and by xA we mean the matrix in which every element is multiplied

by x. If �! 0, this goes into the unit matrix. But it isn't quite the unit matrix, if � > 0. But how

does it vary with x? Well, by starting at this power series de�nition of the exponential function,

you can convince yourself very quickly that the same rule of di�erentiating an exponential function

works even if a matrix is in the exponent. We have the option of writing it either way:
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d

dx
e�xA = �Ae�xA = �e�xAA: (30{33)

Therefore,
d

dx

h
e�xAex(A+�B)

i
= �e�xAAex(A+�B) + e�xA(A+ �B)ex(A+�B) (30{34)

Now two terms cancel, and � is just a number, so

d

dx

h
e�xA ex(A+�B)

i
= �e�xA B ex(A+�B): (30{35)

We can't pull that B outside because in general it doesn't commute with what is either to the left

of it or to the right of it. Now that we have di�erentiated this, let us integrate with respect to x

and get it back again:

Z x

0

d

dx1

h
e�x1Aex1(A+�B)

i
dx1 = e�xAex(A+�B) � 1

= �

Z x

0

e�x1ABex1(A+�B)dx1:

(30{36)

To clean this up, multiply both sides by exA from the left. We �nd

ex(a+�B) = exA
�
1 + �

Z x

0

e�x1ABex1(A+�B)dx1

�
: (30{37)

This is an integral equation which ex(A+�B) satis�es. Well now, if you have an integral equation,

you grind out perturbation solutions of it simply by iteration; that is, substituting the equation

into itself over and over again. The �rst iteration gives

ex(A+�B) = exA
�
1 + �

Z x

0

dx1e
�x1ABex1A

�
1 + �

Z x1

0

dx2e
�x2ABex2(A+�B)

��

= exA
�
1 + �

Z x

0

dx1e
�x1ABex1A + �2

Z x

0

dx1

Z x1

0

dx2e
�x1ABe(x1�x2)ABex2(A+�B)

�
;

and by repeated substitution we get

eA+�B = eA
�
1 + �

Z 1

0

e�xABexAdx

+ �2
Z 1

0

dx1

Z x1

0

dx2e
�x1ABe(x1�x2)ABex2A

+ �3
Z 1

0

dx1

Z x2

0

dx2

Z x2

0

dx3e
�x1ABe(x1�x2)ABe(x2�x3)ABex3A

+ � � �

�
:

(30{38)

We can keep playing this game as long as we please, and so this generates an in�nite series in

powers of �. Or, we can terminate (30{38) at any �nite number of terms, replace A by A + �B in



3010 30: Heims Perturbation Theory 3010

the last exponent, and it is an exact equation. The exponential of any matrix is a well{behaved

thing, so we can put in any � we please { large or small { and the in�nite series is guaranteed to

converge to the right thing. Of course, if we have to take more than about two terms of the series,

then we'll be wound up in another bad calculation and this whole method will not be too useful.

Let's summarize this: we have found the power series expansion

eA+�B = eA

"
1 +

1X
n=1

�nSn

#
(30{39)

in which

S1 �

Z 1

0

e�xABexAdx (30{40)

S2 �

Z 1

0

dx1

Z x1

0

dx2e
�x1ABe(x1�x2)ABex2A (30{41)

and if we write

B(x) � e�xABexA (30{42)

the general order term is

Sn �

Z 1

0

dx1

Z x1

0

dx2 � � �

Z xn�1

0

dxnB(x1)B(x2) � � �B(xn): (30{43)

Now we have an \unperturbed" density matrix

�0 =
eA

Tr (eA)
(30{44)

and a \perturbed" one in which some kind of additional information is put in:

� =
eA+�B

Tr [eA+�B ]
(30{45)

How did this additional information a�ect our prediction of some quantity C? In the unperturbed

ensemble, any operator C has the expectation

hCi0 = Tr(�0C) (30{46)

and in the perturbed ensemble, it will be instead,

hCi = Tr(�C): (30{47)

And what we really want is a power series expansion of hCi. So let's write out the expansion we

would like to get; using (30{39),

hCi =
Tr
�
eA+�BC

�
Tr [eA+�B ]

=
Tr
�
eAC

�
+
P
1

n=1 �
nTr

�
eASnC

�
Tr (eA) +

P
1

n=1 �
nTr (eASn)

and divide by Tr
�
eA
�
to get, from (30{46),
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hCi =
hCi0 +

P
1

n=1 �
nhSnCi0

1 +
P
1

n=1 �
nhSni0

(30{48)

We now have everything reduced to expectations over the unperturbed distribution, which we

assumed was something simple that we could calculate. But still this is in a little messy form. We

have the ratio of two in�nite series, which we know are well{behaved. Both the numerator and

denominator series have in�nite radius of convergence. But, we would like to write this as a single

series over � and get rid of this denominator. If we can invert the power series for this denominator;

that is, �nd the coe�cients an in

1

1 +
P
1

n=1 �
nhSni0

= 1�

1X
n=1

an�
n ;

then we'll have it. This equation is the same as

1 =

 
1 +

1X
n=1

�nhSni0

! 
1�

1X
m=1

�mam

!

or, after careful manipulation of indices in the double sum,

1 = 1 +

1X
n=1

�n

"
hSni0 � an �

n�1X
k=1

hSki0an�k

#
:

Now since di�erent powers of � are linearly independent functions, if a power series in � is to vanish

identically (i.e., for all �), the coe�cients of each term must be zero separately. So, the problem is:

choose the an so that

hSni0 = an +

n�1X
k=1

hSkioan�k : (30{49)

This is a discrete version of a Volterra integral equation, and is solved as follows. De�ne a sequence

of operators Qn,

Q1 � S1 (30{50)

Q2 � S2 � S1hQ1i0 (30{51)

Qn � Sn �

n�1X
k=1

SkhQn�ki0; n > 1 (30{52)

Taking the expectation of (30{52) and comparing with (30{49), we see that the desired solution is

just

an = hQni0; n � 1 (30{53)

Now, returning to (30{48) with this result, we have

hCi =

"
hCi0 +

1X
k=1

�khSkCi0

#"
1�

1X
m=1

�mhQmi0

#
: (30{54)
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In expanding this, note that the double sum can be written as

1X
k=1

1X
m=1

�k+mhSkCi0hQmi0 =

1X
n=2

�n
n�1X
k=1

hSkCi0hQn�ki0 (30{55)

and we might as well add the term with n = 1, since it vanishes anyway, having no terms at all.

So, we have

hCi = hCi0 +

1X
n=1

�n

"
hSnCi0 �

n�1X
k=1

hSkCi0hQn�ki0 � hQni0hCi0

#
(30{56)

and, comparing with (30{52), we get a pleasant surprise; a simple �nal result:

hCi � hCi0 =

1X
k=1

�n [hQnCi0 � hQni0hCi0] : (30{57)

The n'th order contribution to the change [(hCi � hCi0)] is just the covariance, in the unperturbed

ensemble, of Qn with C. The �rst{order term in (30{57) has long been known; to the best of my

knowledge, Steve Heims was the �rst person to see that it can be extended to all orders. In several

years of living with this formula, and seeing what it can do for us, I have come to regard it as

easily the most important general rule of statistical mechanics; almost every \useful" calculation

in the �eld can be seen as a special case of it. Also, outside of statistical mechanics, almost

every nontrivial application of MAXENT will be a special case of (30{57). So, this is the general

perturbation expansion that we'll use.

Reciprocity Theorems: Now, the �rst order correction of course is always the most important

one. The �rst order term has a symmetry property which follows from the cyclic property of the

trace, Eq. (30{11). To �rst order, since Q1 = S1, we have simply

hCi = hCi0 = � [hS1Ci0 � hS1i0hCi0] (30{58)

but

S1 �

Z 1

0

e�xABexAdx

so that

hS1i0 =

Z 1

0

dxhe�xABexAi =

R 1
0
dxTr

�
e(1�x)ABexA

�
Tr (eA)

: (30{59)

Now, as in (30{11), it is true generally that Tr(FG) = Tr(GF ) even if FG 6= GF ; and so

hS1i0 =

R 1
0
dxTr

�
exAe(1�x)AB

�
Tr (eA)

=
Tr
�
eAB

�
Tr (eA)

= hBi0; (30{60)

so the �rst{order correction always reduces to

hCi � hCi0 = �

�Z 1

0

dxhe�xABexACi0 � hBi0hCi0

�
: (30{61)
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At this point, we can verify Eq. (30{30). Make the choices A = ��1F1�� � ���mFm, �B = ���kFk.

Then S(�1 : : :�m) = Tr
�
eA
�
and from the de�nition of a derivative,

@ logZ

@�k
=

1

Z
lim

��k!0

Z [�1 : : :�k + ��k : : :�m]� Z [�1 : : :�k : : :�m]

��k
: (30{62)

In the limit ��k ! 0, only the �rst-order term survives, and so

@ logZ

@�k
=

Tr
�
eAS1

�
Z��k

=
hS1i0

��k
= �hFki0: (30{63)

This is just (30{30).

Now we note a very important symmetry property; if we interchange B and C in the right-hand

side of (30{70), we don't change it. The last term we have worked into a form where it is obvious.

We still have to play with the �rst one a little. Again, let's write this as a ratio of two traces.Z 1

0

dxhe�xABexACi0 =

R 1
0
dxTr

�
e(1�x)ABexAC

�
Tr (eA)

(30{64)

This time we choose to interchange matrices as follows,

Z 1

0

dxTre(1�x)ABexAC =

Z 1

0

dxTr
h
exACe(1�x)AB

i
: (30{65)

Now for any f(x), we have Z 1

0

f(x)dx =

Z 1

0

f(1� x)dx (30{66)

consequently we can write (30{70) as

Z 1

0

dxTr
h
e(1�x)ACexAB

i
; (30{67)

and writing this back as an expectation

Z 1

0

dxhe�xABexACi0 =

Z 1

0

dxhe�xACexABi0: (30{68)

After all this, the only thing that has happened is that we have interchanged B and C.

Now this is a very important symmetry property. If I perturb my density matrix by adding

information about B and calculating how that changes my prediction of C, it is the same as if I had

perturbed my density matrix by putting in information about C and calculated how that changes

the prediction of B. A whole string of reciprocity laws, found originally by physical reasoning

in many di�erent contexts, all come out of the single formula (30{68). These include not only

the Onsager reciprocity laws in nonequilibrium statistical mechanics, but the Gibbs{Helmholtz

equation for the voltage of a reversible electric cell in equilibrium theory; and even the Helmholtz

reciprocity theorem in acoustics, and the Lorentz reciprocity law in electromagnetic theory, which

are not ordinarily thought of as arising from statistical mechanics at all.

************************* MORE TO COME! *****************************
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OTHER APPROACHES TO PROBABILITY THEORY

Needless to say, the way we developed probability theory in Chapter 2 is not the only way it could
have been done. The particular conditions we used might have been chosen di�erently, and there

are several other approaches based on entirely di�erent notions.

As an example of the former, many qualitative statements seem so obvious that one might
think of taking them as basic axioms or desiderata, instead of the ones we did use. Thus if A

implies B, then for all C we should expect intuitively to have P (AjC) � P (BjC). Of course, our

rules do have this property, for the product rule is

P (ABjC) = P (BjAC)P (AjC) = P (AjBC)P (BjC) :

But if A implies B, then P (BjAC) = 1 and P (AjBC) � 1, so the product rule reduces to the
intuitive statement. It may well be that a di�erent choice of axioms would have simpli�ed the

derivations of Chapter 2. However, that was not the criterion we used. We chose the ones that

appeared to us the most primitive and most di�cult to quarrel with, in the belief that the resulting
theory would be seen thereby to have the greatest possible generality and range of application.

Now we examine briey some other approaches that have been advocated in the past.

The Kolmogorov System of Probability

In our comments at the end of Chapter 2 we noted the Venn diagram and the relation to set theory

that it suggests, which became the basis of the Kolmogorov approach to probability theory. This

approach could hardly be more di�erent from ours in general viewpoint and motivation; yet the
�nal results are identical in several respects.

The Kolmogorov System of Probability (henceforth denoted by KSP) is a game played on a

sample space 
 of elementary propositions !i (or \events"; it does not matter what we call them at
this level of abstraction). We may think of them as corresponding roughly to the individual points

of the Venn diagram, although of course the abstract de�nition makes no such reference.

Then there is a �eld F consisting of certain selected subsets fj of 
, corresponding roughly
to our propositions A; :::; B; ::: represented by areas of the Venn diagram (although, again, the

abstract de�nition allows sets which need not correspond to areas). F is to have basically three
properties;

I: 
 is in F ;

II: F is a sigma{�eld, meaning that if fj is in F , then its complement with respect to

, �fj = 
 � fj , is also in F ;

III: F is closed under countable unions, meaning that if countably many fj are in F , their

union is also in F .

Finally, there is to be a probability measure P on F , with the properties of:

(1) Normalization: P (
) = 1

(2) Nonnegativity: P (fi) � 0 for all fi in F .

(3) Additivity: If ff1 ::: fng are disjoint elements of F (i.e., they have no points !i in
common, then P (f) =

P
i
P (fj) where f = [jfj is their union.

(4) Continuity at zero: If a sequence f1 � f2 � f3 � ::: tends to the empty set, then
P (fj)! 0.
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There is nothing surprising in these axioms; they seem to be familiar echoes of just what we found
in Chapter 2, except that they state analogous properties of sets rather than propositions.

We are with Kolmogorov in spirit when he wants F to be sigma{�eld, for any proposition

that can be a�rmed can also be denied; the operation NOT was also one of our primitive ones.
Indeed, we went further by including the operation AND. Then it was a pleasant surprise that

(AND, NOT), which are an adequate set for deductive logic, turn out to be also adequate for our
extended logic [that is, given a set of propositions fA1; � � � ; Ang to be considered, our rules generate

a system of inference that is formally complete in the sense that it is adequate to assign consistent
probabilities to all propositions in the Boolean algebra generated from fA1; � � � ; Ang].

Kolmogorov's closure under countable unions is also implied by this requirement, in the follow-
ing sense. Working fundamentally with �nite sets, we are content fundamentally with �nite unions;

yet a well{behaved limit to an in�nite set may be a convenient simpli�cation, removing intricate
but irrelevant details from a �nite set calculation. On the in�nite sets thus generated, our �nite

unions go into countable unions.

But as noted in Chapter 2, a proposition A referring to the real world cannot always be viewed
as a disjunction of elementary propositions !i from any set 
 that has meaning in the context

of our problem; and its denial A may be even harder to interpret as set complementation. The
attempt to replace logical operations on the propositions A;B; � � � by set operations on the set 


does not change the abstract structure of the theory, but it makes it less general in respects that
can matter in applications. Therefore we have sought to formulate probability theory in the wider

sense of an extension of Aristotelian logic.

Finally, the properties (1){(4) of the probability measure P were stated by Kolmogorov as

seemingly arbitrary axioms; and KSP has been criticized for that arbitrariness. But we recognize
them as statements, in the context of sets, of just the four properties that we derived in Chapter

2 from requirements of consistency. For example, the need for non{negativity is apparent from
(2{20). Additivity also seems arbitrary when stated merely as an axiom; but in (2{64) we have

derived it as necessary for consistency.

Many writers have thought that normalization is merely an arbitrary convention, but Eq. (2{
19) shows that if certainty is not represented by p = 1, then we must restate the sum and product

rules, or we shall have an inconsistency. For example, if we choose the convention that p = 100 is

to represent certainty, then these rules take the form

p(AjB) + p(AjB) = 100 ; p(AjBC) p(BjC) = 100 p(ABjC) :

More generally, by any change of variables u = f(p) with some monotonic function f(p) we can
represent probability on a di�erent scale than the one adopted; but then consistency will require

that the product and sum rules also be modi�ed in form, so that the content of our theory is not
changed. For example, with the change of variables u = log[p=(1 � p)] the sum rule takes the

equally simple form

u(AjB) + u(AjB) = 0 ;

while the product rule becomes quite complicated. The substantive result is not that one is obliged

to use any particular scale; but rather that a theory of probability whose content di�ers from
one in which there is a single scale that is normalized, non{negative, and additive, will contain
inconsistencies.

This should answer an objection sometimes raised (Fine, 1973, p. 65); that Kolmogorov's
scale was arbitrary. Twenty years ago, such a charge might have seemed reasonable, calling for

further investigation. But that further investigation has been made; since we now know that, in

fact he made the only choices that will pass all our tests for consistency, the charge now seems to
us unjusti�ed.
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We do not know how Kolmogorov was able to see the need for his axiom (4) of continuity
at zero; but our approach, in e�ect, derives it from a simple requirement of consistency. First let

us dispel a misunderstanding. The statement (4) in terms of sets seems to imply that an in�nite
sequence of subsets is given. But its translation into a statement about propositions does not

require that we assign probabilities to an in�nite number of propositions. What is essential is
that we have an in�nite sequence of di�erent states of knowledge, which may be about a single

proposition, but which tends to impossibility. Since Kolmogorov's sets are not associated with any
such idea as a `state of knowledge' there seems to be no way to say this in the context of sets; but

in the context of propositions it is easy.

We note this to emphasize that it would be a serious error to suppose that we can dispense

with this axiom merely by limiting our discourse to a �nite set of propositions. The resulting theory

would have an arbitrary character which allows one to commit all kinds of inconsistencies.

In our system, \continuity at zero" takes the following form: given a sequence of probabilities

p(A)1; p(A)2; � � � that tend to certainty, the probabilities p(A)1; p(A)2; � � � assigned to the denial
must tend to zero. Indeed, as we noted in (2{33), the functional equation that S(x) satis�es ties

values at di�erent x together so strongly that the exact way in which S(x) tends to zero as x! 1 is
the crucial thing that determines the function S(x) over its entire range (0 � x � 1), and therefore

determines the additivity property (2{42). Thus from our viewpoint, Kolmogorov's axioms (3) and
(4) appear to be closely related; it is not obvious whether they are logically independent.

For all practical purposes, then, our system will agree with KSP if we are applying it in the
set{theory context. But in more general applications, although we have a �eld of discourse F and

probability measure P on F with the same properties, we do not need, and do not always have, any
set 
 of elementary propositions into which the elements of F can be resolved. Of course, in many

of our applications such a set 
 will be present; for example, in equilibrium statistical mechanics

the elements !i of 
 can be identi�ed with the stationary \global" quantum states of a system,
which comprise a countable set. In these cases, there will be essentially complete agreement in

the abstract formulation, although we carry out practical calculations with more freedom in one
respect { and more inhibition in another { for reasons noted below.

Our approach supports KSP in another way also. KSP has been criticized as lacking connec-
tion to the real world; it has seemed to some that its axioms are de�cient because they contain

no statement to the e�ect that the measure P is to be interpreted as a frequency in a random
experiment.* But from our viewpoint this appears as a merit rather than a defect; for to require

that we invoke some random experiment before using probability theory, would have imposed an
intolerable and arbitrary restriction on the scope of the theory, making it inapplicable to most of

the problems that we propose to solve by extended logic.

But even when random experiments are involved in the real problem, propositions specifying
frequencies are properly considered, not as determinations of the measure P , but as elements of
the �eld F . In both Kolmogorov's system and ours, such propositions are not the tools for making
inferences, but the things about which inferences are being made.

But there are some important di�erences between these two systems of probability theory.
In the �rst place, in KSP attention is concentrated almost exclusively on the notion of additive

measure. The Kolmogorov axioms make no reference to the notion of conditional probability;
indeed, KSP �nds this an awkward notion, really unwanted; and mentions it only reluctantly, as

a seeming afterthought.y Although Kolmogorov has a section entitled \Bayes' theorem", most of
his followers ignore it. In contrast, we considered it obvious from the start that all probabilities

* Indeed, de Finetti (1972; p. 89) argues that Kolmogorov's system cannot be interpreted in terms

of limits of frequencies.
y In the Kolmogorov system conditional probability is such a foreign element that an entire book has
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referring to the real world are necessarily conditional on the information at hand. In Chapter
2 the product rule, with conditional probability and Bayes' theorem as immediate consequences,

appeared in our system even before additivity.

Our derivation showed that from the standpoint of logic the product rule (and therefore Bayes'

theorem) expresses simply the associativity and commutativity of Boolean algebra. This is what
gives us that greater freedom of action in calculations, leading in later Chapters to the unrestricted

use of Bayes' theorem, in which we have complete freedom to move propositions back and forth

between the left and right sides of our probability symbols in any way permitted by the product and
sum rules. This is a superb computational device { and by far the most powerful tool of scienti�c

inference { yet it is completely missing from expositions of probability theory based on the KSP
work (which do not associate probability theory with information or inference at all).

But, secondly, in return for this freedom we impose on ourselves an inhibition not present

in KSP. Having been burned by de Finetti and his followers, we are wary of in�nite sets, and
approach them only cautiously, after ascertaining that in our problem there is a well{de�ned and

well{behaved limiting process that will not lead us into paradoxes and will serve a useful purpose.

In principle, we start always by enumerating some �nite set of propositions A; B; ::: to be

considered. Our �eld of discourse F is then also �nite, consisting of these and { automatically { all
propositions that can be \built up" from them by conjunction, disjunction, and negation. We have

no need or wish to \tear down" by resolving them into a disjunction of �ner propositions, much

less carrying this to in�nite limits, except when this can be a useful calculational device due to the
structure of a particular problem.

We have three reasons for taking this stance. The �rst was illustrated in Chapter 8 by the
scenario of Sam's Broken Thermometer, where we saw that beyond a certain point this �ner and

�ner resolving serves no purpose. Secondly, in Chapter 15 we saw some of the paradoxes that await

those who jump directly into in�nite sets without considering any limiting process from a �nite set.
But even here, when we considered the so{called \Borel{Kolmogorov Paradox," we found ourselves

in agreement with Kolmogorov's resolution of it, and thus in disagreement with some of his recent
critics. One must approach in�nite sets carefully; but once in an uncountable set, one must then

approach sets of measure zero just as carefully.

A third reason is that a di�erent resolution often appears more useful to us. Instead of resolving
a proposition A into the disjunction A = B1+B2 + � � � of \smaller" propositions and applying the

sum rule, one can equally well resolve it into a conjunction A = C1 C2 � � � of \larger" propositions
and apply the product rule. This may be interpreted, in terms of sets, very simply. To specify the

geographical layout of a country, there are two possible methods: (1) specify the points that are
in it; (2) specify its boundary. Method (1) is the Venn{Kolmogorov viewpoint; but method (2)
appears to us equally fundamental and often simpler and more directly related to the information
we have in a real problem. In a Venn diagram the boundary of set A is composed of segments of the

boundaries of C1; C2; � � � , just as that of a country is composed of segments of rivers, coastlines,
and adjacent countries.

These methods are not in conict; rather, in each problem we may choose the one appropriate

to the job before us. But in most of our problems method (2) is the natural one. A physical theory
is always stated as a conjunction of hypotheses, not a disjunction; likewise a mathematical theory

is de�ned by the set of axioms underlying it, which is always stated as a conjunction of elementary
axioms. To express the foundations of any theory as disjunctions would be almost impossible; so

we must demand this freedom of choice.

been written (M. M.Rao, 1993) trying to explain the idea of conditional probability by giving it a separate
axiomatic approach!
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In summary, we see no substantive conict between our system of probability and Kolmogorov's
as far as it goes; rather, we have sought a deeper conceptual foundation which allows it to be

extended to a wider class of applications, required by current problems of science.

However, the theory expounded here is still far from its �nal, complete form. In its present
state of development, there are many situations where the robot does not know what to do with its

information. For example, suppose it is told that \Jones was very pleased at the suggestion that �
might be greater than 100." By what principles is it to translate this into a probability statement

about �?

But you and I can make some use of that information to modify our opinions about � (upward

or downward according to our opinions about Jones). Indeed we can use almost any kind of
prior information, and perhaps draw a free{hand curve which indicates roughly how it a�ects our

probability distribution p(�). In other words, our brains are in possession of more principles than

the robot's for converting raw information, semiquantitatively, into something which the computer

can use. This is the main reason why we are convinced that there must be more principles like
maximum entropy and transformation groups, waiting to be discovered by someone. Each such

discovery will open up a new area of useful applications of this theory.

The de Finetti System of Probability

There is today an active school of thought, most of whose members call themselves `Bayesians',

but who are actually followers of Bruno de Finetti and concerned with matters that Bayes never
dreamt of. In 1937, de Finetti published a work which expressed a philosophy somewhat like ours

and contained not only his marvelous and indispensible exchangeability theorem, but also sought
to establish the foundations of probability theory itself on the notion of `coherence'. This means,

roughly speaking, that one should assign and manipulate probabilities so that one cannot be made
a sure loser in betting based on them. He appears to derive the rules of probability theory, very

easily, from this premise.

Since 1937, de Finetti has published many more works on this topic, as cited in our general

references. Note particularly the large work published in English translation in 1974. Some have
thought that we should have followed de Finetti's coherence principle in the present work. Certainly,

that would have shortened our derivations. However, we think that coherence is an unsatisfactory
basis in three respects. The �rst is admittedly only aesthetic; it seems to us inelegant to base the

principles of logic on such a vulgar thing as expectation of pro�t.

The second reason is strategic. If probabilities are thought to be de�ned basically in terms
of betting preferences, then for assigning probabilities one's attention is focussed on how to elicit

the personal probabilities of di�erent people. In our view, that is a worthy endeavor, but one that
belongs to the �eld of psychology rather than probability theory; our robot does not have any

betting preferences. When we apply probability theory as the normative extension of logic, our
concern is not with the personal probabilities that di�erent people might happen to have; but with
the probabilities that they \ought to" have, in view of their information { just as James Clerk

Maxwell noted in our opening quotation for Chapter 1.

In other words, at the beginning of a problem our concern is not with anybody's personal
opinions, but with specifying the prior information on which our robot's opinions are to be based,

in the context of the current problem. The principles for assigning prior probabilities consistently
by logical analysis of that prior information are for us an essential part of probability theory. Such

considerations are almost entirely absent from expositions of probability theory based on the de
Finetti approach (although of course it does not forbid us to consider such problems).

The third reason is thoroughly pragmatic: if any rules were found to possess the property of
coherence in the sense of de Finetti, but not the property of consistency in the sense of Cox, they
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would be clearly unacceptable { indeed, functionally unusable { as rules for logical inference. There
would be no \right way" to do any calculation, and no \right answer" to any question. Then there

would be small comfort in the thought that all those di�erent answers were at least \coherent".

To the best of our knowledge, de Finetti does not mention consistency as a desideratum, or test

for it. Yet it is consistency { not merely coherence { that is essential here and we �nd that, when
our rules have been made to satisfy the consistency requirements, then they have automatically

(and trivially) the property of coherence.

Another point was noted in our Preface. Like Kolmogorov, de Finetti is occupied mostly with

probabilities de�ned directly on arbitrary uncountable sets; but he views additivity di�erently, and
is led to such anomalies as an unlimited sequence of layers, like an onion, of di�erent orders of

zero probabilities that add up to one, etc. It is the followers of de Finetti who have perpetrated
most of the in�nite set paradoxing that has forced us to turn to (and, like Helmholtz in Chapter

16, exaggerate if necessary) the opposite `�nite sets' policy in order to avoid them. This line of
thought continues, with technical details, in Chapter 15.

Comparative Probability

In our Comments at the end of Chapter 1 we noted a possible objection to our �rst desideratum:

(I) Degrees of plausibility are to be represented by real numbers.

Why must one do this? Our pragmatic reason was that we do not see how our robot's brain can
function by carrying out de�nite physical operations { mechanical or electronic { unless at some

point degrees of plausibility are associated with some de�nite physical quantity.

We recognize that this ignores some aesthetic considerations; for example, the geometry of

Euclid derives its elegance in large part from the fact that it is not concerned with numerical
values, but with recognizing qualitative conditions of equivalence or similarity. We had this very

much in mind when choosing all our other axioms, being careful to ensure that \consistency" and
\correspondence with common sense" expressed qualitative rather than quantitative properties.

But of course, our one pragmatic argument carries no weight for those concerned with abstract
axiomatics rather than making something work, so let us consider the alternatives. If one wishes

to pick away at our desideratum I , it can be dissected into simpler axioms. In the following, read
\(AjC) > (BjC)" not as a numerical comparison, but simply as the verbal statement, \Given C,

A is more plausible than B," etc. Then desideratum I may be replaced by two more elementary
ones:

I(a) Transitivity. If (AjX) � (BjX) and (BjX) � (CjX) then (AjX) � (CjX).

I(b) Universal Comparability. Given propositions A;B;C, then one of the relations

(AjC) > (BjC); (AjC) = (BjC); (AjC) < (BjC) must hold.

To see this, note that if we postulate both transitivity and universal comparability, then within
any �nite set of propositions, we can always set up a representation by real numbers (in fact, by
rational numbers) that obeys all the ordering relations. For, suppose we have a set fA1 � � �Ang of

propositions with such numerical measures fx1 � � �xng. Adding a new proposition An+1, the transi-
tivity and universal comparability ensure that it �ts into a unique place in those ordering relations.
But since between any two rational numbers one can always �nd another rational number, we can

always assign a number xn+1 to it so that all the ordering relations of the new set fA1 � � �An+1g

are also obeyed by our rational numbers fx1 � � �xn+1g.

At this point, therefore, it is all over with any comparative theory which embodies both
transitivity and universal comparability. Once the existence of a representation by real numbers is
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established, then Cox's theorems take over and force that theory to be identical with the theory
of inference that we derived in Chapter 2. That is, either there is some monotonic function of the

xi that obeys the standard product and sum rules of probability theory; or else we can exhibit
inconsistencies in the rules of the comparative theory.

Some systems of comparative probability theory have both of these axioms; then they have
assumed everything needed to guarantee the equivalence to the standard numerical valued theory.

This being the case, it would seem foolish to refuse to use the great convenience of the numerical
representation. But now, can one drop transitivity or universal comparability and get an acceptable

extension of logic with di�erent content than ours?

No comparative probability theory is going to get far if it violates transitivity. Nobody would

wish to { or be able to { use it, because we would be trapped in endless loops of circular reasoning.
So transitivity is surely going to be one of the axioms of a comparative probability theory; discovery

of an intransitivity would be grounds for immediate rejection of any system.

But to many, universal comparability does not seem a compelling desideratum. By dropping

it we could create a \lattice" theory, so called because we can represent propositions by points,
relations of comparability by lines connecting them in various ways. Then it is conceivable that A

and C can be compared, and B and C can be compared; but A is not comparable to B. One might
contemplate a situation in which (AjD) < (CjD) and (BjD) < (CjD); but neither (AjD) < (BjD)

nor (AjD) � (BjD) could be established. This allows a looser structure which cannot be represented
faithfully by assigning a single real number to each proposition (although it can be so represented

by a lattice of vectors); any attempt to introduce a single{valued numerical representation would
generate false comparisons not present in the system.

Much e�ort has been expended on attempts to develop such looser forms of probability theory
in which one does not represent degrees of plausibility by real numbers, but admits only quali-

tative ordering relations of the form (AjC) � (BjC), and attempts to deduce the existence of a
(not necessarily unique) additive measure p(AjB) with the property (2{64). The work of L. J.

Savage (1954) is perhaps the best known example. A summary of such attempts is given by T.
L. Fine (1973). These e�orts appear to have been motivated only by an aesthetic feeling { that

universal comparability is a stronger axiom than we need { rather than from the hope that any
particular pragmatic advantage would be gained by dropping it. However, a restriction appeared

in comparative probability theory, robbing it of its initial appeal.

Ordering relations may not be assigned arbitrarily because it must always be possible to

extend the �eld of discourse, by adding more propositions and ordering relations, without generating
contradictions. If adding a new ordering relation created an intransitive loop, it would be necessary

to modify some ordering relations to restore transitivity. But such extensions may be carried out

inde�nitely, and when a set of propositions with transitive ordering relations becomes, in a certain
sense, \everywhere dense" on the path from impossibility to certainty, consistency will require that

the theory then approach the conventional numerical valued probability theory expounded here.

In retrospect (i.e., in view of Cox's consistency theorems) this is hardly surprising; a com-
parative probability theory whose results conict with those of our numerical probability theory

necessarily contains within it either overtly visible inconsistencies or the seeds of inconsistencies

which will become visible when one tries to extend the �eld of discourse.

Furthermore, it appears to us that any computer designed to carry out the operations of a
comparative probability theory must at some stage represent the ordering relations as inequalities of

real numbers. So attempts to evade numerical representation not only o�er no pragmatic advantage,

they are futile. Thus in the end the study of comparative probability theories serves only to show
us still another aspect of the superiority of the Cox approach that we follow here.
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Holdouts Against Universal Comparability

However, this does not quite close the subject, because some of the criticisms of probability theory

as logic are from writers who have considered it absurd to suppose that all propositions can be
compared. This view seems to arise from two di�erent beliefs: (1) human brains cannot do this; and

(2) they think that they have produced examples where it is fundamentally impossible to compare
all propositions.

Argument (1) carries no weight for us; for in our view, human brains do many absurd things

while failing to do many sensible things. Our purpose in developing a formal theory of inference is
not to imitate them, but to correct them. We agree that human brains have di�culty in comparing,

and reasoning from, propositions that refer to di�erent contexts. But we would observe also that
the ability to do this improves with education.

For example, is it more likely that (A) Tokyo will have a severe earthquake on June 1, 2230; or
that (B) Norway will have an unusually good �sh catch on that day? To most people, the contexts

of propositions A and B seem so di�erent that we do not see how to answer this. But with a
little education in geophysics and astrophysics, one realizes that the moon could well a�ect both

phenomena, by causing phase{locked periodic variations in the amplitudes of both the tides and

stresses in the earth's crust. Recognition of a possible common physical cause at work makes the
propositions seem comparable after all.

The second objection to universal comparability noted above appears to be a misunderstanding
of our present theory, but one which does point to cases in which universal comparability would

indeed be fundamentally impossible. These are the cases where we are trying to classify propositions
with respect to more than one attribute, as in the conceivable multi{dimensional models of mental

activity noted at the end of Chapter 1. All of the alleged counter{examples to comparability that
we have seen prove on examination to be of this type.

For example, a mineralogist may classify a collection of rocks with respect to two qualities, such

as density and hardness. If within a certain subclass of them density alone varies, then obviously
there are transitive comparability relations that can be represented faithfully by real numbers d.

If in another subclass hardness alone varies, there is a similar comparability representable by real
numbers h. But if we classify rocks by both simultaneously, it requires two real numbers (d; h) to

represent them; any attempt to arrange them in a unique one{dimensional order would be arbitrary.

The arbitrariness could be removed if we also introduced some new value judgment or `objective

function' f(d; h) that tells us by relations such as f(d1; h1) = f(d2; h2) how to trade o� a change
� d = d2� d1 in d against a change � h = h2 � h1 in h. But then we are classifying the rocks with

respect to only one attribute, namely f , and universal comparability is again possible.

In the theory of probability developed here we are, by de�nition, classifying propositions ac-
cording to only one attribute, which we call intuitively `degree of plausibility'. Once this is under-

stood, we think that the possibility of representation by real numbers need never be questioned,
and the desirability of doing this is attested to by all the nice results and useful applications of the

theory.

Nevertheless, the general idea of a comparative probability theory might be useful to us in two

respects. Firstly, for many purposes one has no need for precisely de�ned numerical probabilities;
any values that preserve ordering relations within a small set of propositions may be adequate for

our purpose. For example, if it is required only to choose between two competing hypotheses, or two
feasible actions, a wide range of numerical probability values must all lead to the same �nal choice.
Then the precise position within that range is irrelevant, and to determine it would be wasted

computational e�ort. Something much like a comparative probability theory would then appear,
not as a generalization of numerical probability theory but as a simple, useful approximation to it.
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Secondly, the above observation about Tokyo and Norway suggests a possible legitimate ap-
plication for a lattice theory of probability. If our brains do not have automatically the property of

universal comparability, then perhaps a lattice theory might come much closer than the Laplace{
Bayes theory, to describing the way we actually think. What are some of the properties that can

be anticipated of a lattice theory?

Speculations About Lattice Theories

One evident property is that we could do plausible reasoning only in certain \domains" consisting
of sets of comparable propositions. We would not have any idea how to reason in cases involving a

jump across widely separated parts of the lattice; unless we perceive some logical relation between

propositions, we have no criterion for comparing their plausibilities. Our scale of plausibility might
be wildly di�erent on di�erent parts of the lattice, and we would have no way of knowing this until

we had learned to increase the degree of comparability.

Indeed, the human brain does not start out as an e�cient reasoning machine, plausible or
deductive. This is something which we require years to learn, and a person who is an expert in one

�eld of knowledge, may do only rather poor plausible reasoning in another.y What is happening in
the brain during this learning process?

Education could be de�ned as the process of becoming aware of more and more propositions,

and of more and more logical relations between them. Then it seems natural to conjecture that a
small child reasons on a lattice of very open structure: large parts of it are not interconnected at

all. For example, the association of historical events with a time sequence is not automatic; the
writer has had the experience of seeing a child, who knew about ancient Egypt and had studied

pictures of the treasures from the tomb of Tutankhamen, nevertheless coming home from school
with a puzzled expression and asking: \Was Abraham Lincoln the �rst person?"

It had been explained to him that the Egyptian artifacts were over 3,000 years old, and that

Abraham Lincoln was alive 120 years ago; but the meaning of those statements had not registered

in his mind. This makes us wonder whether there may be primitive cultures in which the adults
have no conception of time as something extending beyond their own lives. If so, that fact might

not have been discovered by anthropologists, just because it was so unexpected that they would
not have raised the question.

As learning proceeds the lattice develops more and more points (propositions) and intercon-

necting lines (relations of comparability), some of which will need to be modi�ed for consistency
in the light of later knowledge. By developing a lattice with denser and denser structure, one is

making his scale of plausibilities more rigidly de�ned.

No adult ever comes anywhere near to the degree of education where he would perceive relations
between all possible propositions, but he can approach this condition with some narrow �eld of
specialization. Within this �eld, there would be a \quasi{universal comparability," and his plausible
reasoning within this �eld would approximate that given by the Laplace{Bayes theory.

A brain might develop several isolated regions where the lattice was locally quite dense; for

example, one might be very well{informed about both biochemistry and musicology. Then for
reasoning within each separate region, the Laplace{Bayes theory would be well approximated, but

there would still be no way of relating di�erent regions to each other.

Then what would be the limiting case as the lattice becomes everywhere dense with truly
universal comparability? Evidently, the lattice would then collapse into a line, and some unique

y The biologist James D. Watson has remarked before TV cameras that professional physicists can be
\rather stupid" when they have to think about biology. We do not deny this, although we wonder how far
he would have got in �nding the DNA structure without the help of the physicists Rosalind Franklin to
acquire the data for him, and Francis Crick to explain to him what it meant.
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association of all plausibilities with real numbers would then be possible. Thus, the Laplace{Bayes

theory does not describe the inductive reasoning of actual human brains; it describes the ideal

limiting case of an \in�nitely educated" brain. No wonder that we fail to see how to use it in all
problems!

This speculation may easily turn out to be nothing but science �ction; yet we feel that it must
contain at least a little bit of truth. As in all really fundamental questions, we must leave the �nal

decision to the future.
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APPENDIX B

MATHEMATICAL FORMALITIES AND STYLE

We collect here a brief account of the various mathematical conventions used throughout this work,
and discuss some basic mathematical issues that arise in probability theory. Careless notation has
led to so many erroneous results in the recent literature that we need to �nd rules of notation and
terminology that make it as di�cult as possible to commit such errors.

A mathematical notation, like a language, is not an end in itself but only a communication
device. Its purpose is best served if the notation, like the language, is allowed to evolve with use.
This evolution usually takes the form of abbreviations for whatever expressions recur often, and
reducing the number of symbols when their meaning can be read from the context.

But a living, changing language still needs a kind of safe harbor in the form of a �xed set of
rules of grammar and orthography, hidden away in a Dictionary for use when ambiguities threaten.
Likewise, probability theory needs a �xed set of normative rules on which we can fall back in case
of doubt. We state here our formal rules of notation and logical hierarchy; all Chapters from #3
on start with these standard forms, and evolve from them. A notation which is so convenient that
it is almost a necessity in one Chapter, might be only confusing in the next; so each separate topic
must be allowed its own independent evolution from the standard beginning.

Notation and Logical Hierarchy

In our formal probability symbols (those with a capital P )

P (AjB) (B{1)

the entries A;B always stand for propositions, with a su�ciently clear meaning (at least to us)
that we are willing to use them as elements of Aristotelian logic, obeying a Boolean algebra. Thus
P (AjB) does not denote a \function" in the usual sense.

We repeat the warning that a probability symbol is unde�ned and meaningless if the condi-
tioning statement B happens to have zero probability in the context of our problem [for example,
if B = CD, but P (CjD) = 0]. Failure to recognize this can lead to erroneous calculations { just
as inadvertently dividing by an expression that happens to have the value zero, can invalidate all
subsequent results.

To preserve the purity of our probability symbols (B{1) we must have also other symbols for
probabilities. Thus, if proposition A has the meaning

A � \The variable q has the particular value q0 (B{2)

there is a tendency to write, instead of P (AjB),

P (q0jB) (B{3)

But q0 is not a proposition, and so the writer evidently intends the symbol (B{3) to stand now
for an ordinary mathematical function of the variable q0. In our system this is illegitimate, and so
when an ordinary mathematical function is intended, we shall take the precaution of inventing a
di�erent functional symbol such as f( j ), writing (B{3) instead as

f(q0jB) (B{4)
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Now the distinction between (B{3) and (B{4) may appear to some readers as pedantic nit{picking;
so why do we insist on it? Many years ago, the present writer would also have dismissed this
point as too trivial to deserve mention; but later experience has brought to light cases where
failure to maintain the distinction in clear sight has tricked writers into erroneous calculations and
conclusions. The amount of time and e�ort this has wasted { and which is still being wasted in
this �eld { justi�es our taking protective measures against it.

The point is that a proposition A is a verbal statement that may indeed specify the value of
some variable q; but it generally contains qualifying clauses also:

A � \The variable q has the value q0 if the proposition B is true" (B{5)

If we try to take the short{cut of replacing A by q0 in the probability symbol, we lose sight of the
quali�cation. Later in the calculation, the same variable q may appear in a proposition A1 with
a di�erent quali�cation B1; and again one may be tempted to replace A1 by q0 in the probability
symbol. Still later in the calculation the same probability symbol will appear with two di�erent
meanings, and one is tricked into supposing that they represent the same quantity.

This is what happened in the famous \marginalization paradox", in which the same probability
symbol was used to denote probabilities conditional on two di�erent pieces of prior information,
with bizarre consequences described in Jaynes (1980) and in Chapter 15. This confusion is still
causing trouble in probability theory, for those who have not yet understood it.

However, we are not fanatics about this. In cases so simple that there is very little danger of
error anyway, we allow a compromise and follow the custom of most writers even though it is not
a strictly consistent notation. In probability symbols with a small p, we shall allow the arguments
to be either propositions or numbers: thus if A is a proposition and q a number, the equation

p(AjB) = p(qjB)

is permitted; but with the warning that when small p symbols are used, the reader must judge their
meaning from the context, and there is a possibility of error from failure to read them correctly.

A common and useful custom is to use Greek letters to denote parameters in a probability
distribution, the corresponding Latin letters for the corresponding functions of the data. For
example, one may denote a probability average (the mean of a probability distribution) by � =
hxi = E(x), and then the average over the data would be m = x = n�1�xi. We shall adhere to this
except where it would be confusing because of a conict with some other long established usage.

Our \Cautious Approach" Policy

The derivation of the rules of probability theory from simple desiderata of rationality and consis-
tency in Chapter 2 applied to discrete, �nite sets of propositions. Finite sets are therefore our safe
harbor, where Cox's theorems apply and nobody has ever been able to produce an inconsistency
from application of the sum and product rules. Likewise, in elementary arithmetic �nite sets are
the safe harbor in which nobody has been able to produce an inconsistency from applying the rules
of addition and multiplication.

But as soon as we try to extend probability theory to in�nite sets, we are faced with the need to
exercise the same kind of mathematical caution that one needs in proceeding from �nite arithmetic
expressions to in�nite series. The \parlor game" at the beginning of Chapter 15 illustrates how
easy it is to commit errors by supposing that the operations of elementary arithmetic and analysis,
that are always safe on �nite sets, may be carried out also on in�nite sets.

In probability theory, it appears that the only safe procedure known at present is to derive
our results �rst by strict application of the rules of probability theory on �nite sets of propositions;
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then after the �nite set result is before us, observe how it behaves as the number of propositions
increases inde�nitely. There are, essentially, three possibilities:

(1) It tends smoothly to a �nite limit, some terms just becoming smaller and dropping
out, leaving behind a simpler analytical expression.

(2) It blows up, i.e., becomes in�nite in the limit.
(3) It remains bounded, but oscillates or uctuates forever, never tending to any de�nite

limit.

In case (1) we say that the limit is \well behaved" and accept the limit as the correct solution
on the in�nite set. In cases (2) and (3) the limit is ill{behaved and cannot be considered a valid
solution to the problem. Then we refuse to pass to the limit at all.

This is the \Look before you leap" policy: in principle, we pass to a limit only after verifying
that the limit is well{behaved. Of course, in practice this does not mean that we conduct such a
test anew on every problem; most situations arise repeatedly, and rules of conduct for the standard
situations can be set down once and for all. But in case of doubt, we have no choice but to carry
out this test.

In cases where the limit is well{behaved, it may be possible to get the correct answer by
operating directly on the in�nite set, but one cannot count on it. If the limit is not well{behaved,
then any attempt to solve the problem directly on the in�nite set would have led to nonsense, the
cause of which cannot be seen if one looks only at the limit, and not the limiting process. The
paradoxes noted in Chapter 15 illustrate some of the horrors that have resulted from carelessness
in this regard.

Willy Feller on Measure Theory

In contrast to our policy, many expositions of probability theory begin at the outset to try to
assign probabilities on in�nite sets, both countable or uncountable. Those who use measure theory
are, in e�ect, supposing the passage to an in�nite set already accomplished before introducing
probabilities. For example, Feller advocates this policy and uses it throughout his second volume
(1971).

In discussing this issue (loc. cit., p. 3), he notes that specialists in various applications some-
times \deny the need for measure theory because they are unacquainted with problems of other
types and with situations where vague reasoning did lead to wrong results." If Feller knew of any
case where such a thing has happened, this would surely have been the place to cite it { yet he
does not. Therefore we remain, just as he says, unacquainted with instances where wrong results
could be attributed to failure to use measure theory.

But as noted particularly in Chapter 15, there are many documentable cases where careless
use of in�nite sets has led to absurdities. We know of no case where our \cautious approach" policy
leads to inconsistency or error; or fails to yield a result that is reasonable.

We do not use the notation of measure theory because it presupposes the passage to an in�nite
limit already carried out at the beginning of a derivation { in de�ance of the advice of Gauss,
quoted at the start of Chapter 15. But in our calculations we often pass to an in�nite limit at the
end of a derivation; then we are in e�ect using \Lebesgue measure" directly in its original meaning.
We think that failure to use current measure theory notation is not \vague reasoning"; quite the
opposite. It is a matter of doing things in the proper order.

Feller does acknowledge, albeit grudgingly, the validity of our position. While he considers
passage to a well{de�ned limit from a �nite set unnecessary, he concedes that it is \logically
impeccable" and has \the merit of a good exercise for beginners". That is enough for us; for in
this �eld we are all beginners. Perhaps the beginners who have the most to learn are those who
now decline to practice this very instructive exercise.
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We note also that measure theory is not always applicable, because not all sets that arise in
real problems are measurable. For example, in many applications we want to assign probabilities
to functions that we know in advance are continuous. But Mark Kac (1956) notes that the class
of continuous functions is not measurable; its inner measure is zero, its outer measure one.y Being
a mathematician, he was willing to sacri�ce some aspects of the real world in order to conform to
his preconception that his sets should be measurable. So to get a measurable class of functions he
enlarges it to include the everywhere discontinuous functions. But then the resulting measure is
concentrated `almost entirely' on just the class of functions that, for physical reasons, we need to
exclude most strongly from our set; and so while Kac gets a solution that is satisfactory to him, it
is not always the solution to a real physical problem.

Our value judgment is just the opposite; being concerned with the real world, we are willing to
sacri�ce preconceptions about measurable classes in order to preserve the aspects of the real world
that are important in our problem. In this case, a form of our cautious approach policy will be able
to bypass measure theory in order to get the useful results we seek; for example, (1) expand the
continuous functions in a �nite number n of orthogonal functions, (2) assign probabilities to the
expansion coe�cients in a �nite dimensional space Rn; (3) do the probability calculation; (4) pass
to the limit n!1 at the end. In a real problem we �nd that increasing n beyond a certain value
makes a numerically negligible change in our conclusions (that is, if we are calculating to a �nite
number of decimal places, a strictly nil change). So we need never depart from �nite sets.z Useful
results, in various applications from statistical mechanics to radar detection, are found in this way.

It appears to us that most { perhaps all { of the paradoxes of in�nite sets that arise in
calculations are caused by the persistent tendency to pass to in�nite limits too soon. In any event,
whatever the cause and the cure, our position is that the paradoxes of in�nite sets belong to the
�eld of in�nite set theory, and have no place in probability theory. Our self{imposed inhibition of
considering only �nite sets and their well{behaved limits enables us to avoid all of the useless and
unnecessary paradoxing that has appeared in the recent statistical literature. From this experience,
we conjecture that perhaps all correct results in probability theory are either combinatorial theorems
on �nite sets or well{behaved limits of them.

But on this issue, too, we are not fanatics. We recognize that the language of set and measure
theory was a useful development in terminology, in some cases enabling one to state mathematical
propositions with a generality and conciseness that is quite lacking in nineteenth century mathe-
matics. Therefore we are happy to use that language whenever it contributes to our goal, and we
could hardly get along without an occasional \almost everywhere" or \of measure zero" phrase.
However, when we use a bit of measure theory, it is never in the thought that this makes the
argument more rigorous; but only a recognition of the compactness of that language.

Of course, we stand ready and willing to use set and measure theory { just as we stand ready
and willing to use number theory, projective geometry, group theory, topology, or any other part
of mathematics { wherever this should prove helpful for the technique of �nding a result or for
understanding it. But we see no reason why we must state every proposition in set/measure theory
terminology and notation in cases where plain English is clearer and as far as we can see, not only
more e�cient for our purposes but actually safer.

Indeed, an insistence that all of mathematics be stated in that language all of the time can
place unnecessary burdens on a theory, particularly one intended for application in the real world.
It can also degenerate into an a�ectation, used only linguistically rather than functionally. To give

y A continuous function is de�ned everywhere by specifying it at each rational point, whose number is
countable. Thus the class of continuous functions is very much smaller than the class of everywhere
discontinuous functions.
z But even in the limit, the number of expansion coe�cients is only countable, corresponding nicely to the
property of continuous functions noted in the previous footnote.
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every old, familiar notion a new, impressive name and symbol unknown to Gauss and Cauchy, has
nothing to do with rigor. It is, more often than not, a form of gamesmanship whose real purpose is
to conceal the Mickey Mouse triviality of what is being done. One would blush to state it in plain
English.

Kronecker vs. Weierstrasz

At this point, a question will surely be in the reader's mind. After our emphasis on the safety of
�nite sets it might appear that all of analysis, which seems to do everything on uncountable sets, is
suspect. Let us explain why this is not the case, and why we do place full con�dence in the analysis
of Cauchy and Weierstrasz.?

In the late 19'th Century both Karl Weierstrasz (1815{1897) and Leopold Kronecker (1823{
1891) were at the University of Berlin,y lecturing on mathematics. A di�erence developed between
them, which has been greatly exaggerated by later commentators, and it is only in the past few
years that the real truth about their relationship has started to emerge.

Briey, Weierstrasz was concerned with perfecting the tools of analysis { particularly power
series expansions { with the speci�c case of elliptic functions in mind as an application. Kronecker
was more concerned with the foundations of mathematics in number theory, and questioned the
validity of reasoning that does not start back at the integers. On a super�cial view, this might seem
to deny us all the beautiful results of analysis. Even Morris Kline (1980) gives the impression that
Kronecker's asceticism denies us some of the important advances in modern mathematics. But the
record has been distorted.

For example, E. T. Bell (1937, p. 568) tells us, without any supporting documentation, that
Kronecker on hearing of Lindemann's proof that � is transcendental, asked of what use that could
be, \� � � since irrational numbers do not exist?" The documentable fact is that Kronecker's own
work on number theory (1901, p. 4) describes the formula of Leibniz:
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as \one of the most beautiful arithmetic properties of the odd integers, namely that of determining
this geometrical irrational number." Evidently, Kronecker considered irrational numbers as pos-
sessing at least enough \existence" to allow them to be precisely de�ned. It is true that he did not
consider irrationals to be a necessary part of the foundations; indeed, how could he or anybody else
think that, in view of relations like the above one, which allow irrationals to be de�ned entirely in
terms of integers? Curiously, Weierstrasz also de�ned irrationals from the integers in just the same
way; so where was the di�erence between them?

Bell also paints a picture of Weierstrasz as the great analyst, putting the �nal �nishing touches
on the work of Cauchy, and Kronecker as a mere gady, attacking the validity of everything he
did without making any positive contribution. It is true that Kronecker annoyed Weierstrasz on
at least one occasion, documented in Weierstrasz' correspondence; yet there was not really much
conict in their principles. To understand Kronecker's position we just need a better witness than
Eric Temple Bell, and fortunately we have two of them, Henri Poincar�e and Harold M. Edwards.

? Indeed, the writer's �rst love in mathematics was not probability theory, but the use of Cauchy's complex
integration to solve systems of di�erential equations and boundary conditions, choosing the integrand to
satisfy the di�erential equation, and then the contour of integration to satisfy the boundary conditions.
Three generations of theoretical physicists have exploited this method enthusiastically; it is great fun to
teach and the students love it.
y More speci�cally, Weierstrasz was there from 1856{1897 and Kronecker from 1861{1891. E. T. Bell
(1937) gives a portrait of the young Weierstrasz and a photograph of the old Kronecker; H. M. Edwards
(1989) gives photographs of the old Weierstrasz and the young Kronecker.
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When Weierstrasz died in 1897, Poincar�e (1899) wrote a summary of his mathematical work,
in which he pointed out that: \ � � � all the equations which are the object of analysis and which deal
with continuous magnitudes are nothing but symbols, replacing an in�nite collection of inequalities
relating whole numbers." In the words of Edwards (1989), \ � � � both Weierstrasz and Kronecker
based their mathematics entirely on the whole numbers, so that all their work shared in the certitude
of arithmetic." Edwards notes that several reactionary views commonly attributed to Kronecker
are hearsay for which no support can be found in Kronecker's own words.

The di�erence between Kronecker and Weierstrasz was aesthetic rather than substantive; Kro-
necker wants to keep �rst principles (the origin in the integers) constantly in view, while Weierstrasz,
having made a new construction, is willing to forget the steps by which it was made, and use it
as an element in its own right for further construction. Put in modern computer terminology,
Weierstrasz did not deny Kronecker's \machine language" basis of all mathematics, but wanted to
develop analysis in a higher level language. Edwards points out that Kronecker's principles, \ � � �
in his mind and in fact, were no di�erent from the principles of his predecessors, from Archimedes
to Gauss."

Thanks largely to the historical research of Edwards, the truth is emerging and Kronecker is
being vindicated and rehabilitated. Perhaps Kronecker was overzealous, and perhaps he misunder-
stood the position of Weierstrasz; but events since then suggest that he was not zealous enough in
his own cause. His failure to respond to Georg Cantor (1845{1918) seems unfortunate, but easy to
understand.

To Kronecker, Cantor's ideas were so outr�e that they had nothing to do with real mathematics,
and there was no reason for a mathematician to take any note of them. If the editors of the
mathematical journals made the mistake of publishing such stu�, that was their problem, not
his. But the messages that Kronecker did communicate contained some very important truth; in
particular he complained that much of set theory was fantasy because it was not algorithmic (that
is, it contained no rule by which one could decide, in a �nite number of operations, whether a
given element did or did not belong to a given set). Today, with our computer mentalities, this
seems such an obvious platitude that it is hard to imagine anyone ignoring it, much less denying
it; yet that is just what happened. We think that, had mathematicians paid more attention to this
warning of Kronecker, mathematics might be in a more healthy state today.

What is a Legitimate Mathematical Function?

Much of the di�erence between current pure and applied mathematics lies in their di�erent con-
ceptions of the notion of a \function". Historically, one started with the well{behaved analytic
functions like f(x) = x2 or f(x) = sin x. Then these were generalized, but in two di�erent ways. In
pure mathematics, the idea was generalized in such a way that set theory notions remained valid;
�rst to piecewise continuous functions, then to quite arbitrary rules by which, given a number x,
one can de�ne another number f . Then, perceiving that a function or its argument need not be
limited to real or complex numbers, this was generalized to an arbitrary mapping of one set X onto
another set F , the elements of which could be almost anything.

In applied mathematics, the notion of a function was generalized in a very di�erent way; so
that the useful analytical operations that we perform on functions remain valid. Perhaps the most
important hint was provided by the operation of the fourier transform. This is still a mapping, but
at the higher level of mapping one function f(x) onto another F (k). This mapping was de�ned by
the integrals

F (k) =

Z
eikx f(x) dx ; f(x) =

1

2�

Z
e�ikx F (k) dk : (B{6)

If we indicate this fourier transform pair symbolically as
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h
f(x)$ F (k)

i
(B{7)

we �nd the interesting properties that under translation, convolution, and di�erentiation,

h
f(x� a)$ eika F (k)

i
(B{8)

h Z
f(x� y) g(y) dy$ F (k)G(k)

i
(B{9)

h
f 0(x)$ ikF (k)

i
;

h
� ix f(x)$ F 0(k)

i
(B{10)

In other words, analytical operations on one function correspond to algebraic operations on the
other.

In practice these are very useful properties. Thus to solve a linear di�erential equation, or
di�erence equation, or integral equation of convolution form [

R
K(x � y) f(y)dy = � g(x)] or,

indeed a linear equation which contains all three of these operations, one may take its fourier
transform, which converts it into an algebraic equation for F(k). This may be solved directly. Then,
if a solution exists satisfying the conditions (B{8) { (B{10), taking the inverse fourier transform
yields the solution f(y) of the original equation. Thus the fourier transform mapping reduces
the solution of linear analytical equations to that of ordinary algebraic equations. In the early
twentieth Century, the theoretical physicist Arnold Sommerfeld in Munich became a great artist
in the technique of evaluating these solutions by fancy contour integrals, and some of the greatest
of the next generation learned this from him. Today, physicists and engineers could hardly survive
without it.

But this procedure seemed to apply only to a limited class of functions. In the Dirichlet form
of fourier theory, one shows that if f(x) is absolutely integrable, then the integral (B{6) surely
converges to a well{behaved continuous function F (k) on the real axis, and all is well. If f(x)
also vanishes for negative x, then F (k) is analytic and bounded in one half of the complex plane,
and all is even better. But if f(x) is absolutely integrable, then f 0(x) or f 00(x) may not be; and
there is some doubt whether the useful properties are still valid. In the early work on fourier
transforms, such as Titchmarsh (1937), virtually all one's attention was concentrated on the theory
of convergence of the integrals, and any function for which the integral did not converge was held
not to possess a fourier transform. This placed an intolerable restriction on the range of useful
applications of fourier theory.

Then a more sophisticated view emerged in theoretical physics. One realized that the usefulness
of the fourier transform lies, not in convergence of any integral, but in the above properties (B{
8) { (B{10) of the mapping. Therefore, as long as our functions are su�ciently well{behaved so
that the operations in (B{8) { (B{10) make sense, then if by any means we can de�ne the mapping
such that those properties are preserved, then the customary use of fourier transforms to solve
linear integrodi�erential equations will be perfectly rigorous and it does not make the slightest

di�erence whether the integrals (B{6) or the analogous fourier series do or do not converge. A
divergent fourier series is still a unique ordered sequence of numbers, conveying all the needed
information (that is, it is uniquely determined by, and uniquely determines, its Fourier transform).
It was only an historical accident that this mapping was �rst discovered through series and integral
representations, which exist only in special cases.
Delta Functions: Although its beginnings can be traced back to Duhamel and Green in the 19'th
Century, this movement is commonly held to start with P. A. M. Dirac, who in the 1920's invented
the notation of the delta{function �(x� y) generalizing the Kronecker �ij , and showed how to use
it to good advantage in applications. It is the \fourier transform of a constant" in the sense that
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as F (k)! 1, we have f(x)! �(x). Mathematicians thinking in terms of the set theory de�nition
of a `function' were horri�ed and held this to be nonrigorous on the grounds that delta{functions
do not `exist'. But that was only because of their inappropriate de�nitions of the term `function'.
A delta{function is not a mapping of any set onto any other. Laurent Schwartz (1950) tried to
make the notion of a delta{function rigorous, but from our point of view awkwardly, because he
persisted in de�ning the term `function' in a way inappropriate to the subject.

Perceiving this, G. Temple (1955) and M. J. Lighthill (1957) showed how to remove the awk-
wardness simply by adopting a de�nition of functions as meaning \good" functions and limits of
sequences of good functions (thus in our system, a discontinuous function is de�ned as the limit
of a sequence of continuous functions). For this, there is almost no need to mention such things
as open and closed sets. Lighthill saw that this de�nition of `function' is the one appropriate to
fourier theory. It is now clear that it is also the one appropriate to probability theory and to all of
analysis; with it our theorems become simpler and more general, without a long list of exceptions
and special cases. For example, any fourier series may now be di�erentiated term by term any
number of times and the result, whether convergent or not, identi�es (by 1:1 correspondence) a
unique function in our sense of the word. Physicists had seen this intuitively and used it correctly
long before the work of Schwartz, Temple, and Lighthill.

Lighthill produced a very thin book (1957) on the new form of fourier analysis, which included
a table of fourier transforms in which every entry is a function which was held formerly not to
possess a fourier transform. Yet that table is a gold mine for the useful solution of linear integro{
di�erential equations. In a famous review of Lighthill's book, the theoretical physicist Freeman J.
Dyson (1958), a former student of the Cambridge mathematician G. H. Hardy, said that Lighthill's
book \ � � � lays Hardy's work in ruins, and Hardy would have enjoyed it more than anybody."
Throughout the present work we take Lighthill's approach, as summarized briey in Appendix F,
for granted and assume that the reader is familiar with it.

Nondi�erentiable Functions: The issue of nondi�erentiable functions arises from time to time
in probability theory. In particular, when one solves a functional equation like those studied in
Chapter 2, to assume di�erentiability is to have a horde of mathematical nit{pickers descend upon
one, with claims that we are excluding a large class of potentially important solutions. However,
we noted that this is not the case; Aczel demonstrated that Cox's functional equations can all be
solved without assuming di�erentiability (at the cost of much longer derivations) and with just the
same solutions that we found above.

Let us take a closer look at the notion of nondi�erentiable functions in general. This was not
well received at �rst by pure mathematicians. Charles Hermite wrote to Stieltj�es: \I turn away in
horror from this awful plague of functions which have no derivatives." The one generally blamed
for this plague was Henri Lebesgue (1875{1941), although Weierstrasz had noted them before him.
The Weierstrasz nondi�erentiable function is

f(x) �

1X
n=0

an cos(mn x) (B{11)

where 0 < a < 1) and m is a positive odd integer. It is an ordinary fourier series with period 2�,
since mn is always an integer. Furthermore, the series is uniformly convergent for all real x (since
it must converge at least as well as does

P
an ), so it de�nes a continuous function. But if ma > 1,

term{by{term di�erentiation yields a badly divergent series, whose coe�cients grow exponentially
in n. The proof that

f 0(x) � lim
h!0

f(x+ h)� f(x)

h
(B{12)
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then does not exist for any x is rather tedious.y Weierstrasz' function is, in fact, the limit of a
sequence of good functions (the partial sums Sk of the �rst k terms), but it is not a very well{
behaved limit and such functions are of no apparent use to us because they fail to satisfy condition
(B{10). Nevertheless, functions like this do arise in applications; for example, in Chapter 7 our
attempt to solve the integral equation (7{43) by fourier transform methods ran up against this
di�culty if the kernel was too broad. Then our conclusion was that the integral equation does not
have any usable solution unless the kernel �(x� y) is at least as sharp as the \driving force" f(x).
This is discussed further in Appendix F.

Bogus Nondi�erentiable Functions The case most often cited as an example of a nondi�eren-
tiable function is derived from a sequence fn(x) , each of which is a string of isosceles right triangles
whose hypotenuses lie on the real axis and have length 1=n. As n ! 1, the triangles shrink to
zero size. For any �nite n, the slope of fn(x) is �1 almost everywhere. Then what happens as
n ! 1? The limit f1(x) is often cited carelessly as a nondi�erentiable function. Now it is clear
that the limit of the derivative, f 0n(x) does not exist; but it is the derivative of the limit that is
in question here; f1(x) � 0 and this is certainly di�erentiable. Any number of such sequences
fn(x) with discontinuous slope on a �ner and �ner scale may be de�ned. The error of calling the
resulting limit f1(x) nondi�erentiable on the grounds that the limit of the derivative does not
exist, is common in the literature. In many cases, the limit of such a sequence of bad functions is
actually a well{behaved function (although awkwardly de�ned) and we have no reason to exclude
it from our system.

Lebesgue defended himself against his critics thus: \If one wished always to limit himself to
the consideration of well{behaved functions, it would be necessary to renounce the solution of many
problems which were proposed long ago and in simple terms." The present writer is unable to cite
any speci�c problem which was thus solved; but we can borrow Lebesgue's argument to defend our
own position.

To reject limits of sequences of good functions is to renounce the solution of many current real
problems. Those limits can and do serve many useful purposes, which much current mathematical
education and practice still tries to stamp out. Indeed, the refusal to admit delta{functions as
legitimate mathematical objects has led mathematicians into error. For example, H. Cram�er (1946,
Chap. 32) gives an inequality, which we derived in Chapter 17, placing a lower limit to the variance
of the sampling distribution for a parameter estimator ��:

var(��) �
(1 + db=d�)2

n
R
(@ log f=@�)

2
f(xj�) dx

(B{13)

where we have made n observations from a sampling distribution f(xj�), and b(��) � E(�� � �) is
the bias of the estimator.

Then Cram�er notes that if f(xj�) has discontinuities, then \the conditions for the regular case
are usually not satis�ed. In such cases it is often possible to �nd unbiased estimates of `abnormally
high' precision, i.e., such that the variance is smaller than the lower limit [(B{13)] for regular
estimates." How could he have reached such a remarkable conclusion, since (B{13) is only the
Schwartz inequality, which does not seem to admit of exceptions? We �nd that he has used the
set{theory de�nition of a function, and concluded that the derivative @ log f=@� does not exist at
points of discontinuity. So he takes the integral in (B{13) only over those regions where f(xj�) is
continuous.

y G. H. Hardy, Proc. London Math. Soc.(2), 9, pp. 126{144). Titchmarsh (1939, pp. 350{353) gives only
a shorter proof valid when ma > 1+ 3�=2. Some authors state that f(x) is nondi�erentiable only in this

case; but to the best of our knowledge, nobody has ever claimed that Hardy's proof contains an error.
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But the de�nition of a discontinuous function which is appropriate in analysis is our limit of
a sequence of continuous functions. As we approach that limit, the derivative develops a higher
and sharper spike. However close we are to that limit, the spike is part of the correct derivative
of the function, and its contribution must be included in the exact integral. Thus the derivative
of a discontinuous function necessarily contains a delta{function at points of discontinuity, whose
contribution is always present in the di�erentiated fourier series, and must be included in order to

get the correct physical solution. Had Cram�er included this term, (B{13) would have reduced in the
limit to var(��) � 0, hardly a useful statement, but at least there would have been no anomalous
case, and no seeming violation of the Schwartz inequality.

In a similar way, the solution of an integral equation with �nite limits, of the form

Z b

a

K(x; y)f(y)dy = �g(x) (B{14)

generally involves delta{functions like �(y� a) or �0(y � b) at the end{points, and so those who do
not believe in delta{functions consider such integral equations as not having solutions. But in real
physical problems, exactly such integral equations occur repeatedly, and again the delta{functions
must be included in order to get the correct physical solution. Some examples are given by D.
Middleton (1960), and we hope to give many more in the planned second volume of this work;
they are virtually ubiquitous in the prediction of irreversible processes in statistical mechanics. It
is astonishing that so few people have yet perceived this need to include delta{functions, but we
think it only illustrates what we have observed independently; those who think of fundamentals
in terms of set theory fail to see its limitations because they almost never get around to useful,
substantive analytical calculations.

Yet bogus nondi�erentiable functions are manufactured as limits of sequences of rows of tinier
and tinier triangles, and this is accepted without complaint. Those who do this while looking
askance at delta functions, are in the position of admitting limits of sequences of bad functions
as legitimate mathematical objects, while refusing to admit limits of sequences of good functions!
This seems to us a sick policy, for delta{functions serve many essential purposes in real, substan-
tive calculations, but we are unable to conceive of any useful purpose that could be served by a
nondi�erentiable function. It seems that their only use is to provide trouble makers with arti�-
cially contrived counter{examples to almost any sensible and useful mathematical statement one
could make. Henri Poincar�e (1909) noted this in his characteristically terse way: \In the old days

when people invented a new function they had some useful purpose in mind: now they invent them

deliberately just to invalidate our ancestors' reasoning, and that is all they are ever going to get out

of them."
Indeed, this fad of arti�cially contrived mathematical pathology seems nearly to have run its

course, and for just the reason that Poincar�e foresaw; nothing useful can be done with it. While
we still see exhortations not to assume di�erentiability of an unknown function, it is di�cult to
�nd even one speci�c example of a nondi�erentiable function appearing { much less actually being
used for anything { in the recent literature. To the best of our knowledge, they play no role in the
discussions of any mathematical question or useful application and one must go back to old works
like Titchmarsh (1939) to see them at all.

Note, therefore, that we stamp out this plague too, simply by our de�ning the term \function"
in the way appropriate to our subject. The de�nition of a mathematical concept that is `appropriate'
to some �eld is the one that allows its theorems to have the greatest range of validity and useful
applications without the need for a long list of exceptions, special cases, and other anomalies. In
our work the term `function' includes good functions as de�ned in Appendix F, and well{behaved
limits of sequences of good functions; but not nondi�erentiable functions. We do not deny the
existence of other de�nitions which do include nondi�erentiable functions, any more than we deny
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the existence of uorescent purple hair dye in England; in both cases, we simply have no use for
it.y

Counting In�nite Sets?

It is well known that Lewis Carroll's children's books were really expositions of principles of logic,
but conveyed by the device of stating the opposite in a form that would appear ludicrous even to
small children. One of his poems ends thus:

He thought he saw an Argument that proved he was the Pope:
He looked again and found it was a Bar of Mottled Soap.
\A fact so dread," he faintly said, \Extinguishes all hope!"

Indeed, many of the arguments seriously proposed in probability theory are seen on second glance
to be nothing but mottled soap. The idea was appropriated in a famous anecdotey about the Cam-
bridge mathematician G. H. Hardy; J. E. McTaggart expressed doubt that from a false proposition
all propositions can be derived, by challenging him thus: \Given 2 + 2 = 5: prove that I am the
Pope." Whereupon Hardy replied: \Subtract 3 from each side and we have 1 = 2. Now we agree
that the Pope and you are two; therefore the Pope and you are one!" But that was only a play
on words; in�nite set theory gives us a superior grade of mottled soap, with which we can prove
McTaggart's papacy much more convincingly.

We start from the premise that two sets have the same number of elements if they can be
put into 1:1 correspondence with each other. Then by the association (n $ 2n); n = 1; 2; : : : we
can put the positive integers into 1:1 correspondence with the positive even integers. And by the
association (2n$ 2n� 1); n = 1; 2; : : : we can, equally well, put the positive even integers into 1:1
correspondence with the positive odd integers; so by such logic it seems that we would be driven
to conclude that

(A) (Number of integers) = (number of even integers)
(B) (Number of even integers) = (number of odd integers)

(C) (Number of integers) = 2 � (number of even integers)

and from (A) and (C) it follows that 1 = 2. The reasoning here is not very di�erent from we did
in (15{95).

Our view is that the \set of all integers" is unde�ned except as a limit of �nite sets, and if
it is approached in that way, by introducing the explicit limiting process, no contradiction can be
produced whatever limiting process we choose, even though the limiting ratio of (Number of even
integers)/(Number of integers) can be made to be any x we please in 0 � x � 1. That is, the limit
of (Number of odd integers)/(Number of integers) will be (1 � x) and our counting will remain
consistent in the limit.

For example, every integer is included once and only once in the sequence f1, 3, 2, 5, 7, 4, : : :g,
in which we take alternately two odd and one even. Then counting elements only in the �nite sets
consisting of the �rst n elements of this sequence, and passing to the limit n! 1 after doing the
counting, we would �nd in place of the inconsistent statements (A), (B), (C) above, the consistent
set

(A') (Number of integers) = 3 � (number of even integers)

(B') (Number of even integers) = 1

2
� (number of odd integers)

(C') (Number of integers) = (Number of even integers) + (Number of odd integers).

y On a di�erent topic, we follow the same policy by de�ning the term \moving average" for a �nite time
series in such a way that our theorems are all exact, without any need for messy \end e�ect" corrections.
Of course, it then develops that this is the de�nition most directly useful in applications (Chapter 23).
y Cited by Je�reys (1957, p. 18).
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These ideas are not as new as one might think. Galileo (1638), in his Dialogues Concerning Two

New Sciences, notes two curious facts. On the one hand, each integer has one and only one square
and no two of them have the same square; from which it would seem that the number of integers
and the number of squares must be the same. On the other hand, it is evident that there are
many integers (in a certain sense, the `great majority' of them) which are not squares. From this
he draws the eminently sensible conclusion: \This is one of the di�culties which arise when we

attempt, with our �nite minds, to discuss the in�nite, assigning to it those properties which we

give to the �nite and limited; but this I think is wrong, for we cannot speak of in�nite quantities

as being the one greater or less than or equal to another." Three hundred years later, Hermann
Weyl expressed almost exactly the same judgment, as noted below.

The Hausdor� Sphere Paradox and Mathematical Diseases

The inconsistent statements above are structurally almost identical with the Hausdor� paradox
concerning congruent sets on a sphere, except for the promotion up to uncountable sets (here
X; Y; Z are disjoint sets which nearly cover the sphere, and X is congruent to Y , in the sense
that a rotation of the sphere makes X coincide with Y , and likewise Y is congruent to Z. But
what is extraordinary is the claim that X is also congruent to the union of Y and Z, even though
Y 6= Z). We are, like Poincar�e and Weyl, puzzled by how mathematicians can accept and publish
such results; why do they not see in this a blatant contradiction which invalidates the reasoning
they are using?

Nevertheless, L. J. Savage (1962) accepted this antinomy as literal fact and, applying it to
probability theory, said that someone may be so rash as to blurt out that he considers congruent
sets on the sphere equally probable; but the Hausdor� result shows that his beliefs cannot actually
have that property. The present writer, pondering this, has been forced to the opposite conclusion:
my belief in the existence of a state of knowledge which considers congruent sets on a sphere
equally probable, is vastly stronger than my belief in the soundness of the reasoning which led to
the Hausdor� result.

Presumably, the Hausdor� sphere paradox and the Russell Barber paradox have similar ex-
planations; one is trying to de�ne weird sets with self{contradictory properties, so of course, from
that mess it will be possible to deduce any absurd proposition we please. Hausdor� entitled his
work `Mengenlehre', and Poincar�e made the famous quip that \Future generations will regard Men-

genlehre as a disease from which one has recovered." But Poincar�e would be appalled to see this
recovery not yet achieved 80 years later; nevertheless, his views are still alive and well today among
users of applied mathematics.

For example, in 1983 the writer heard a talk by a very prominent statistician, reporting on an
historical investigation. He remarked: \I was surprised to learn that, before the days of Bourbaki, the

French actually produced some useful mathematics ." More recently, the Nobel Laureate theoretical
physicist Murray Gell{Mann (1992), interpreted this di�erently. He opined that there is still much
in modern mathematics of value to physics, and the divergence of pure mathematics from science is
in part only an illusion produced by the obscurantist language of Bourbakists and their reluctance
to write up any non{trivial example in explicit detail. He concludes: \Pure mathematics and

science are �nally being reunited and, mercifully, the Bourbaki plague is dying out."

We wish we could feel that optimistic. In our view, the disease is far more serious than mere
obscure language; it infects the substantive content of pure mathematics. A sane person can have
no con�dence in any of it; rules of conduct must be found which prevent the appearance of these
ridiculous paradoxes; and then our mathematics textbooks must be rewritten. Russell's theory
of types can dispose of a few paradoxes, but far from all of them. Even with the best of good
will on both sides, It would require at least another generation to bring about the reconciliation
of pure mathematics and science. For now, it is the responsibility of those who specialize in



B{13 Appendix B: MATHEMATICAL FORMALITIES AND STYLE B{13

in�nite set theory to put their own house in order before trying to export their product to other
�elds. Until this is accomplished, those of us who work in probability theory or any other area of
applied mathematics have a right to demand that this disease, for which we are not responsible, be
quarantined and kept out of our �eld.

In this view, too, we are not alone; and indeed have the support of many non{Bourbakist
mathematicians. In our Preface we quoted Morris Kline (1980) on the dangers of allowing in�nite
set theory to get a foothold in applied mathematics. He in turn quotes Hermann Weyl (loc. cit.,
p. 237). Both Brouwer and Weyl noted that classical logic had been developed for application to
�nite sets. The attempt to apply classical logic, without justi�cation, to in�nite sets is, in Weyl's
words: \- - the Fall and original sin of set theory, for which it is justly punished by the antinomies.
It is not that such contradictions showed up that is surprising, but that they showed up at such a
late stage of the game."

But there is a plausible explanation for this late appearance: if an erroneous argument leads
to an absurd result immediately, it will be abandoned and we shall never hear about it. If it yields
a reasonable result on the �rst two or three tries, then there is some range of problems where it will
succeed. One will continue using it, but at �rst conservatively; on problems that are quite similar,
so it is likely to continue giving reasonable results. Only later, when one becomes con�dent and
tries to extend the application to di�erent kinds of problems, do the contradictions appear.

Just the same phenomenon occurred in orthodox statistics, where the ad hoc inventions such
as con�dence intervals yielded acceptable results for a long time because they were used at �rst
only on simple problems which were free of nuisance parameters, and where su�cient statistics
existed. Nobody took any note of the fact that the numerical results were then the same as the
Bayesian posterior probability intervals at the same level { and con�dence intervals were widely
held, by mathematicians such as Neyman, Cram�er, Wilks, to be great advances over Bayesian
methods { before their contradictions began to appear when one tried to apply them to more
general problems.y Finally, we were able to show (see Chapter 17) that con�dence intervals are
satisfactory as inferences (i.e. that they take into account all the relevant information in the data),
only in those special cases where they happen to agree with the Bayesian intervals after all.

Kline (loc. cit., p 285) also quotes J. Willard Gibbs on this subject: \The pure mathematician
can do what he pleases, but the applied mathematician must be at least partially sane." In any
event, no sane person would try to use such anomalies as the Hausdor� sphere paradox in a real
application.

Finally, we o�er a few more general comments on mathematical style.

What Am I Supposed to Publish?

L. J. Savage (1962) asked this question to express his bemusement at the fact that, no matter what
topic he chose to discuss and no matter what style of writing he chose to adopt, he was sure to
criticized for not making a di�erent choice. In this he was not alone. We would like to plead for a
little more tolerance of our individual di�erences.

If anyone wants to concentrate his attention on in�nite sets, measure theory, and mathematical
pathology in general, he has every right to do so. And he need not justify this by pointing to useful
applications or apologize for the lack of them; as was noted long ago, abstract mathematics is worth
knowing for its own sake.

But others in turn have equal rights. If we choose to concentrate on those aspects of mathe-
matics which are useful in real problems and which enable us to carry out important substantive

y Con�dence intervals are always correct as statements about sampling properties of estimators; yet they
can be absurd as statements of inference about the values of parameters. For example, the entire con�dence
interval may lie in a region of the parameter space which we know, by deductive reasoning from the data,
to be impossible.
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calculations correctly { but which the mathematical pathologists never get around to { we feel free
to do so without apology.

Ultimately, the mathematical level and depth of this work were chosen with the aim of making
it possible for all readers to get what they want from it. Since those who approach a work with the
sole purpose of �nding fault with its style of presentation will always be able to do so no matter how
it is presented, our aim was to ensure that those who approach it with sincere desire to understand
its content will also be able to do so. Thus we try to give cogent reasons why the ideas we advocate
are \obvious," while those we deplore are not, when this can be done briey enough not to interrupt
the line of argument. This inevitably leaves some lacunae, in part �lled in by the Comments at the
end of most Chapters.

In this connection, the question of what is and is not \obvious" is a matter of gamesmanship
that is played in two opposite directions. On the one hand, the standard way of introducing notions
that do not stand up to critical examination { or to deprecate those that stand up too well to be
safely opposed { is to call them \obvious." On the other hand, to express grave doubts about simple
matters that are obvious, is the equally standard technique for imputing to one's self deep critical
faculties not possessed by others. We try to steer a middle course between these, but like Savage
do so in the knowledge that whatever our choice, it will receive opposite criticisms from the two
types of gamesman.

But we avoid one common error; nothing could be more pathetically mistaken than the prefa-
tory claim of one author in this �eld that mathematical rigor \guarantees the correctness of the
results." On the contrary, much experience teaches us that the more one concentrates on the ap-
pearance of rigor, the less attention he pays to the validity of the premises in the real world, and
the more likely he is to reach �nal conclusions that are absurdly wrong in the real world.

Mathematical Courtesy

A few years ago the writer attended a Seminar talk by a young mathematician who had just received
his Ph.D. degree and, we understood, had a marvelous new limit theorem of probability theory. He
started to de�ne the sets he proposed to use, but three blackboards were not enough for them and
he never got through the list. At the end of the hour, having to give up the room, we walked out
in puzzlement, not knowing even the statement of his theorem.

A \Nineteenth Century (C19) Mathematician" like Poincar�e would have been into the meat
of the calculation within a few minutes and would have completed the proof and pointed out its
consequences in time for discussion.

The young man is not to be blamed; he was only doing what he had been taught a \Twentieth
Century (C20) Mathematician" must do. Although he has perhaps now learned to plan his talks
a little better, he is surely still wasting much of his own time and that of others in reciting all the
preliminary incantations that are demanded in C20 mathematics before one is allowed to proceed
to the actual problem. He is a victim of what we consider to be, not higher standards of rigor, but
studied mathematical discourtesy.

Nowadays, if you introduce a variable x without repeating the incantation that it is in some
set or \space" X , you are accused of dealing with an unde�ned problem. If you di�erentiate a
function f(x) without �rst having stated that it is di�erentiable, you are accused of lack of rigor.
If you note that your function f(x) has some special property natural to the application, you are
accused of lack of generality. In other words, every statement you make will receive the discourteous
interpretation.

Obviously, mathematical results cannot be communicated without some decent standards of
precision in our statements. But a fanatical insistence on one particular form of precision and
generality can be carried so far that it defeats its own purpose. C20 mathematics often degenerates
into an idle adversary game instead of a communication process.
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The fanatic is not trying to get your substantive message at all, but only trying to �nd fault
with your style of presentation. He will strive his utmost to read nonsense into what you are saying,
if he can possibly �nd any way of doing so. In self{defense, writers are obliged to concentrate their
attention on every nit{picking detail of how things are said rather on what is said. The length
grows, the content shrinks.

Mathematical communication would be much more e�cient and pleasant if we adopted a
di�erent attitude. For one who makes the courteous interpretation of what others write, the fact
that x is introduced as a variable already implies that there is some set X of possible values. Why
should it be necessary to repeat that incantation every time a variable is introduced, thus using up
two symbols where one would do? [Indeed, the range of values is usually indicated more clearly at
the point where it matters; by adding conditions like (0 < x < 1) after an equation].

For a courteous reader, the fact that a writer di�erentiates f(x) twice already implies that
he considers it twice di�erentiable; why should he be required to say everything twice? If he
proves proposition A in enough generality to cover his application, why should he be obliged to use
additional space for irrelevancies about the most general possible conditions under which A would
be true?

C19 mathematicians were not being nonrigorous by their style; they merely, as a matter of
course, extended simple civilized courtesy to others, and expected to receive it in return. This will
lead one to try to read sense into what others write, if it can possibly be done in view of the whole
context; not to pervert our reading of every mathematical work into a witch{hunt for deviations
from the O�cial Style.

Therefore, sympathizing with the young man's plight but not intending to be enslaved like
him, we issue the following:

EMANCIPATION PROCLAMATION

Every variable x that we introduce is understood to have some set X of possible
values. Every function f(x) that we introduce is understood to be su�ciently
well behaved so that what we do with it makes sense. We undertake to make
every proof general enough to cover the application we make of it. It is an
assigned homework problem for the reader who is interested in the question, to
�nd the most general conditions under which the result would hold.

We could convert many C19 mathematical works to C20 standards by making a rubber stamp
containing this Proclamation, with perhaps another sentence using the terms \Sigma{algebra,
Borel �eld, Radon{Nikodym derivative", and stamping it on the �rst page.

Modern writers could shorten their works substantially, with improved readability and no
decrease in content, by including such a Proclamation in the Copyright message, and writing
thereafter in C19 style. Perhaps some publishers, seeing these words, may demand that they do
this for economic reasons; it would be a service to science.

In this Appendix we have presented many short quotations without the references. Supporting
documentation and many further interesting details may be found in Bell (1937), F�elix (1960), Kline
(1980), and Rowe & McCleary (1989).
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APPENDIX C

CONVOLUTIONS AND CUMULANTS

First we note some general mathematical facts which have nothing to do with probability theory.
Given a set of real functions f1(x); f2(x); � � �fn(x) de�ned on the real line and not necessarily non-

negative, suppose that their integrals (zero'th moments) and their �rst, second, and third moments

exist:

Zi �

Z
1

�1

fi(x) dx <1 ;

Fi �

Z
1

�1

x fi(x) dx <1

Si �

Z
1

�1

x2 fi(x) dx <1 ;

Ti �

Z
1

�1

x3 fi(x) dx <1

(C{1)

The convolution of f1 and f2 is de�ned by

h(x) �

Z
1

�1

f1(y) f2(x� y) dy (C{2)

or in condensed notation, h = f1 �f2. Convolution is associative: (f1 �f2)�f3 = f1 � (f2 �f3), so we

can write a multiple convolution as (h = f1 � f2 � f3 � � � � � fn) without ambiguity. What happens
to the moments under this operation? The zero'th moment of h(x) is

Zh =

Z
1

�1

dx

Z
1

�1

dyf1(y) f2(x� y) =

Z
dy f1(y)Z2 = Z1Z2 (C{3)

Therefore, if Zi 6= 0 we can multiply fi(x) by some constant factor which makes Zi = 1, and this
property will be preserved under convolution. In the following we assume that this has been done

for all i. Then the �rst moment of the convolution is

Fh =

Z
1

�1

dx

Z
1

�1

dyf1(y) x f2(x� y) =

Z
dy f1(y)

Z
1

�1

dq(y + q)f2(q)

=

Z
1

�1

dyf1(y) [yZ2 + F2] = F1Z2 + Z1F2 (C{4)

so the �rst moments are additive under convolution:

Fh = F1 + F2 (C{5)
For the second moment, we have by a similar argument

Sh =

Z
dyf1(y)

Z
dq(y2 + 2yq + q2)f2(q) = S1Z2 + 2F1F2 + Z1S2 (C{6)

or,

Sh = S1 + 2F1 F2 + S2 (C{7)
Subtracting the square of (C{5), the cross product term cancels out and we see that there is another
quantity additive under convolution:

[Sh � (Fh)
2] = [S1 � (F1)

2] + [S2 � (F2)
2] (C{8)

Proceeding to the third moment, we �nd

Th = T1Z2 + 3S1F2 + 3F1S2 + Z1T2 (C{9)
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and after some algebra [subtracting o� functions of (C{5) and (C{7)] we can con�rm that there is
a third quantity, namely

Th � 3Sh Fh + 2 (Fh)
3 (C{10)

that is additive under convolution.

This generalizes at once to any number of such functions: let h(x) � f1 � f2 � f3 � � � � � fn:
Then we have found the additive quantities

Fh =

nX
i=1

Fi

Sh � F 2
h =

nX
i=1

(Si � F 2
i )

Th � 3ShFh + 2F 3
h =

nX
i=1

(Ti � 3SiFi + 2F 3
i )

(C{11)

These quantities, which \accumulate" additively under convolution, are called the cumulants; we

have developed them in this way to emphasize that the notion has nothing, fundamentally, to do
with probability.

At this point we de�ne the n'th cumulant as the n'th moment, with `correction terms' from
lower moments, so chosen as to make the result additive under convolution. Then two questions

call out for solution: (1) Do such correction terms always exist?; and (2) If so, how do we �nd a

general algorithm to construct them?

To answer them we need a more powerful mathematical method. Introduce the fourier trans-

form of fi(x):

Fi(�) �

Z
1

�1

fi(x)e
i�x dx fi(x) =

1

2�

Z
1

�1

Fi(�)e
�i�x d� (C{12)

Under convolution it behaves very simply:

H(�) =

Z
1

�1

h(x)ei�x dx =

Z
dyf1(y)

Z
dxei�xf2(x� y)

=

Z
dyf1(y)

Z
dqei�(y+q)f2(q)

= F1(�)F2(�)

(C{13)

In other words, logF (�) is additive under convolutions. This function has some remarkable proper-

ties in connection with the notion of the \Cepstrum" discussed later. For now, examine the power
series expansions of F (�) and log F (�). The �rst is

F (�) = M0 +M1(i�) +M2

(i�)2

2!
+M3

(i�)3

3!
+ � � � (C{14)

with the coe�cients

Mn =
1

in
dnF (�)

d�n

#
�=0

=

Z
1

�1

xnf(x)dx (C{15)

which are just the n'th moments of f(x); if f(x) has moments up to order N , then F (�) is
di�erentiable N times at the origin. There is a similar expansion for log F (�):
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log F (�) = C0 + C1(i�) + C2

(i�)2

2!
+ C3

(i�)3

3!
+ � � � (C{16)

Evidently, all its coe�cients

Cn =
1

in
dn

d�n
logF (�)

�
�=0

(C{17)

are additive under convolution, and are therefore cumulants. The �rst few are

C0 = logF (0) = log

Z
f(x)dx = logZ (C{18)

C1 =
1

i

R
ixf(x)dxR
f(x)dx

=
F

Z
(C{19)

C2 =
d2

d(i�)2
logF (�) =

d

d(i�)

R
xf(x)ei�xR
f(x)ei�x dx

=

R
f
R
x2f � (

R
xf)2

(
R
f)2

or,

C2 =
S

Z
�

�
F

Z

�2

(C{20)

which we recognize as just the cumulants found directly above; likewise, after some tedious calcu-
lation C3 and C4 prove to be equal to the third and fourth cumulants (C{10). Have we then found

in (C{17) all the cumulants of a function, or are there still more that cannot be found in this way?

We would argue that if all the Ci exist (i.e. f(x) has moments of all orders, so F (�) is an entire
function) then the Ci uniquely determine F (�) and therefore f(x), so they must include all the

algebraically independent cumulants; any others must be linear functions of the Ci. But if f(x)
does not have moments of all orders, the answer is not obvious, and further investigation is needed.

Relation of Cumulants and Moments

While adhering to our convention Z = 1, let us go to a more general notation for the n'th moment
of a function:

Mn �

Z
1

�1

xn f(x) dx =
dn

d(i�)n

Z
f(x) ei�xdx

�
�=o

= i�n F (n)(0); n = 0; 1; 2; : : : (C{21)

It is often convenient to use also the notation

Mn = xn (C{22)
indicating an average of xn with respect to the function f(x). We stress that these are not in
general probability averages; we are indicating some general algebraic relations in which f(x) need

not be nonnegative. For probability averages we always reserve the notation hxi or E(x).

If a function f(x) has moments of all orders, then its fourier transform has a power series
expansion

F (�) =

1X
n=0

Mn (i�)
n (C{23)

Evidently, the �rst cumulant is the same as the �rst moment:

C1 = M1 = x (C{24)
while for the second cumulant we have C2 = M2 �M2

1 ; but this is
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C2 =

Z
[x�M1]

2 f(x) dx = (x� x)2 = x2 � x2 ; (C{25)

the second moment of x about its mean value, called the second central moment of f(x). Likewise,
the third central moment isZ

(x� x)3 f(x) dx =

Z
[x3 � 3xx2 + 3x2x� x3] f(x) dx (C{26)

but this is just the third cumulant (C{11):

C3 = M3 � 3M1M2 + 2M3
1 (C{27)

and at this point we might conjecture that all the cumulants are just the corresponding central

moments. However, this turns out not to be the case: we �nd that the fourth central moment is

(x� x)4 = M4 � 4M3M1 + 6M2M
2
1 � 3M4

1 (C{28)

but the fourth cumulant is

C4 = M4 � 4M3M1 � 3M2
2 + 12M2M

2
1 � 6M4

1 : (C{29)

So they are related by

(x� x)4 = C4 + 3C2
2 : (C{30)

Thus the fourth central moment is not a cumulant; it is not a linear function of cumulants. However,

we have found it true that, for n = 1; 2; 3; 4 the moments up to order n and the cumulants up to
order n uniquely determine each other; we leave it for the reader to see, from examination of the

above relations, whether this is or is not true for all n.

If our functions f(x) are probability densities, many useful approximations are written most
e�ciently in terms of the �rst few terms of a cumulant expansion.

Examples

What are the cumulants of a gaussian distribution? Let

f(x) =
1

p
2��2

exp

�
(x� �)2

2�2

�
(C{31)

Then we �nd the fourier transform

F (�) = exp(i��� �2�2=2) (C{32)

so that

logF (�) = i��� �2�2=2 (C{33)

and so

C0 = 0; C1 = �; C2 = �2 (C{34)

and all higher Cn are zero. A gaussian distribution is characterized by the fact that is has only two
nontrivial cumulants, the mean and variance.
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APPENDIX E

MULTIVARIATE GAUSSIAN INTEGRALS

Starting from the formula

Z
1

�1

e�x
2

dx =
p
� (E{1)

it follows that

Z
: : :

Z
1

�1

dx1 : : : dxn exp

(
�1

2

nX
i=1

aix
2
i

)
=

(2�)n=2p
a1a2 : : :an

; ai > 0 : (E{2)

Now carry out a real nonsingular linear transformation:

xi =

nX
j=1

Bij qj ; 1 � i � n ; (E{3)

where det(B) 6= 0. Then, going into matrix notation,

X
ai x

2
i = qTBTABq = qTMq (E{4)

where

Aij � ai �ij (E{5)

is a positive de�nite diagonal matrix. The volume element transforms according to the Jacobian
rule

dx1 : : :dxn = j det(B)j dq1 : : :dqn (E{6)
and

det(M) = det(BTAB) = [det(B)]2 det(A): (E{7)

The matrix M is by de�nition real, symmetric, and positive de�nite; and by proper choice of A; B

any such matrix may be generated in this way. The integral (E{2) may then be written as

Z
: : :

Z
exp

�
�1

2
qTMq

�
j det(B)j dq1 : : :dqn (E{8)

and so the general multivariate Gaussian integral is

I =

Z
: : :

Z
exp[�1

2
qTMq] dq1 : : : dqn =

(2�)n=2p
det(M)

: (E{9)

Partial Gaussian Integrals. Suppose we don't want to integrate over all the fq1 : : : qng, but only
the last r = n�m of them;

Im �
Z
: : :

Z
exp

�
�1

2
qTMq

�
dqm+1 : : :dqn (E{10)
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to do this, break M down into submatrices

M =

�
U0 V

V T W0

�
(E{11)

and likewise separate the vector q in the same way:

q =

�
u

w

�
: (E{12)

by writing fq1 = u1; : : : ; qm = umg and fqm+1 = w1; : : : ; qn = wrg. Then

Mq =

�
U0 V

V T W0

� �
u

w

�
(E{13)

and

qTMq = uTU0u+ uTV w+ wTV Tu + wTW0w (E{14)
so that Im becomes

Im = exp

�
�1

2
uTU0u

� Z
: : :

Z
exp

�
�1

2
[wTW0w + uTV w + wTV T u]

�
dw1 : : :dwr (E{15)

To prepare to integrate out w, �rst complete the square on w by writing the exponent as

[ ] = (w � ŵ)T W0 (w� ŵ) + C (E{16)
and equate terms in (E{14) and (E{16) to �nd ŵ and C:

wTWw + uTVw + wTV T u = wTW0w � ŵTW0w � wTW0ŵ+ ŵTW0ŵ+ C (E{17)

This requires (since it must be an identity in w):

uTV = �ŵTW0 (E{18)

V T u = �W0ŵ (E{19)

ŵTW0w + C = 0 (E{20)
or,

ŵ = �W�1
0 V Tu (E{21)

C = �(uTVW�1
0 )W0 (W

�1
0 V T u) = uTV W�1

0 V T u (E{22)

Then Im becomes

Im = e�
1

2
(uTU0u+C)

Z
: : :

Z
exp

�
�1

2
(w � ŵ)TW0(w� ŵ)

�
dw1 : : :dwr : (E{23)

But by (E{9) this integral is

(2�)r=2p
det(W0)

(E{24)

and from (E{18)

uTU0u+ C = uT [U0 � VW�1
0 V T ]u : (E{25)

The general partial Gaussian integral is therefore
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Im =

Z
: : :

Z
exp[�1

2
qTMq] dqm+1 : : : dqn =

(2�)
n�m

2p
det(W0)

exp

�
�1

2
uTUu

�
(E{26)

where

U � U0 � VW�1
0 V T (E{27)

is a \renormalized" version of the �rst (m�m) block of the original matrix M .

This result has a simple intuitive meaning in application to probability theory. The original
(n � 1) vector q is composed of an (m � 1) vector u of \interesting" quantities that we wish to

estimate, and an (r � 1) vector w of \uninteresting" quantities or \nuisance parameters" that
we want to eliminate. Then U0 represents the inverse covariance matrix in the subspace of the

interesting quantities, W0 is the corresponding matrix in the \uninteresting" subspace, and V

represents an \interaction", or correlation, between them.

It is clear from (E{27) that if V = 0, then U = U0, and the pdf 's for u and w are independent.

Our estimates of u are then the same whether or not we integratew out of the problem. But if V 6= 0,
then the renormalized matrix U contains e�ects of the nuisance parameters. Two components, u1
and u2, that were uncorrelated in the original M�1 may become correlated in U�1 due to their
common interactions (correlations) with the nuisance parameters w.

Inversion of a Block Form matrix. The matrix U has another simple meaning, which we see

when we try to invert the full matrix M . Given an (n� n) matrix in block form

M =

�
U0 V

X W0

�
(E{28)

where U0 is an m�m submatrix, and W0 is (r� r) with m+ r = n, try to write M�1 in the same

block form:

M�1 =

�
A B

C D

�
(E{29)

Writing out the equation MM�1 = 1 in full, we have four relations of the form U0A + V C =
1; U0B + V D = 0, etc. If U0 and W0 are nonsingular, there is a unique solution for A; B; C; D

with the result

M�1 =

�
U�1 �U�10 VW�1

�W�1
0 XU�1 W�1

�
(E{30)

where

U � U0 � VW�1
0 X (E{31)

W � W0 �XU�10 V (E{32)
are \renormalized" forms of the diagonal blocks. Conversely, (E{30) can be veri�ed by direct

substitution into MM�1 = 1 or M�1M = 1. If M is symmetric as it was above, then X = V T .

Another useful and nonobvious relation is found by integrating u out of (E{26). On the one
hand we have from (E{9),

Z
� � �
Z

exp

�
�1

2
uT U u

�
du1 � � �dum =

(2�)m=2p
det(U)

((E{33)

but on the other hand, if we integrate fu1 � � �umg out of (E{26), the �nal result must be the same
as if we had integrated all the fq1 � � � qng out of (E{9) directly: so (E{9), (E{26), (E{33) yield



4 4

det(M) = det(U) det(W0) (E{34)

Therefore we can eliminate W0 and write the general partial Gaussian integral as

Z
� � �
Z

exp[�1

2
qT M q] dqm+1 � � �dqn =

�
(2�)n=2

det(M)

� �
det(U)

(2�)m=2

�
exp

�
�1

2
uT U u

�
(E{35)
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